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22 Ring class fields and the CM method 

Let O be an imaginary quadratic order of discriminant D, and let EllO(C) := {j(E) ∈ C : 
End(E) = C}. In the previous lecture we proved that the Hilbert class polynomial Y � � 

HD(X) := HO(X) := X − j(E) 
j(E)∈EllO (C) 

has integer coeÿcients. We then defined L to be the splitting field of HD(X) over the field √ 
K = Q( D), and showed that there is an injective group homomorphism 

Ψ: Gal(L/K) ,→ cl(O) 

that commutes with the group actions of Gal(L/K) and cl(O) on the set EllO(C) = EllO(L) 
of roots of HD(X). To complete the proof of the the First Main Theorem of Complex 
Multiplication, which asserts that Ψ is an isomorphism, we need to show that Ψ is surjective, 
equivalently, that HD(X) is irreducible over K. 

At the end of the last lecture we introduced the Artin map p 7→ σp, which sends each 
unramified prime p of K (prime ideal of OK ) to the corresponding Frobenius element σp, 
which is the unique element of Gal(L/K) for which 

σp(x) ≡ x Np mod q, (1) 

for all x ∈ OL and primes q|p (prime ideals of OL that divide the ideal pOL); the existence of 
a single σp ∈ Gal(L/K) satisfying (1) for all q|p follows from the fact that Gal(L/K) ,→ cl(O) 
is abelian. The Frobenius element σp can also be characterized as follows: for each prime 
q|p the finite field Fq := OL/q is an extension of the finite field Fp := OK /p and the 
automorphism σ̄p ∈ Gal(Fq/Fp) defined by σ̄p(x̄) = σ(x) (where x 7→ x̄ is the reduction 
map OL → OL/q), is the Frobenius automorphism x 7→ xNp generating Gal(Fq/Fp). Note 
that the fields Fq are all isomorphic (this holds whenever L/K is Galois); in particular, the 
extensions Fq/Fp all have the same degree, equal to the order of σp in Gal(L/K). 

If E/C has CM by O then j(E) ∈ L, and this implies that (up to isomorphism) E can 
2 3be defined by a Weierstrass equation y = x + Ax + B with A, B ∈ OL. Indeed, as in 

the proof of Theorem 14.12, for j(E) 6 0, 1728 we can take A = 3j(E)(1728 − j(E)) and= 
B = 2j(E)(1728 − j(E))2 . 

For each prime q of L, so long as the discriminant Δ(E) := −16(4A3 +27B2) does not lie 
in q, equivalently, the image of Δ(E) under the quotient map OL → OL/q = Fq is nonzero, 

¯ ¯ ¯2 3reducing modulo q yields an elliptic curve E/Fq defined by y = x + Ax + B. We then say 
that E has good reduction modulo q; this holds for all but finitely many primes q of L, since 
the principal ideal (Δ(E)) is divisible by only finitely many prime ideals. 

22.1 The First Main Theorem of Complex Multiplication 

With the Artin map in hand, we can now complete the proof of the First Main Theorem of 
Complex Multiplication. 

Theorem 22.1. Let O be an imaginary quadratic order of discriminant D and let L be the √ 
splitting field of HD(X) over K := Q( D). The map Ψ: Gal(L/K) → cl(O) that sends each 
σ ∈ Gal(L/K) to the unique ασ ∈ cl(O) such that j(E)σ = ασj(E) for all j(E) ∈ EllO(L) 
is a group isomorphism compatible with the actions of Gal(L/K) and cl(O) on EllO(L). 
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Proof. In the previous lecture we showed that Ψ is well-defined, injective, and commutes with 
the group actions of Gal(L/K) and cl(O); see Theorem 21.14 and the discussion preceding it. 
It remains only to show that Ψ is surjective. 

Fix α ∈ cl(O), and let p be a prime of K such that the following hold: 

(i) p ∩ O is a proper O-ideal of prime norm p such that [p] = α; 

(ii) p is unramified in K and p is unramified in L; 

(iii) Each j(E) ∈ EllO(L) is the j-invariant of an elliptic curve E/L that has good reduction 
modulo every prime q|p (prime ideals q of OL dividing pOL). 

(iv) The j(E) ∈ EllO(L) are distinct modulo every prime q|p. 

By Theorem 21.11, there are infinitely many p for which (i) holds, and conditions (ii)-(iv) 
prohibit only finitely many primes, so such a p exists. To ease the notation, we will also 
use p to denote the O-ideal p ∩O; it will be clear from context whether we are viewing p as 
an OK -ideal as an O-ideal (in particular, anytime we write [p] we must mean [p ∩O], since 
we are using [ · ] to denote equivalence classes of O-ideals). 

Let us now consider a particular prime q|p and curve E/L with CM by O that has good 
2 3reduction modulo q, defined by E : y = x + Ax + B with A, B ∈ OL and q - Δ(E). Put 

Fq := OL/q, and let E/Fq be the reduction of E modulo q, defined by E : y = x + ¯ B. 2 3 Ax + ¯

The Frobenius element σp induces the p-power Frobenius automorphism σp ∈ Gal(Fq/Fp), 
since Np = p, and we have a corresponding isogeny 

σ̄p (p)
π : E → Eσp = E = E

p p 2 3 Āp B̄pdefined by (x, y) 7→ (x , yp), where E is the curve y = x + x + . The isogeny π is 
purely inseparable of degree p. 

The CM action of the proper O-ideal p ∩ O corresponds to an isogeny φp : E → pE of 
degree Np = p, with pE of good reduction modulo q, by (iii), which we can assume is defined 

s(x)by a rational map (uv(
(
x
x
)
) , y) where u, v, s, t ∈ OL[x], with u monic and v nonzero modulo q. t(x) 

The isogeny φ : E → pE obtained by reducing the coeÿcients of u, v, s, t modulo q has the 
same degree p as the isogeny π. The composition of φ with its dual φ̂ is the multiplication-
by-p map on E, which is inseparable since Fq has characteristic p. This implies that at least 
one of φ and φ̂ is inseparable. Without loss of generality we may assume φ is inseparable: 
if not, we can replace E by pE and p by its complex conjugate ̄p, which also satisfies (i)-
(iv) and induces the dual isogeny φ̂p : pE → E (up to an isomorphism), since the ideal 
p̄p = (Np) = (p) induces the multiplication-by-p map on E, and reducing the rational maps 
defining φ̂p yields the dual isogeny φ̂ : pE → E. 

By Corollary 6.4, we can decompose the inseparable isogeny φ of degree p as φ = φsep ◦π, 
where φsep has degree 1 and must be an isomorphism. Thus pE ' Eσp and therefore 
j(pE) = j(Eσp ), and (iv) implies j(pE) = j(Eσp ). It follows that Ψ(σp) = [p] = α, since each 
element of cl(O) is determined by its action on any element of the cl(O)-torsor EllO(L). 

Corollary 22.2. Let O be an imaginary quadratic order with discriminant D. The Hilbert √ 
class polynomial HD(x) is irreducible over K = Q( D) and for any elliptic curve E/C with 
CM by O the field K(j(E)) is a finite abelian extension of K with Gal(K(j(E))/K) ' cl(O). 

Proof. Let L be the splitting field of HD(X) over K. The class group cl(O) acts transitively 
on the roots of HD(X) (the set EllO(C)), hence by Theorem 22.1, the Galois groupGal(L/K) 
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also acts transitively on the roots of HD(X), which implies that HD(X) is irreducible over K 
and is the minimal polynomial of each of its roots. The degree of HD is equal to the class 
number h(D) = #cl(O) = #Gal(L/K) = [L : K], so we L = K(j(E)) for every root 
j(E) of HD(X), equivalently, every j(E) ∈ EllO(C) = {j(E) : End(E) = O}. We have 
Gal(L/K) ' cl(O) by Theorem 22.1, which is abelian. 

22.2 The ring class field of an imaginary quadratic order 

Definition 22.3. Let O be an imaginary quadratic order with discriminant D. The splitting √ 
field of the Hilbert class polynomial of HD(X) over K = Q( D), equivalently, the extension 
of K generated by the j-invariant of any elliptic curve E/C with CM by O, is known as the 
ring class field of the imaginary quadratic order O with discriminant D. 

We say that an integer prime p is unramified in a number field L if the ideal pOL factors 
into distinct prime ideals q in OL, and we say that p splits completely in L if the prime 
ideals q|p are distinct and have minimal norm Nq = p. 

For an imaginary quadratic field K of discriminant D there are three possibilities for the 
factorization of the ideal pOK in OK : it either splits (completely into two distinct prime 
ideals), ramifies (is the square of a prime ideal), or remains inert (the ideal pOK is already � �

Dprime). These are distinguished by the Kronecker symbol , which is 1, 0, -1, respectively, p 
in these three cases (as proved in Lemma 22.6 below). 

Definition 22.4. Let p be a prime and D an integer. For p > 2 the Kronecker symbol is � � 
D 2:= #{x ∈ Fp : x = D} − 1. 
p � �

DFor p = 2, we define to be 1 for D ≡ ±1 mod 8, zero if p|D, and −1 for D ≡ ±3 mod 8. p 

Theorem 22.5. Let O be an imaginary quadratic order with discriminant D and ring class 
field L. Let p - D be an odd prime unramified in L. 1 The following are equivalent: 

(i) p is the norm of a principal O-ideal; � �
D(ii) = 1 and HD(X) splits into linear factors in Fp[X];p 

(iii) p splits completely in L; 

(iv) 4p = t2 − v2D for some integers t and v with t 6≡ 0 mod p. 
√ 

Proof. Let K := Q( D), let OK = [1, ω] be the ring of integers of K. By Theorem 18.17, 
we may write D = u2DK , where u = [OK : O] and DK = disc OK is a fundamental 
discriminant, and we then have O = [1, uω]. 

(i)⇒(iv): Let (λ) be a principal O-ideal of norm p. Then [1, λ] is a suborder of O with 
2discriminant v u2DK = v2D, where v = [O : [1, λ]]. Let t := λ + λ̄ so that x2 − tx + p is 

the minimal polynomial of λ, with discriminant disc[1, λ] = t2 − 4p = v2D. Then (iv) holds 
with t 6≡ 0 mod p because p - D (if p|t then p|v and p2|4p, a contradiction for p = 26 ). 

(iv)⇒(i): If 4p = t2 − v2D then the polynomial x2 − tx + p with discriminant v2D has a 
root λ ∈ OK ; the order [1, λ] has discriminant v2D and therefore lies in O, by Theorem 18.17, 
so λ ∈ O, and (λ) is a principal O-ideal of norm λλ̄ = p. 

1If p does not divide D then it must be unramified in L, but we have not proved this yet, so we include 
it as a hypothesis which will be removed in Corollary 22.8. 
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(i)⇒(ii): Since (i)⇒(iv) we have 4p = t2 − v2D for some t, v ∈ Z with t 6≡ 0 mod p, and � � � � � � 
D v2D t2 − 4p 

= = = 1, 
p p p 

since t2 6≡ 0 mod p. If p is a principal O-ideal of norm p, then p is unramified in L (since 
p = pp is unramified in L), and p is principal, so [p] and therefore σp acts trivially on the 
roots of HD(X), by Theorem 22.1. The roots of HD(X) mod p must therefore lie in Fp = Fp

and HD(X) splits into linear factors in Fp[X]. 
(ii)⇒(iii): If (D ) = 1, then pOK = pp̄ splits into distinct primes of norm p in K, by p 

Lemma 22.6, and if HD(X) splits into linear factors in Fp[x], then its roots are all fixed 
by σp. This implies [Fq : Fp] = 1, and therefore Nq = [OL : q] = [OK : p] = p for every 
prime q|p, so p splits completely in L (it must be unramified, since p is). If pOL = q1 · · · qn, 

¯then p̄OL = q̄1 · · · q̄n (note that OL = OL), and pOL = pp̄OL = q1 · · · qnq̄1 · · · ̄qn splits 
completely in L (the qi and ̄qi must all be distinct since p is unramified in L). 

(iii)⇒(i): If pOL = q1 · · · qn with the Nq1 = · · · Nqn = p then Fq := [OL : q] = Fp for 
all primes q dividing pOL. If p is a prime of K dividing pOK , then pOL divides pOL must 
be divisible by some prime ideal q dividing pOL. The inclusions Q ⊆ K ⊆ L imply Fp ⊆ 
Fp ⊆ Fq = Fp, where Fp := [OK : p], so Fp = Fp, and p has norm p. The extension Fq/Fp is 
trivial, so the Frobenius element σp ∈ Gal(L/K) is the identity, and so is [p ∩ O] ∈ cl(O), by 
Theorem 22.1 (note: p ∩O is a proper O-ideal because Np = p does not divide D = u2DK ). 
Thus p ∩ O is a principal O-ideal of norm [O : p ∩ O] = [OK : p] = p. 

Lemma 22.6. Let K be an imaginary quadratic field of discriminant D with ring of integers 
OK = [1, ω] and let p be prime. Every OK -ideal of norm p is of the form p = [p, ω − r], 
where r ∈� Z� is a root of the minimal polynomial of ω modulo p. The number of such ideals 

D p is 1 − ∈ {0, 1, 2} and the factorization of the principal OK -ideal into prime ideals is p ⎧⎪pp if (D ) = 1,⎨ p 

(p) = p2 if (D ) = 0,p⎪⎩
(p) if (D ) = −1.p � �

Dwith p 6 = 1.= p when p 

Proof. Let f(x) = x2 − (ω + ω)x + ωω ∈ Z[x] be the minimal polynomial of ω and let p be 
an OK -ideal of norm p. Every nonzero OK -ideal is invertible, so by Theorem 18.9 we have 
pp = (Np) = (p). Thus p ∈ p, and every integer n ∈ p must be a multiple of p because 
otherwise gcd(n, p) = 1 ∈ p would imply p = OK has norm 1 =6 p. Therefore p ∩ Z = pZ. 

We can thus write p = [p, aω − r] for some a, r ∈ Z, and [OK : p] = p then implies a = 1. 
The ideal p is closed under multiplication by OK , so in particular it must contain 

2(ω − r)(ω − r) = ωω − (ω + ω)r + r = f(r), 

which is both an integer and an element of p, hence a multiple of p. Thus r must be a root 
of f(x) mod p. Conversely, if r is any root of f(x) mod p, then [p, ω − r] is an OK -ideal of 
norm p, and if f(x) mod p has roots r and s that are distinct modulo p, then the OK -ideals 
[p, ω − r] and [p, ω − s] are clearly distinct. 

It follows that the number of OK -ideals of prime norm p is equal to the number of 
distinct roots of f(x) mod p. The discriminant of f(x) is 

(ω + ω)2 − 4ωω = (ω − ω)2 = disc OK = D, (2) 
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and when p is odd it follows from the quadratic equation that the number of distinct roots � �
Dof f(x) mod p is 1 − , since this is the number of distinct square-roots of D modulo p. p 

For p = 2, we first note that if D ≡ 0 mod 4 then (2) implies that ω + ω is even, so � �
Df(x) ≡ x2 mod 2 has 1 = 1 − distinct roots. If D ≡ 1 mod 4 then ω + ω must be odd. If 2 

D ≡ 1 mod 8 then (2) implies that� ω�ω must be even (since (ω + ω)2 ≡ 1 mod 8), and then 
2 Df(x) ≡ x + x mod 2 has 2 = 1 − distinct roots. If D ≡ 5 mod 8 then ωω must be odd, 2 � � 

2 Dand then f(x) ≡ x + x + 1 mod 2 has 0 = 1 − distinct roots. 2 

Corollary 22.7. Let O be an order of discriminant D in an imaginary quadratic field K, 
and let p be a prime. When p divides the conductor [O : OK ] there are no proper O-ideals of � �

Dnorm p and otherwise there are 1 − = 0, 1, 2, depending on whether p is inert, ramified, p 
or split in K, respectively 

22.3 Class field theory 

The theory of complex multiplication was originally motivated not by the study of elliptic 
curves, but as a way to construct abelian Galois extensions. A celebrated theorem of Kro-
necker and Weber states that every finite abelian extension of Q lies in a cyclotomic field (a 
field of the form Q(ζn), for some nth root of unity ζn). The e˙ort to generalize this result 
led to the development of class field theory, a branch of algebraic number theory that was 
one of the major advances of early 20th century number theory. 

In 1898 Hilbert conjectured that every number field K has a unique maximal abelian 
extension L/K that is unramified at every prime2 of K for which Gal(L/K) ' cl(OK ). This 
conjecture was proved shortly thereafter by Furtwängler, and the field L is now known as the 
Hilbert class field of K. While its existence was quickly proved, the problem of explicitly 
constructing L, say by specifying a generator for L in terms of its minimal polynomial 
over K, remained an open problem (and for general K it still is). 

After Q, the simplest fields K to consider are imaginary quadratic fields. As a gener-
alization of the Hilbert class field, rather than requiring L/K to be unramified at every 
prime of K, we might instead only require L/K to be unramified at primes that are proper 
O-ideals, for some order O ⊆ OK . As proved in problem 3 of Problem Set 9, this excludes 
only finitely many primes of K, namely, those that do not divide the conductor u := [OK :O] 
of the order O. 3 This leads to the definition of the ring class field L of the order O as the 
maximal abelian extension of K that is unramified at all primes p that do not divide the 
conductor of O. The ring class field of OK is then the Hilbert class field. 

The ring class field L is characterized by the infinite set SL/Q of primes that split com-
pletely in L, and with finitely many exceptions, these are precisely the primes p that satisfy 
the equation 4p = t2 − v2D for some t, v ∈ Z, withD = disc(O); see [4, Thm. 9.2, Ex. 9.3]. 
Any extension M/K for which the set SM/Q matches SL/Q with only finitely many excep-
tions must in fact be equal to L, by [4, Thm. 8.19]. Thus we have the following corollary of 
Theorem 22.5, which removes the assumption that p is unramified in L. 

Corollary 22.8. Let O be order of discriminant D in an imaginary quadratic field K. The 
splitting field L of HD(X) over K is the maximal abelian extension of K unramified at all 
primes that do not divide the conductor of O. In particular, every integer prime p - D is 
unramified in L. 

2This includes not only all prime OK -ideals, but also “infinite primes” of K, corresponding to embeddings 
of K into C. For imaginary quadratic fields K this imposes no additional restrictions. 

3When we say that p does not divide u we mean that p does not divide the principal ideal uOK . 
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Ring class fields allow us to explicitly construct infinitely many abelian extensions of a 
given imaginary quadratic field K. One might ask whether every abelian extension of K is 
contained in a ring class field. This is not the case, but by extending the ring class field of 
on order O by adjoining the x-coordinates of the n-torsion points of an elliptic curve with 
CM by O (or powers of them, when disc O ∈ {−3, −4}), one obtains what are known as 
ray class fields, which depend on the choice of both O and n. These are analogs of the 
cyclotomic extensions of Q (which is its own Hilbert class field because it has no unramified 
extensions).An analog of the Kronecker-Weber theorem then holds: every abelian extension 
of an imaginary quadratic field is contained in a ray class field. One can define ring class 
fields and ray class fields for arbitrary number fields, and obtain a similar result (this was 
started by Weber and finished by Takagi around 1920), but the constructions are not nearly 
as explicit as they are in the imaginary quadratic case. 

22.4 The CM method 

The equation 
4p = t2 − v 2D 

in part (iv) of Theorem 22.5 is known as the norm equation; it arises from the principal 
O-ideal (λ) of norm p given by part (i), generated by a root λ ∈ O ⊆ OK of x2 − tx + p, 
which has norm p and trace t. By the quadratic equation p √ 

−t ± t2 − 4p −t ± v D 
λ = = . 

2 2 

Clearing denominators and taking norms yields the equation N(2λ) = 4λλ̄ = 4p = t2 − v2D. 
Let us assume this equation holds with p - D odd and D < −4. The prime p splits 

completely in the ring class field L for the order O of discriminant D, and we can completely 
factor HD(X) in both OL[x] and Fp[x]. If we now fix a prime q lying above p, then Nq = p, 
by Theorem 22.5, we have a reduction map OL → OL/q ' Fp that we can apply to the 
roots of HD(X), equivalently, to the set EllO(C) = {j(E) ∈ C : End(E) ' O}. 

It follows that the j-invariant j(E) of any elliptic curve E/C with CM by O can be 
reduced (modulo q) to the j-invariant of an elliptic curve E/Fp that is the reduction of E: 

2 3we can always pick a model y = x + Ax + B for E with A, B ∈ OL such that q - Δ(E) 
because p is odd and the denominator of j(E) has to be nonzero modulo q. Now we know 
that End(E) ' O, but what about End(E)? 

If ϕ ∈ End(E) ' O is a nonzero endomorphism of E, then we can reduce the coeÿcients 
of the rational functions defining ϕ modulo q to obtain a corresponding endomorphism 
ϕ̄ ∈ End(E). The endomorphism ϕ̄ is nonzero because it must satisfy the characteristic 
equation x2 − [tr ϕ]x + [deg ϕ] = 0 in End(E): multiplication-by-n maps [n] can always be 
reduced to from End(E) to End(E), so [tr ϕ] and [deg ϕ] reduce to maps [tr ϕ̄] and [deg ϕ̄] 
that represent multiplication by the same integers. It follows that the reduction map induces 
an injective ring homomorphism 

End(E) ,→ End(E). (3) 

In fact this map is an isomorphism (see §22.5), but for the moment we will content our-
selves with showing that it at least induces an isomorphism of endomorphism algebras. By 
Corollary 14.19 we know that End0(E) is either an imaginary quadratic field or a quaternion 
algebra, depending on whether E is ordinary or supersingular. 
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Corollary 22.9. Let O be an imaginary quadratic order with discriminant D and ring class 
field L, and let p - D be an odd prime satisfying 4p = t2 − v2D. Every j(E) ∈ EllO(C) is 
the j-invariant of an elliptic curve E/L with good reduction E modulo a prime q of L lying 
above p. Provided j(E) 6 = ±t 6≡ 0 mod p and is E is ordinary.4= 0, 1728, we have tr πE 

Proof. By Theorem 22.5 and its proof, p is the norm of a principal O-ideal p := (λ), where 
λ has norm p and trace t. As in the proof of Theorem 22.1, one of the isogenies φp : E → pE 

and φp̄ : E → p̄E induces a purely inseparable isogeny φ : E → E
(p) 
= E, which up to an 

automorphism, must be the Frobenius endomorphism π . We have tr φ = tr φp = tr φp̄ = t,E 
with t 6≡ 0 mod p by part (iv) of Theorem 22.5. For j(E) 6= 0, 1728 the only automorphisms 
of E are ±1, so tr π = ± tr φ = ±t 6≡ 0 mod p and E is ordinary. E 

Corollary 22.9 gives us an explicit method for constructing elliptic curves over finite 
fields with a prescribed number of rational points. Let D < −4 be an imaginary quadratic 
discriminant and let p - D be an odd prime. In this case the norm equation 4p = t2 − v2D 
determines t (and v) up to a sign, and we can eÿciently compute a solution (t, v) using 
Cornacchia’s algorithm (see Problem Set 2). Given the Hilbert class polynomial HD(X), 
we can eÿciently compute a root j0 of HD(X) over Fp (using a randomized root-finding 

2 3algorithm) and then write down the equation y = x + Ax + B of an elliptic curve E with 
j(E) = j0, using A = 3j(1728 − j) and B = 2j(1728 − j)2 (assuming j0 6= 0, 1728). 

The Frobenius endomorphism πE then satisfies tr πE = ±t, and by Hasse’s theorem, 

#E(Fp) = p + 1 − tr(πE ). 

The sign of tr πE depends can be explicitly determined using the formulas in [8]. Alterna-
tively, one can simply pick a random point P ∈ E(Fp) and check whether (p + 1 − t)P = 0 
or (p +1+ t)P = 0 both hold (at least one must); if only one of these equations is satisfied, 
then tr π is determined (for large p this will almost always happen with the first P we try). 
Note that we can always change the sign of tr π be replacing E with its quadratic twist. 

Now suppose that wish to construct an elliptic curve E over some finite field Fp such 
that #E(Fp) = N , for some positive integer N . Provided we can factor N (typically N is 
prime and this is easy), we can use Cornacchia’s algorithm to find a solution (a, v) to 

4N = a 2 − v 2D 

for any particular imaginary quadratic discriminant D, whenever such a solution exists.5 

Given a solution (a, v), we put t := a +2 and check whether p := N − 1+ t is prime. If not, 
or if no solution (a, v) can be found, we just try a di˙erent discriminant D. In practice this 
will happen quite quickly; see [3] for a heuristic complexity analysis. 

Once we have p = N − 1 + t prime, we then observe that 

4p = 4N − 4 + 4t = a 2 − v 2D − 4 + 4a + 8 = (a + 2)2 − v 2D = t2 − v 2D, 

so the norm equation is satisfied, and we can construct an elliptic curve E/Fp with tr πE = ±t 
using the Hilbert class polynomial HD(X) as described above, taking a quadratic twist if 
necessary to get tr πE = t. We then have #E(Fp) = p + 1 − t = N as desired. 

4In fact E is also ordinary when j(E) ∈ {0, 1728}, but this takes more work to prove. 
5We need to be able to factor N because Cornacchia’s algorithm requires a square root of D modulo N ; 

computing square roots modulo primes is easy, and if we know the factorization of N we can use the CRT 
to reduce to this case; in general, computing square roots modulo N is as hard as factoring N . 
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This method of constructing an elliptic curve E/Fp is known as the CM method. The 
CM method has many applications, one of which is an improved version of elliptic curve 
primality proving developed by Atkin and Morain [1]; see Problem Set 11. 

Remark 22.10. It can happen that HD(X) has roots in Fp even when p does not split 
completely in the ring class field L. These roots cannot be j-invariants of elliptic curves 
E/Fp with End(E) = O, we must have O ( End(E), and in fact the fraction field K of O 
must be properly contained in End0(E). This means that End0(E) has to be a quaternion 
algebra that contains the imaginary quadratic field K. This cannot happen when p = pp� �

Dsplits in K (which occurs exactly when = 1), because L/K is Galois and the residue field p
extensions Fq/Fp all have the same degree (so HD mod p either has no roots at all or splits 
completely and in the latter case p must split completely in the ring class field for O). But 
if p is inert in K then HD(X) can easily have roots modulo p that must be j-invariants of 
supersingular elliptic curves. This actually provides a very eÿcient method for constructing 
supersingular curves; see [2] for details. 

Remark 22.11. We have restricted our attention to prime fields Fp in order to simplify 
the exposition, but everything we have done generalizes to arbitrary finite fields Fq of prime 
power order q. If O is an imaginary quadratic order of discriminant D with ring class field L,� �

Din Theorem 22.5 we can replace p - D with q ⊥ D, replace = 1 with the requirement p 
that D is a square in Fq (automatic when q is a square), and rather than requiring p to split 
completely in L we require q to be the norm of a prime ideal q in OL. The norm equation 
then becomes 4q = t2 − v2D with t ⊥ q, and if it is satisfied with D < −4 the Hilbert class 
polynomial HD(X) splits completely in Fq[x] and its roots are j-invariants of elliptic curves 
E/Fq with tr πE = ±t (which in fact have End(E) = O). 

The main limitation of the CM method is that it requires computing the Hilbert class 
polynomial HD(X), which becomes very diÿcult when |D| is large. The degree of HD(X)p
is the class number h(D) ≈ |D|, and the size of its largest coeÿcient is on the order of p
|D| log |D| bits.6 Thus the total size of HD(X) is on the order of |D| log |D| bits, which 

makes it impractical to even write down if |D| is large. An eÿcient algorithm for computing 
HD(X) is outlined in Problem Set 11, and with a suitably optimized implementation, it 
can practically handle discriminants with |D| as large as 1013, for which the size of HD(X) 
is several terabytes [10]. Using class polynomials associated to other modular functions 
discriminants up to |D| ≈ 1015 can be readily addressed [5], and with more advanced 
techniques, even |D| ≈ 1016 is feasible [11]. 

22.5 The Deuring lifting theorem 

As noted in the previous section, the injective ring homomorphism End(E) ,→ End(E) given 
by (3), where E/Fp is the reduction of an elliptic curve E/L with CM by O over its ring 
class field L modulo an unramified prime q of norm p, is actually an isomorphism. Moreover, 
every elliptic curve over Fp with CM by O arises as the reduction of an elliptic curve E/L, 
and this correspondence is a bijective at the level of j-invariants. These facts follow from 
results of Deuring that we won’t take the time to prove, but record here for reference. 

Theorem 22.12 (Deuring). Let O be an imaginary quadratic order of discriminant D with 
ring class field L, and let q be the norm of a prime ideal in OL with q ⊥ D. Then HD(X) 

6Under the Generalized Riemann Hypothesis, these bounds are accurate to within an O(log log |D|) factor. 
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splits into distinct linear factors in Fq[X] and its roots form the set 

EllO(Fq) := {j(E) ∈ Fq : End(E) ' O}. 

of j-invariants of elliptic curves E/Fq with CM by O. 

Proof. This follows from [6, Thm. 13]. 

Theorem 22.13 (Deuring lifting theorem). Let E/Fq be an elliptic curve over a finite field 
and let φ ∈ End(E) be nonzero. There exists an elliptic curve E∗ over a number field L with 
an endomorphism φ∗ ∈ End(E∗) such that E∗ has good reduction modulo a prime q of L 
with residue field OL/q ' Fqand E and φ are the reductions modulo q of E∗ and φ∗ . 

Proof. See [6, Thm. 14]. 

22.6 Summing up the theory of complex multiplication 

Let O be an imaginary quadratic order of discriminant D. 

E L a ax2 + bxy + cy2 

j(E) j(L) [a] reduced form 

isomorphism homethety mod principal ideals SL2(Z)-equivalence 

EllO(C) {j(L) : O(L) = O} cl(O) cl(D) 

The figure above illustrates four di˙erent objects that have been our focus of study for the 
last several weeks: 

1. Elliptic curves E/C with CM by O. 

2. Lattices L (which define tori C/L that correspond to elliptic curves). 

3. Proper O-ideals a (which may be viewed as lattices). 
24. Primitive positive definite binary quadratic forms ax + bxy + cy2 of discriminant D 

(which correspond to proper O-ideals of norm a). 

In each case we defined a notion of equivalence: isomorphism, homethety, equivalence 
modulo principal ideals, and equivalence modulo an SL2(Z)-action, respectively. Modulo 
this equivalence, we obtain a finite set of objects with the cardinality h(O) = h(D) in each 
case. The two sets on the right, cl(O) and cl(D), are finite abelian groups that act on the 
two sets on the left, both of which are equal to EllO(C). This action is free and transitive, 
so that EllO(C) is a cl(O)-torsor. 
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