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3 Finite fields and integer arithmetic 

In order to perform explicit computations with elliptic curves over finite fields, we first need 
to understand arithmetic in finite fields. In many of the applications we will consider, the 
finite fields involved will be quite large, so it is important to understand the computational 
complexity of finite field operations. This is a huge topic, one to which an entire course could 
be devoted, but we will spend just one week on finite field arithmetic (this lecture and the 
next), with the goal of understanding the most commonly used algorithms and analyzing 
their asymptotic complexity. This will force us to omit many details. 

The first step is to fix an explicit representation of finite field elements. This might seem 
like a technical detail, but it is actually quite crucial; questions of computational complexity 
are meaningless otherwise. 

Example 3.1. As we will prove shortly, the multiplicative group of a finite field is cyclic. So 
one way to represent the nonzero elements of a finite field explicit powers of a fixed generator 
(so it is enough to specify just the exponent). With this representation multiplication and 
division are easy, solving the discrete logarithm problem is trivial, but addition is hard. 
We will instead choose a representation that makes addition (and subtraction) very easy, 
multiplication slightly harder but still easy, division slightly harder than multiplication but 
still easy (all these operations take quasi-linear time). But solving the discrete logarithm 
problem will be hard (no polynomial-time algorithm is known). 

For they sake of brevity, we will focus primarily on finite fields of large characteristic, and 
prime fields in particular, although the algorithms we describe will work in any finite field 
of odd characteristic. Fields of characteristic 2 are quite important in practical applications 
(coding theory in particular), and there are many specialized algorithms that are optimized 
for such fields, but we will not address them here.1 

3.1 Finite fields 

We begin with a quick review of some basic facts about finite fields, all of which are straight-
forward but necessary for us to establish a choice of representation; we will also need them 
when we discuss algorithms for factoring polynomials over finite fields in the next lecture.2 

Definition 3.2. For each prime p we define Fp to be the quotient ring Z/pZ. 

Theorem 3.3. The ring Fp is a field, and every field of characteristic p contains a canonical 
subfield isomorphic to Fp. In particular, all fields of cardinality p are isomorphic. 

Proof. For any a 6≡ 0 mod p we have gcd(a, p) = 1, and the extended Euclidean algorithm 
allows us to compute u, v ∈ Z such that ua + vp = 1. We have ua ≡ 1 mod p, and this 
shows that every nonzero element of Z/pZ has a multiplicative inverse, which makes the 
commutative ring Z/pZ a field. In any field of characteristic p the set {0, 1, 1 + 1, . . .} is a 
subring isomorphic to Z/pZ = Fp. 

1With the recent breakthrough in computing discrete logarithms in finite fields of small characteristic [1] in 
quasi-polynomial time, there is less enthusiasm for using these fields in elliptic curve cryptography, although 
in principle this should only impact curves with small embedding degree (so-called “pairing-friendly" curves). 

2For students already familiar with this material, I recommend the following exercise: write down each 
of the theorems in this section on a separate piece of paper and prove them yourself (to make things more 
interesting, see if you can do it without using any Galois theory). 
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The most common way to represent Fp for computational purposes is to pick a set of 
unique coset representatives for Z/pZ, such as the integers in the interval [0, p − 1]. 

nDefinition 3.4. For each prime power q = p we define Fq = Fpn to be the field extension 
of Fp generated by adjoining all roots of xq − x to Fp (the splitting field of xq − x over Fp). 

nTheorem 3.5. Let q = p be a prime power. The field Fq has cardinality q and every field 
of cardinality q is isomorphic to Fq. 

q pProof. The map x 7→ x = x
n is an automorphism of Fq, since in characteristic p we have 

n n n n n np p(a + b)p = a + bp and (ab)p = a bp , � 
pn
� 

where the first identity follows from the binomial theorem (the binomial coeÿcients allk� 
pn
� � 

pn
� 

vanish except 0 = pn = 1). The subfield of Fq fixed by this automorphism is precisely 
the set S of roots of xq − x, which includes Fp, since 

(1 + · · · + 1)q = 1q + · · · + 1q = 1 + · · · + 1. 

Thus Fq = S, as sets. The polynomial xq − x has no roots in common with its derivative 
(xq − x)0 = qxq−1 − 1 = −1, so it has q distinct roots. Therefore #Fq = #S = q. 

nNow let k be a field of cardinality q = p . Then k must have characteristic p, since 
the set {1, 1 + 1, . . .} is a subgroup of the additive group of k, so the characteristic divides 
#k = pn, and in a finite ring with no zero divisors the characteristic must be prime. By the 
previous theorem, k contains a subfield isomorphic to Fp. The order of each α ∈ k× (the 
multiplicative group of k containing all nonzero elements) must divide #k× = q − 1; thus 
αq−1 = 1 for all α ∈ k×, and every α ∈ k, including α = 0, is thus a root of xq − x. We have 
#k = q, so k contains every root of xq − x and is therefore isomorphic to Fq, the splitting 
field of xq − x over Fp. 

Remark 3.6. Now that we know all finite fields of cardinality q are isomorphic, we will feel 
free to refer to any and all of them as the finite field Fq. 

Theorem 3.7. The finite field Fpm is a subfield of Fpn if and only if m divides n. 

Proof. If Fpm ⊆ Fpn then Fpn is an Fpm -vector space of (integral) dimension n/m, so m|n. 
n−2m n−3m 2mIf m|n then pn − pm = (pm − 1)(p + p + · · · + p + pm) is divisible by pm − 1 and 

n m mp p pm−1 2(pm−1) pn−px − x = (x − x)(1 + x + x + · · · + x ) 

m m np p pis divisible by x −x. Thus every root of x −x is also a root of x −x, so Fpm ⊆ Fpn . 

Theorem 3.8. If f ∈ Fp[x] is an irreducible polynomial of degree n then Fp[x]/(f) ' Fpn . 
n−1Proof. The ring k := Fp[x]/(f) is an Fp-vector space with basis 1, . . . , x and therefore 

nhas cardinality p . The ring Fp[x] is a Euclidean domain.3 If a ∈ Fp[x] is not divisible 
by f then we must have gcd(f, a) = 1 (since f is irreducible), and we can then use the 
extended Euclidean algorithm to compute u, v ∈ Fp[x] satisfying ua + vf = 1, and u is than 
a multiplicative inverse of a modulo f (exactly as in the proof of Theorem 3.3). 

It follows that every nonzero element of the commutative ring k has a multiplicative 
ninverse, thus k is a field of cardinality p and therefore isomorphic to Fpn . 

3Recall that this means it has a division algorithm that produces a remainder that is always “smaller" 
than the divisor; for a polynomial ring “smaller" means lower degree. 
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Theorem 3.8 allows us to explicitly represent Fpn as Fp[x]/(f) using any irreducible 
polynomial f ∈ Fp[x] of degree n, and it does not matter which f we pick; by Theorem 3.5 
we always get the same field (up to isomorphism). We also note the following corollary. 

Corollary 3.9. Every irreducible polynomial f ∈ Fp[x] of degree n splits completely in Fpn . 

Proof. We have Fp[x]/(f) ' Fpn , so every root of f must be a root of xpn − x, hence an 
element of Fpn . 

Remark 3.10. This corollary implies that xpn − x is the product over the divisors d of 
n of all monic irreducible polynomials of degree d in Fp[x]. This can be used to derive 
explicit formulas for the number of irreducible polynomials of degree d in Fp[x] using Möbius 
inversion. 

Theorem 3.11. Every finite subgroup of the multiplicative group of a field is cyclic. 

Proof. Let k be a field, let G be a subgroup of k× of order n, and let m be the exponent 
of G (the least common multiple of the orders of its elements), which necessarily divides n. 
Every element of G is a root of xm − 1, which has at most m roots, so m = n. For each 
prime power q dividing m, there must be an element of G of order q (otherwise m would be 
smaller). Since G is abelian, any product of elements of relatively prime orders a and b has 
order ab. It follows that G contains an element of order m = n and is therefore cyclic. 

Corollary 3.12. The multiplicative group of a finite field is cyclic. 

If α is a generator for the multiplicative group F×, then it certainly generates Fq asq 
an extension of Fp, that is, Fq = Fp(α), and we have Fq ' Fp[x]/(f), where f ∈ Fp[x] is 
the minimal polynomial of α, but the converse need not hold. This motivates the following 
definition. 

Definition 3.13. A monic irreducible polynomial f ∈ Fp[x] whose roots generate the mul-
tiplicative group of the finite field Fp[x]/(f) is called a primitive polynomial. 

Theorem 3.14. For every prime p and positive integer n there exist primitive polynomials 
of degree n in Fp[x]. Indeed, the number of such polynomials is φ(pn − 1)/n. 

Here φ(m) is the Euler function that counts the generators of a cyclic group of order m, 
equivalently, the number of integers in [1,m − 1] that are relatively prime to m. 

Proof. Let α be a generator for F× 
pn with minimal polynomial fα ∈ Fp[x]; then fα is primitive. 

There are φ(pn − 1) possible choices for α. Conversely, if f ∈ Fp[x] is a primitive polynomial 
of degree n then each of its n roots is a generator for F×. We thus have a surjective n-to-1q 

map α → fα from the set of generators of F× 
pn to the set of primitive polynomials over Fp of 

degree n; the theorem follows. 

The preceding theorem implies that there are plenty of irreducible (and even primitive) 
polynomials f ∈ Fp[x] that we can use to represent Fq = Fp[x]/(f) when q is not prime. The 
choice of the polynomial f has some impact on the cost of reducing a polynomials in Fp[x] 
modulo f ; ideally we would like f to have as few nonzero coeÿcients as possible. We can 
choose f to be a binomial only when its degree divides p − 1, but we can usually (although 
not always) choose f to be a trinomial; see [6]. Finite fields in cryptographic standards are 
often specified using an f ∈ Fp[x] that makes reduction modulo f particularly eÿcient. 
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Having fixed a representation for Fq, every finite field operation can ultimately be reduced 
to integer arithmetic: elements of Fp are represented as integers in [0, p − 1], and elements of 
Fq = Fp[x]/(f) are represented as polynomials of degree less than deg f whose coeÿcients 
are integers in [0, p − 1]. We will see exactly how to eÿciently reduce arithmetic in Fq to 
integer arithmetic in the next lecture. In the rest of this lecture we consider the complexity 
of integer arithmetic. 

3.2 Integer addition P n−1Every nonnegative integer a has a unique binary representation a = ai2
i with ai ∈i=0 

{0, 1} and an−1 6 0. The binary digits ai are called bits, and we say that a is an n-bit= 
integer ; we can represent negative integers by including an additional sign bit. 

To add two integers in their binary representations we apply the “schoolbook" method, 
adding bits and carrying as needed. For example, we can compute 43+37=80 in binary as 

101111 

101011 
+100101 
1010000 

The carry bits are shown in red. To see how this might implemented in a computer, 
consider a 1-bit adder that takes two bits ai and bi to be added, along with a carry bit ci. 

1-bit 
adder 

ai bi 

ci 

ci+1 = (ai ∧ bi) ∨ (ci ∧ ai) ∨ (ci ∧ bi) 
ci+1 

si = ai ⊗ bi ⊗ ci 

si 

The symbols ∧, ∨, and ⊗ denote the boolean functions AND, OR, and XOR (exclusive-or) 
respectively, which we may regard as primitive components of a boolean circuit. By chaining 
n + 1 of these 1-bit adders together, we can add two n-bit numbers using 7n + 7 = O(n) 
boolean operations on individual bits. 

Remark 3.15. Chaining adders is known as ripple addition and is no longer commonly used, 
since it forces a sequential computation. In practice more sophisticated methods such as 
carry-lookahead are used to facilitate parallelism. This allows most modern microprocessors 
to add two 64 (or even 128) bit integers in a single clock cycle. 

We could instead represent the same integer a as a sequence of words rather than bits. Pk−1 
l n m 

For example, write a = i=0 ai2
64i, where k = . We may then add two integers using 

64 
a sequence of O(k), equivalently, O(n), operations on 64-bit words. Each word operation 
is ultimately implemented as a boolean circuit that involves operations on individual bits, 
but since the word-size is fixed, the number of bit operations required to implement any 
particular word operation is a constant. So the number of bit operations is again O(n), and 
if we ignore constant factors it does not matter whether we count bit or word operations. 

Subtraction is analogous to addition (now we need to borrow rather than carry), and 
has the same complexity, so we will not distinguish these operations when analyzing the 
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complexity of algorithms. With addition and subtraction of integers, we have everything we 
need to perform addition and subtraction in a finite field. To add two elements of Fp ' Z/pZ 
that are uniquely represented as integers in the interval [0, p − 1] we simply add the integers 
and check whether the result is greater than or equal to p; if so we subtract p to obtain a 
value in [0, p − 1]. Similarly, after subtracting two integers we add p if the result is negative. 
The total work involved is still O(n) bit operations, where n = lg p is the number of bits 
needed to represent a finite field element. 

To add or subtract two elements of Fq ' (Z/pZ)[x]/(f) we simply add or subtract the 
corresponding coeÿcients of the polynomials, for a total cost of O(d lg p) bit operations, 
where d = deg f , which is again O(n) bit operations, if we put n = lg q = d lg p. 

Theorem 3.16. The time to add or subtract two elements of Fq in our standard represen-
tation is O(n), where n = lg q is the size of a finite field element. 

3.3 A quick refresher on asymptotic notation 

Let f and g be two real-valued functions whose domains include the positive integers. The 
big-O notation “f(n) = O(g(n))" is shorthand for the statement: 

There exist constants c and N such that for all n ≥ N we have |f(n)| ≤ c|g(n)|. 

This is equivalent to 
|f(n)|

lim sup < ∞. 
n→∞ |g(n)| 

Warning 3.17. This notation is a horrible abuse of the symbol “=". When speaking in 
words we would say “f(n) is O(g(n))," where the word “is" does not imply equality (e.g., 
“Aristotle is a man"), and it is generally better to write this way. Symbolically, it would 
make more sense to write f(n) ∈ O(g(n)), regarding O(g(n)) as a set of functions. Some 
do, but the notation f(n) = O(g(n)) is far more common and we will occasionally use it 
in this course, with one caveat: we will never write a big-O expression on the left of an 
“equality". It may be true that f(n) = O(n log n) implies f(n) = O(n2), but we avoid 
writing O(n log n) = O(n2) because O(n2) =6 O(n log n). 

We also have big-Ω notation “f(n) = Ω(g(n))", which means g(n) = O(f(n)). 4 Then 
there is also little -o notation “f(n) = o(g(n)),” which is shorthand for 

|f(n)|
lim = 0. 
n→∞ |g(n)| 

An alternative notation that is sometimes used is f � g, but depending on the author this 
may mean f(n) = o(g(n)) or f(n) = O(g(n)) (computer scientists tend to mean the former, 
while number theorists usually mean the latter, so we will avoid this notation). There is also 
a little-omega notation, but the symbol ω already has so many uses in number theory that 
we will not burden it further (we can always use little-o notation instead). The notation 
f(n) = Θ(g(n)) means that both f(n) = O(g(n)) and f(n) = Ω(g(n)) hold. 

4The Ω-notation originally defined by Hardy and Littlewood had a slightly weaker definition, but modern 
usage generally follows our convention, which is due to Knuth. 
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Warning 3.18. Don’t confuse a big-O statement with a big-Θ statement; the former implies 
only an upper bound. If Alice has an algorithm that is O(2n) this does not mean that Alice’s 
algorithm requires exponential time, and it does not mean that Bob’s O(n2) algorithm is 
better; Alice’s algorithm could be O(n) for all we know. But if Alice’s algorithm is Ω(2n) 
then we would definitely prefer to use Bob’s algorithm for all suÿciently large n. 

Big-O notation can also be used for multi-variable functions: f(m, n) = O(g(m, n)) is 
shorthand for the statement: 

There exist constants c and N such that for all m, n ≥ N we have |f(m, n)| ≤ c|g(m, n)|. 

This statement is weaker than it appears. For example, it says nothing about the relationship 
between f(m, n) and g(m, n) if we fix one of the variables. However, in virtually all of 
the examples we will see it will actually be true that if we regard f(m, n) = fm(n) and 
g(m, n) = gm(n) as functions of n with a fixed parameter m, we have fm(n) = O(gm(n)) 
(and similarly fn(m) = O(gn(m))). 

So far we have spoken only of time complexity, but space complexity plays a crucial 
role in many algorithms that we will see in later lectures. Space complexity measures the 
amount of memory an algorithm requires; this can never be greater than its time complexity 
(it takes time to use space), but it may be smaller. When we speak of “the complexity" of 
an algorithm, we should really consider both time and space. An upper bound on the time 
complexity is also an upper bound on the space complexity but it is often possible (and 
desirable) to obtain a better bound for the space complexity. 

For more information on asymptotic notation and algorithmic complexity, see [2]. 

Warning 3.19. In this class, unless explicitly stated otherwise, our asymptotic bounds 
always count bit operations (as opposed to finite field operations, or integer operations). 
When comparing complexity bounds found in the literature, one must be sure to understand 
exactly what is being counted. For example, a complexity bound that counts operations in 
finite fields may need to be converted to a bit complexity to get an accurate comparison, 
and this conversion is going to depend on exactly which finite field operations are being used 
and how the finite fields are represented. 

3.4 Integer multiplication 

We now consider the problem of multiplying integers. 

3.4.1 Schoolbook method 

Let us compute 37×43 = 1591 with the “schoolbook" method, using a binary representation. 

101011 
× 100101 

101011 
101011 

+101011 
11000110111 

Multiplying individual bits is easy (just use an AND-gate), but we need to do n2 bit mul-
tiplications, followed by n additions of n-bit numbers (suitably shifted). The complexity of 
this algorithm is thus Θ(n2). This gives us an upper bound on the time M(n) to multiply 
two n-bit integers, but we can do better. 
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3.4.2 Karatsuba’s algorithm 

Rather than representing n-bit integers using n digits in base 2, we may instead represent 
them using 2 digits in base 2n/2. We may then compute their product as follows 

a = a0 + 2
n/2 a1 

b = b0 + 2
n/2b1 

ab = a0b0 + 2
n/2(a1b0 + b1a0) + 2

n a1b1 

Naively, this requires four multiplications of (n/2)-bit integers and three additions of O(n)-
bit integers (note that multiplying an intermediate result by a power of 2 can be achieved 
by simply writing the binary output “further to the left" and is e˙ectively free). However, 
we can use the following identity to compute a0b1 + b0a1 more eÿciently 

a0b1 + b0a1 = (a0 + a1)(b0 + b1) − a0b0 − a1b1. 

By reusing the common subexpressions a0b0 and a1b1, we can multiply a and b using three 
multiplications and six additions (we count subtractions as additions). We can use the same 
idea to recursively compute the three products a0b0, a1b1, and (a0 + a1)(b0 + b1); this is 
known as Karatsuba’s algorithm. 

If we let T (n) denote the running time of this algorithm, we have 

T (n) = 3T (n/2) + O(n) 
lg 3)= O(n

lg 3) ≈ O(n1.59). 5Thus M(n) = O(n

3.4.3 The Fast Fourier Transform (FFT) 

The fast Fourier transform is widely regarded as one of the top ten algorithms of the twen-
tieth century [3, 5], and has applications throughout applied mathematics. Here we focus 
on the discrete Fourier transform (DFT), and its application to multiplying integers and 
polynomials, following the presentation in [7, §8]. It is actually more natural to address the 
problem of polynomial multiplication first. 

Let R be a commutative ring containing a primitive nth root of unity ω, by which we 
mean that ωn = 1 and ωi − ωj is not a zero divisor for 0 ≤ i < j < n (when R is a field 
this coincides with the usual definition). We shall identify the set of polynomials in R[x] 
of degree less than nPwith the set of all n-tuples with entries in R. Thus we represent the 

n−1 ipolynomial f(x) = fix by its coeÿcient vector (f0, . . . , fn−1) ∈ Rn and may speaki=0 
of the polynomial f ∈ R[x] and the vector f ∈ Rn interchangeably. 

The discrete Fourier transform DFTω : Rn → Rn is the R-linear map 

DFTω(f0, . . . , fn−1) −−−−→ (f(ω0), . . . , f(ωn−1)). 

You should think of this map as a conversion between two types of polynomial representa-
tions: we take a polynomial of degree less than n represented by n coeÿcients (its coeÿcient-
representation and convert it to a representation that gives its values at n known points (its 
point-representation). 

5We write lg n for log2 n. 
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One can use Lagrange interpolation to recover the coeÿcient representation from the 
point representation, but our decision to use values ω0, . . . , ωn−1 that are nth roots of unity 
allows us to do this more eÿciently. If we define the Vandermonde matrix ⎛ ⎞ 

1 ω ω2 · · · ωn−1 

1 ω2 ω4 · · · ω2n−2 

1 ω3 ω6 · · · ω3n−3 

. . . 
. . . 

. . . · · · 
. . . 

1 ωn−1 ω2n−2 · · · ω(n−1)2 

⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎠ 
Vω := , 

then DFTω(f) = Vωf
t. Our assumption that none of the di˙erences ωi − ωj is a zero divisor 

in R guarantees that the matrix Vω is invertible, and in fact its inverse is just 1 Vω−1 . It n 
follows that 

DFT−1 = 
1 
DFTω−1 .ω n 

Thus if we have an algorithm to compute DFTω we can use it to compute DFT−1: simply ω 
1replace ω by ω−1 and multiply the result by . n 

We now define the cyclic convolution f ∗ g of two polynomials f, g ∈ Rn: 

f ∗ g = fg mod (x n − 1). 

Reducing the product on the right modulo xn −1 ensures that f ∗g is a polynomial of degree 
less than n, thus we may regard the cyclic convolution as a map from Rn to Rn. If h = f ∗g,P 
then hi = fj gk, where the sum is over j + k ≡ i mod n. If f and g both have degree less 
than n/2, then f ∗ g = fg; thus the cyclic convolution of f and g can be used to compute 
their product, provided that we make n big enough. 

We also define the pointwise product f · g of two vectors in f, g ∈ Rn: 

f · g = (f0g0, f1g1, . . . , fn−1gn−1). 

We have now defined three operations on vectors in Rn: the binary operations of convolution 
and point-wise product, and the unary operation DFTω. The following theorem relates these 
three operations and is the key to the fast Fourier transform. 

Theorem 3.20. DFTω(f ∗ g) = DFTω(f) · DFTω(g). 

Proof. Since f ∗ g = fg mod (xn − 1), we have 

f ∗ g = fg + q · (x n − 1) 

for some polynomial q ∈ R[x]. For every integer i from 0 to n − 1 we then have 

(f ∗ g)(ωi) = f(ωi)g(ωi) + q(ωi)(ωin − 1) 

= f(ωi)g(ωi), 

where we have used (ωin − 1) = 0, since ω is an nth root of unity. 

The theorem implies that if f and g are polynomials of degree less then n/2 then 

fg = f ∗ g = DFT−1(DFTω(f) · DFTω(g)). (1)ω 
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This identify allows us to multiply polynomials using the discrete Fourier transform. To 
put this into practice, we need an eÿcient way to compute DFTω, which is achieved by the 
following recursive algorithm. 

Algorithm: Fast Fourier Transform (FFT) 
Input: A positive integer n = 2k, a vector f ∈ Rn, and the vector (ω0, . . . , ωn−1) ∈ Rn . 
Output: DFTω(f) ∈ Rn . 

1. If n = 1 then return (f0) and terminate. 
2 h(x), where g, h ∈ R 
n

2. Write the polynomial f(x) in the form f(x) = g(x) + x 
n 
2 . 

3. Compute the vectors r = g + h and s = (g − h) · (ω0, . . . , ω 
n 
2 −1) in R 

n 
2 . 

4. Recursively compute DFTω2 (r) and DFTω2 (s) using (ω0, ω2, . . . , ωn−2). 

5. Return (r(ω0), s(ω0), r(ω2), s(ω2), . . . , r(ωn−2), s(ωn−2)) 

Let T (n) be the number of operations in R used by the FFT algorithm. Then T (n) satisfies 
the recurrence T (n) = 2T (n ) + O(n), and it follows that T (n) = O(n log n).2 

Theorem 3.21. The FFT algorithm outputs DFTω(f). 

Proof. We must verify that the kth entry of the output vector is f(ωk), for 0 ≤ k < n. For 
the even values of k = 2i we have: 

f(ω2i) = g(ω2i) + (ω2i)n/2h(ω2i) 

= g(ω2i) + h(ω2i) 

= r(ω2i). 

For the odd values of k = 2i + 1 we have: X X 
fj ω

(2i+1)j fn/2+j ω
(2i+1)(n/2+j)f(ω2i+1) = + 

0≤j<n/2 0≤j<n/2 X X 
gj ω

2ij ωj hj ω
2ij ωinωn/2ωj= + 

0≤j<n/2 0≤j<n/2 X 
(gj − hj )ω

j ω2ij= 
0≤j<n/2 X 

sj ω
2ij= 

0≤j<n/2 

= s(ω2i), 

where we have used the fact that ωn/2 = −1. 

Corollary 3.22. Let R be a commutative ring containing a primitive nth root of unity, with 
n = 2k, and assume 2 ∈ R× . We can multiply two polynomials in R[x] of degree less than 
n/2 using O(n log n) operations in R. 

Proof. From (1) we have 

fg = DFT−1(DFTω(f) · DFTω(g)) = 
1
DFTω−1 (DFTω(f) · DFTω(g))ω n 
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and we note that n = 2k ∈ R× is invertible. We can compute ω0, . . . , ωn−1 using O(n) mul-
tiplications in R (this also gives us (ω−1)0 , . . . , (ω−1)n−1). Computing DFTω and DFTω−1 

via the FFT algorithm uses O(n log n) operations in R, computing the pointwise product of 
DFTω(f) and DFTω(g) uses O(n) operations in R, and computing 1/n and multiplying a 
polynomial of degree less than n by this scalar uses O(n) operations in R. 

What about rings that do not contain an nth root of unity? By extending R to a new 
ring R0 := R[ω]/(ωn − 1) we can obtain a formal nth root of unity ω, and one can then 
generalize Corollary 3.22 to multiply polynomials in any ring R in which 2 is invertible using 
O(n log n log log n) operations in R; see [7, §8.3] for details. 

The need for 2 to be invertible can be overcome by considering a 3-adic version of the 
FFT algorithm that works in rings R in which 3 is invertible. For rings in which neither 2 
nor 3 is invertible we instead compute 2kfg and 3mfg (just leave out the multiplication by 
1/n at the end). Once we know both 2kfg and 3mfg we can recover the coeÿcients of fg by 
using the Euclidean algorithm to compute u, v ∈ Z such that u2k + v3m = 1 and applying 
u2kfg + v3mfg = fg. 

3.5 Integer multiplication 
n−1 nTo any positive integer a = 

P 
ai2

i we may associate the polynomial fa(x) = 
P 

i ∈i=0 i=0 aix
Z[x], with ai ∈ {0, 1}, so that a = fa(2). We can then multiply positive integers a and b via 

ab = fab(2) = (fafb)(2). 

Note that the polynomials fa(x)fb(x) and fab(x) may di˙er (the former may have coeÿcients 
greater than 1), but they take the same value at x = 2; in practice one typically uses base 
264 rather than base 2 (the ai and bi are then integers in [0, 264 − 1]). 

Applying the generalization of Corollary 3.22 discussed above to the ring Z, Schönhage 
and Strassen [9] obtain an algorithm to multiply two n-bit integers in time O(n log n log log n), 
which gives us a new upper bound 

M(n) = O(n log n log log n). 

Remark 3.23. As shown by Fürer [4], this bound can been improved to � � 
n log n 2O(log ∗ n)M(n) = O 

where log ∗ n denotes the iterated logarithm, which counts how many times the log function 
must be applied to n before the result is less than or equal to 1. Recently the sharper bound � � 

nM(n) = O n log n 8log ∗ 

was proved in [8], and under a conjecture about the existence of Mersenne primes, the 8 
can be replaced with 4. But these improvements, and even the original Schönhage Strassen 
algorithm, are primarily of theoretical interest: in practice one uses the “three primes" 
algorithm sketched below. 

The details of the Schoönhage and Strassen algorithm and its subsequent improvements 
are rather involved. There is a simpler approach that is used in practice which handles inte-
gers up to 2262 ; this includes integers that would require 500 petabytes (500,000 terabytes) 
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to store in memory and is more than enough for any practical application that is likely to 
arise in the near future. Let us briefly outline this approach. P 

ai2
64iWrite the positive integers a, b < 22

62 that we wish to multiply in base 264 as a = 
and b = 

P 
bi2

64i, with 0 ≤ ai, bi < 264, and define the polynomials fa = 
P 

aix
i ∈ Z[x] and 

fb = 
P 

bix
i ∈ Z[x] as above. Our goal is to compute fab(264) = (fafb)(264), and we note 

256that the polynomial fafb ∈ Z[x] has less than 262/64 = coeÿcients, each of which is 
256264264 < 2184bounded by . 

Rather than working over a single ring R we will use three finite fields Fp of odd char-
acteristic, where p is one of primes 

p1 := 71 · 257 + 1, p2 := 75 · 257 + 1, p3 := 95 · 257 + 1. 

Note that if p is any of the primes p1, p2, p3, then F× is a cyclic group whose order p − 1 isp 
divisible by 257, which implies that Fp contains a primitive 257th root of unity ω; indeed, 
for p = p1, p2, p3 we can use ω = ω1, ω2, ω3, respectively, where ω1 = 287, ω2 = 149, ω3 = 55. 

We can thus use the FFT Algorithm above with R = Fp to compute fafb mod p for each 
of the primes p ∈ {p1, p2, p3}. This gives us the values of the coeÿcients of fafb ∈ Z[x] 

> 2189modulo three primes whose product p1p2p3 is more than large enough to uniquely 
the coeÿcients via the Chinese Remainder Theorem (CRT); the time to recover the integer 
coeÿcients of fafb from their values modulo p1, p2, p3 is negligible compared to the time to 
apply the FFT algorithm over these three fields. 

3.6 Kronecker substitution 

We now note an important converse to the idea of using polynomial multiplication to multi-
ply integers: we can use integer multiplication to multiply polynomials. This is quite useful 
in practice, as it allows us take advantage of very fast implementations of FFT–based integer 
multiplication that are now widely available. If f is a polynomial in Fp[x], we can lift f 
to f̂  ∈ Z[x] by representing its coeÿcients as integers in [0, p − 1]. If we then consider the 
integer f̂(2m), where m = d2 lg p + lg2(deg f + 1)e, the coeÿcients of f̂  will appear in the 
binary representation of f̂(2m) separated by blocks of m−dlg pe zeros. If g is a polynomial of 
similar degree, we can easily recover the coeÿcients of ĥ = f̂ ĝ ∈ Z[x] in the integer product 
N = f̂(2m)ĝ(2m); we then reduce the coeÿcients of ĥ modulo p to get h = fg. The key is 
to make m large enough so that the kth block of m binary digits in N contains the binary 
representation of the kth coeÿcient of ĥ. 

This technique is known as Kronecker substitution, and it allows us to multiply two 
polynomials of degree d in Fp[x] in time O(M(d(n+log d)), where n = log p. Typically log d = 
O(n), in which case this simplifies to O(M(dn)) In particular, we can multiply elements of 
Fq ' Fp[x]/(f) in time O(M(n)), where n = log q, provided that either log deg f = O(n) 
or log p = O(1), which are the two most typical cases, corresponding to large characteristic 
and small characteristic fields, respectively. 

Remark 3.24. When log d = O(n), if we make the standard assumption that M(n) grows 
super-linearly then using Kronecker substitution is strictly faster (by more than any constant 
factor) than a layered approach that uses the FFT to multiply polynomials and then recur-
sively uses the FFT for the coeÿcient multiplications; this is because M(dn) = o(M(d) M(n)). 

3.7 Complexity of integer arithmetic 

To sum up, we have the following complexity bounds for arithmetic on n-bit integers: 
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addition/subtraction O(n) 
multiplication (schoolbook) O(n2) 

lg 3)multiplication (Karatsuba) O(n
multiplication (FFT) O(n log n log log n) 
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