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3 Properties of Dedekind domains

In the previous lecture we defined a Dedekind domain as a noetherian domain A that
satisfies either of the following equivalent conditions:

• the localizations of A at its nonzero prime ideals are all discrete valuation rings;

• A is integrally closed and has dimension at most one.

In this lecture we will establish several additional properties enjoyed by Dedekind domains,
the most significant of which is unique ideal factorization. As we noted last time, a Dedekind
domain is typically not a unique factorization domain (this occurs if and only if it is also a
principal ideal domain), but its ideals can all be uniquely factored into prime ideals.

3.1 Fractional ideals

Throughout this subsection, A is a noetherian domain (not necessarily a Dedekind domain)
and K is its fraction field.

Definition 3.1. A fractional ideal of A is a finitely generated A-submodule of K.

Despite the nomenclature, fractional ideals are typically not ideals, because they need
not be subsets of A. But they do generalize the notion of an ideal: when A is noetherian
the ideals of A are precisely the finitely generated A-submodules of A, and when A is also a
domain we can extend this notion to its fraction field. Some authors use the term integral
ideal to distinguish fractional ideals that are actually ideals but we will not do so.

Remark 3.2. Fractional ideals can be defined more generally in domains that are not
necessarily noetherian; in this case they are A-submodules I of K for which there exists an
element r ∈ A such that rI ⊆ A. When A is noetherian this coincides with our definition.

Lemma 3.3. Let A be a noetherian domain with fraction field K, and let I ⊆ K be an
A-module. Then I is finitely generated if and only if aI ⊆ A for some nonzero a ∈ A.

Proof. For the forward implication, if r1/s1, . . . , rn/sn generate I as an A-module, then
aI ⊆ A for a = s1 · · · sn. Conversely, if aI ⊆ A, then aI is an ideal, hence finitely generated
(since A is noetherian), and if a1, . . . , an generate aI then a1/a, . . . , an/a generate I.

Corollary 3.4. Every fractional ideal of A can be written in the form 1I, for some nonzeroa
a ∈ A and ideal I.

Example 3.5. The set I = 1
2Z = {n : n ∈ Z} is a fractional ideal of2 Z. As a Z-module it

is generated by 1/2 ∈ Q, and we have 2I ⊆ Z.

Definition 3.6. A fractional ideal of A if principal if it is generated as an A-module by
one element. We use (x) or xA to denote the principal fractional ideal generated by x ∈ K.

Like ideals, fractional ideals may be added and multiplied:

I + J := (i+ j : i ∈ I, j ∈ J), IJ := (ij : i ∈ I, j ∈ J).

Here the notation (S) means the A-module generated by S ⊆ K. As with ideals, we
actually have I +J = {i+ j : i ∈ I, j ∈ J}, but the ideal IJ is typically not the same as set
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{ij : i ∈ I, j ∈ J}, it consists of all finite sums of elements in this set. We also have a new
operation, corresponding to division. For any fractional ideals I, J with J nonzero, the set

(I : J) := {x ∈ K : xJ ⊆ I}

is called a colon ideal, or ideal quotient of I by J . Note that it is not a quotient of A-
modules (2Z/2Z = {0} but (2Z : 2Z) = Z), and we do not assume I ⊆ J (or J ⊆ I). If
I = (x) and J = (y) are principal fractional ideals then (I : J) = (x/y), so colon ideals can
be viewed as a generalization of division in K×.

The colon ideal (I : J) is an A-submodule of K, and it is finitely generated, hence a
fractional ideal. This is easy to see when I, J ⊆ A: let j be any nonzero element of J ⊆ A
and note that j(I : J) ⊆ I ⊆ A, so (I : J) is finitely generated, by Lemma 3.3. More
generally, choose a and b so that aI ⊆ A and bJ ⊆ A. Then (I : J) = (abI : abJ) with
abI, abJ ⊆ A and we may apply the same argument.

Definition 3.7. A fractional ideal I is invertible if IJ = A for some fractional ideal J .

Lemma 3.8. A fractional ideal I of A is invertible if and only if I(A : I) = A, in which
case (A : I) is its unique inverse.

Proof. We first note that inverses are unique when they exist: if IJ = A = IJ ′ then
J = JA = JIJ ′ = AJ ′ = J ′. Now suppose I is invertible, with IJ = A. Then jI ⊆ A for
all j ∈ J , so J ⊆ (A : I), and A = IJ ⊆ I(A : I) ⊆ A, so I(A : I) = A.

Theorem 3.9. The set IA of invertible fractional ideals of A form an abelian group under
multiplication in which the set of nonzero principal fractional ideals is a subgroup.

Proof. To see that IA is an abelian group note that: (1) commutativity and associativity
of fractional ideal multiplication follows from the commutativity and associativity of K, (2)
inverse exist by definition, and (3) A = (1) is a (necessarily unique) multiplicative identity.
Every nonzero principal ideal (a) has an inverse (1/a), and a product of principal ideals is
principal, so they form a subgroup.

Definition 3.10. The group IA of invertible fractional ideals of A is the ideal group of A.
The subgroup of principal fractional ideals is denoted PA, and the quotient cl(A) := IA/PA
is the ideal class group of A, also called the Picard group of A and denoted Pic(A).1

Example 3.11. If A is a DVR with uniformizer π then its nonzero fractional ideals are the
principal fractional ideals (πn) for n ∈ Z (including n < 0), all of which are invertible. We
have (πm)(πn) = (πm+n), thus the ideal group of A is isomorphic to Z (under addition).
We have PA = IA, since A is a PID, so the ideal class group cl(A) is the trivial group.

Remark 3.12. The ideal class group of A is trivial if and only if A is a PID and it can
thus be viewed as a measure of “how far” the domain A is from being a PID. When A is a
Dedekind domain it is equivalently a measure of how far A is from being a UFD.

1In general one defines the Picard group of a commutative ring A as the group of isomorphism classes of
A-modules that are invertible under tensor product. For noetherian domains the Picard group is canonically
isomorphic to the ideal class group we have defined and the two terms may be used interchangeably.
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3.2 Fractional ideals under localization

The arithmetic operations I + J , IJ , and (I : J) on fractional ideals respect localization.

Lemma 3.13. Let I and J be fractional ideals of A of a noetherian domain A, and let p
be a prime ideal of A. Then Ip and Jp are fractional ideals of Ap, as are

(I + J)p = Ip + Jp, (IJ)p = IpJp, (I : J)p = (Ip : Jp).

The same applies if we localize with respect to any multiplicative subset S of A.

Proof. We first note that Ip = IAp is a finitely generated Ap-module (by generators of I as
an A-module), hence a fractional ideal of Ap, and similarly for Jp. We have

(I + J)p = (I + J)Ap = IAp + JAp = Ip + Jp,

where we use the distributive law in K to get (I + J)Ap = IAp + JAp, and

(IJ)p = (IJ)Ap = IpJp,

where we note that (IJ)Ap ⊆ IpJp obviously holds and by writing sums of fractions over a
common denominator we see that IpJp ⊆ (IJ)Ap also holds. Finally

(I : J)p = {x ∈ K : xJ ⊆ I}p = {x ∈ K : xJp ⊆ Ip} = (Ip : Jp).

For the last statement, note that no part of our proof depends on the fact that we localized
with respect to a multiplicative of the from A− p

Theorem 3.14. Let I be a fractional ideal of a noetherian domain A. Then I is invertible
if and only if its localization at every maximal ideal m of A is invertible (equivalently, if
and only if its localization at every prime ideal p of A is invertible).

Proof. Suppose I is invertible. Then I(A : I) = A, and for any maximal ideal m we have
Im(Am : Im) = Am, by Lemma 3.13, so Im is also invertible.

Now suppose Im is invertible for every maximal ideal m. Then Im(Am : Im) = Am for
every maximal ideal m. Using Lemma 3.13 and A = ∩mAm (see Proposition 2.7) we obtain⋂

Im(Am : Im) =
m

⋂
Am = A⋂ m

(I(A : I))m = A
m

I(A : I) = A.

Therefore I is invertible. The exact same proof works for prime ideals.

Corollary 3.15. In a Dedekind domain every nonzero fractional ideal is invertible.

Proof. If A is Dedekind then all of its localizations at maximal ideals are DVRs, hence PIDs,
and in a PID every nonzero fractional ideal is invertible (see Example 3.11). It follows from
Theorem 3.15 that every nonzero fractional ideal of A is invertible.

An integral domain in which every nonzero ideal is invertible is a Dedekind domain (see
Problem Set 2), so this gives another way to define Dedekind domains. Let us also note an
equivalent condition that will be useful later.
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Lemma 3.16. A nonzero fractional ideal I in a noetherian local domain A is invertible if
and only if it is principal.

Proof. Nonzero principal fractional ideals are always invertible, so we only need to show
the converse. Let I be an invertible fractional ideal, and let m be the maximal ideal of A.
We have II−1 n= A, so i=1 a I 1

ibi = 1 for some ai and bi I− , and each aibi lies in
II−1

∈ ∈
and therefore in A

∑
. One of the products aibi, say a1b1, must be a unit (otherwise

the sum would lie in m; in a local ring every non-unit must lie in m because there is only
one maximal ideal). For every x ∈ I we have a1b1x ⊆ a1I, since a1 ∈ I and bix ∈ A, and
therefore x ∈ A1I, since a1b1 is a unit, so I ⊆ (a1) ⊆ I and I = (a1) is principal.

Corollary 3.17. A nonzero fractional ideal in a noetherian domain A is invertible if and
only if it is locally principal, that is, its localization at every maximal ideal of A is principal.

3.3 Unique factorization of ideals in Dedekind domains

Lemma 3.18. Let x be a nonzero element of a Dedekind domain A. The set of prime ideals
that contain x is finite.

Proof. Let us define two subsets S and T of IA:

S := {I ∈ IA : (x) ⊆ I ⊆ A},
T := {I ∈ IA : A ⊆ I ⊆ (x−1)}.

The sets S and T are non-empty (they both contain A) and partially ordered by inclusion.
We have bijections

ϕ1 : S → T ϕ2 : T → S

I 7→ I−1 I 7→ xI

with ϕ1 order-reversing and ϕ2 order-preserving. The composition ϕ := ϕ2 ◦ ϕ1 is thus an
order-reversing permutation of S. Since A is noetherian, the set S satisfies the ascending
chain condition: every chain I1 ⊆ I2 ⊆ I3 ⊆ · · · of ideals in S is eventually constant. By
applying our order-reversing permutation ϕ we see that S also satisfies the descending chain
condition: every chain I1 ⊇ I2 ⊇ I3 ⊇ · · · of ideals in S is eventually constant (and nonzero,
since they all contain x 6= 0).

Now if x lies in infinitely many distinct prime ideals p1, p2, p3, . . . then

p1 ⊇ p1 ∩ p2 ⊇ p1 ∩ p2 ∩ p3 ⊇ · · ·

is a descending chain of ideals in S that must stabilize. Thus for n sufficiently large we have

p1 · · · pn−1 ⊆ p1 ∩ · · · ∩ pn−1 ⊆ p1 ∩ · · · ∩ pn ⊆ pn.

The prime ideal pn contains the product p1 · · · pn 1, so it must contain one of the factors−
p1, · · · , pn 1 (this is what it means for an ideal to be prime). But this contradicts dimA− ≤ 1:
we cannot have a chain of prime ideals (0) ( pi ( pn of length 2 in A.

Corollary 3.19. Let I be a nonzero ideal of a Dedekind domain A. The number of prime
ideals of A that contain I is finite.
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Proof. Apply Lemma 3.19 to any nonzero a ∈ I.

Example 3.20. The Dedekind domain A = C[t] contains uncountably many nonzero prime
ideals pa = (t− a), one for each a ∈ C. But any nonzero f ∈ C[t] lies in only finitely many
of them, namely the pa for which f(a) = 0; equivalently, f has finitely many roots.

Let p be a nonzero prime ideal in a Dedekind domain A with fraction field K, let I be
a fractional ideal of A, and let π be a uniformizer for the discrete valuation ring Ap. The
localization Ip is a fractional ideal of Ap, hence of the form (πn) for some n ∈ Z that does
not depend on the choice of π (note that n may be negative). We now extend the valuation
vp : K → Z ∪ {∞} to fractional ideals by defining vp(I) := n and vp((0)) := ∞; for any
x ∈ K we have vp((x)) = vp(x).

The map v m n
p : IA → Z is a group homomorphism: if Ip = (π ) and Jp = (π ) then

(IJ)p = I m
pJp = (π )(πn) = (πm+n),

so vp(IJ) = m+n = vp(I)+vp(J). It is order-reversing with respect to the partial ordering
on IA by inclusion and the total order on Z: for any I, J ∈ IA, if I ⊆ J then vp(I) ≥ vp(J).

Lemma 3.21. Let p be a nonzero prime ideal in a Dedekind domain A. If I is an ideal
of A then vp(I) = 0 if and only if p does not contain I. In particular, if q is any nonzero
prime ideal different from p then vq(p) = vp(q) = 0.

Proof. If I ⊆ p then vp(I) ≥ vp(p) = 1 is nonzero. If I 6⊆ p then pick a ∈ I−p and note that
0 = vp(a) ≥ vp(I) ≥ vp(A) = 0 since (a) ⊆ I ⊆ A. The prime ideals p and q are nonzero,
hence maximal (since dimA ≤ 1), so neither contains the other and vq(p) = vp(q) = 0.

Corollary 3.22. Let A be a Dedekind domain with fraction field K. For each nonzero
fractional ideal I we have vp(I) = 0 for all but finitely many prime ideals p. In particular,
if x ∈ K× then vp(x) = 0 for all but finitely many p.

Proof. For I ⊆ A this follows from Corollary 3.20 and Lemma 3.22. For I 6⊆ A let I = 1Ja
with a ∈ A and J ⊆ A. Then vp(I) = vp(J) − vp(a) = 0 − 0 = 0 for all but finitely many
prime ideals p. This holds in particular for I = (x) with vp((x)) = vp(x) for any x ∈ K×.

Theorem 3.23. Let A be a Dedekind domain. The ideal group IA of A is the free abelian
group generated by its nonzero prime ideals p. The isomorphism

IA '
⊕

Z
p

is given by the inverse maps

∏ I 7→ (. . . , vp(I), . . .)

pep ←[ (. . . , ep, . . .)
p

Proof. Corollary 3.23 implies that the first map is well defined (the vector associated to
I ∈ IA has only finitely many nonzero entries and is thus an element of the direct sum).
For each nonzero prime ideal p, the maps I 7→ vp(I) and ep 7→ pep are group homomorphisms,
and it follows that the maps in the theorem are both group homomorphisms. To see that
the first map is injective, note that if vp(I) = vp(J) then Ip = Jp, and if this holds for
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every p then I = ∩pIp = ∩pJp = J , by Corollary 2.8. To see that it is surjective, note that
Lemma 3.22 implies that for any vector (. . . , ep, . . .) in the image we have

vq
(∏

pep = epvq(p) = eq,
p

e

) ∑
p

and this implies that
∏

p p
p is the pre-image of (. . . , ep, . . .); this also shows that the second

map is the inverse of the first map, which completes the proof.

Remark 3.24. When A is a DVR, the isomorphism given by Theorem 3.24 is just the
discrete valuation map vp : IA −

∼→ Z, where p is the unique maximal ideal of A.

Corollary 3.25.∏In a Dedekind domain every nonzero fractional ideal I has a unique
factorization I = p p

vp(I) into nonzero prime ideals p.2

Remark 3.26. Every integral domain with unique ideal factorization is a Dedekind domain
(see Problem Set 2).

The isomorphism of Theorem∏ 3.24 allows us to reinterpret the operations we have defined
on fractional ideals. If I = pepp and J =

∏
p

p p
f are nonzero fractional ideals then

IJ =

(I : J) =

∏
pep+fp ,∏
pep−fp ,

I + J =
∏

pmin(ep,fp) = gcd(I, J),

I ∩ J =
∏

pmax(ep,fp) = lcm(I, J).

and for all I, J ∈ IA we have
IJ = (I ∩ J)(I + J).

A key consequence of unique factorization is that I ⊆ J if and only if ep ≥ fp for all p;
this implies that J contains I if and only if J divides I. In any commutative ring, if J
divides I (i.e. JH = I for some ideal H) then J contains I (the elements of I are H-linear,
hence A-linear, combinations of elements of J and so lie in J), whence the slogan to divide
is to contain. In a Dedekind domain the converse is also true: to contain is to divide. This
turns out to be another characteristic property of Dedekind domains (see Problem Set 2).

Given that inclusion and divisibility are equivalent in a Dedekind domain, we may view
I+J as the greatest common divisor of I and J (it is the smallest ideal that contains, hence
divides, both I and J), and I ∩ J as the least common multiple of I and J (it is the largest
ideal contained in, hence divisible by, both I and J).3

We also note that

x ∈ I ⇐⇒ (x) ⊆ I ⇐⇒ vp(x) ≥ ep for all p,

(where I =
∏

ep
p p as above), and therefore

I = {x ∈ K : vp(x) ≥ ep for all p}.

We have I ⊆ A if and only if ep ≥ 0 for all p.

2We view A = A
p p

vp( ) = p p
0 = (1) as an (empty) product of prime ideals.

3It may seem strange at first glance that the greatest common divisor of I and J is the smallest ideal
dividing I and J ,

∏
but note that

∏
if A = Z then gcd((a), (b)) = gcd(a, b) for any a, b ∈ Z, so the terminology

is consistent (note that bigger numbers generate smaller ideals).
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3.4 Representing ideals in a Dedekind domain

Not all Dedekind domains are PIDs; a typical Dedekind domain will contain ideals that
require more than one generator. But it turns out that two generators always suffice, and
we can even pick one of them arbitrarily. To prove this we need the following lemma, Recall
that two ideals I and J are said to be relatively prime, or coprime, if I + J = A.

Lemma 3.27. Let A be a Dedekind domain and let I and I ′ be nonzero ideals. There exists
an ideal J coprime to I ′ such that IJ is principal.

Proof. Let p1, . . . , pn be the nonzero prime ideals dividing I ′ (a finite list, by Corollary 3.20)
For each pi let us choose

ai ∈ (p1 · · · pi−1pi+1 · · · pn)I − piI.

This is clearly possible, since the two products are divisible by different powers of pi and
cannot coincide; note that ai is necessarily nonzero. Now let a = a1 + · · · + an 6= 0. Then
vpi(a) = vpi(ai) = vpi(I) (by the nonarchimedean triangle equality; see Problem Set 1).

The (a) is contained in I and therefore divisible by I (since A is a Dedekind domain),
so (a) = IJ for some ideal J . For each pi we have vpi(J) = vpi(a) − vpi(I) = 0, so J is
coprime to I ′ and IJ = (a) is principal, as desired.

One can show that any integral domain satisfying Lemma 3.28 is a Dedekind domain
(in fact this remains true even if without the constraint that J and I’ are coprime), see
Problem Set 2.

Corollary 3.28 (Finite approximation). Let I be a nonzero fractional ideal in a Dedekind
domain A and let p1, . . . , pn be a finite set of nonzero prime ideals of A. Then I contains
an element x for which vpi(x) = vpi(I) for 1 ≤ i ≤ n.

Proof. Let I = 1J with s ∈ A and J an ideal. As in the proof of Lemma 3.28, we cans
pick a ∈ J so that vpi(a) = vpi(J) for 1 ≤ i ≤ n. If we now let x = a/s then we have
vpi(x) = vpi(a)− vpi(s) = vpi(J)− vpi(s) = vpi(I) for 1 ≤ i ≤ n as desired.

Corollary 3.29. Let I be a nonzero ideal in a Dedekind domain A. Every ideal in the
quotient ring A/I is principal.

Proof. Let ϕ : A→ ¯A/I be the quotient map, let J be an (A/I)-ideal and let J := ϕ−1(J)
be its inverse image; then I ⊆ ¯J and J ' J/I as (A/I)-modules. By Corollary 3.29 we
may choose a ∈ J so that vp(a) = vp(J) for nonzero prime ideals p dividing I. We have
vp(J) ≤ vp(I) for all nonzero prime ideals p (since I ⊆ J) and{

min(vp(J), vp(I)) = vp(J) if p|I,
vp((a) + I) =

min(vp(a), 0) = 0 = vp(J) if p - I,

¯so (a) + I = J . If follows that J ' J/I = ((a) + I)/I = (a)/I ' (ϕ(a)) is principal.

The converse of Corollary 3.30 also holds; an integral domain whose quotients by nonzero
ideals are principal ideal rings is a Dedekind domain (see Problem Set 2).

Definition 3.30. A ring that has only finitely many maximal ideals is called semilocal.

Example 3.31. The ring Z(3) ∩ Z(5) is semilocal, it has just two maximal ideals.
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Corollary 3.32. Every semilocal Dedekind domain is a principal ideal domain.

Proof. If we let I ′ be the product of all the prime ideals in A and apply Lemma 3.28 to any
ideal I we will necessarily have J = A and IJ = I principal.

Theorem 3.33. Let I be a nonzero ideal in a Dedekind domain A and let a ∈ I be nonzero.
Then I = (a, b) for some b ∈ I.

Proof. We have (a) ⊆ I, so I divides (a) and we have II ′ = (α) for some nonzero ideal I ′.
By Lemma 3.28 there is an ideal J coprime to I ′ such that IJ is principal, so let IJ = (b)
for some b (which necessarily lies in I). We have gcd((a), (b)) = gcd(II ′, IJ) = I, since
gcd(I ′, J) = (1), and it follows that I = (a, b).

Theorem 3.34 gives us a convenient way to represent ideals I in the ring of integers of a
global field. We can always pick a ∈ Z or a ∈ Fq[t]; we will see in later lectures that there is
a natural choice for a (the absolute norm of I). It also gives us yet another characterization
of Dedekind domains: they are precisely the integral domains for which the theorem holds.

We end this section with a theorem that summarizes the various equivalent definitions
of a Dedekind domain we have seen.

Theorem 3.34. Let A be an integral domain. The following are equivalent:

• A is an integrally closed noetherian ring of dimension at most one.

• A is noetherian and its localizations at nonzero prime ideals are DVRs.

• Every nonzero ideal in A is invertible.

• Every nonzero ideal in A is a (finite) product of prime ideals.

• A is noetherian and “to contain is to divide” holds for ideals in A.

• For every ideal I in A there is an ideal J in A such that IJ is principal.

• Every quotient of A by a nonzero ideal is a principal ideal ring.

• For every nonzero ideal I in A and nonzero a ∈ I we have I = (a, b) for some b ∈ I.

Proof. See Problem Set 2.

18.785 Fall 2016, Lecture #3, Page 8



MIT OpenCourseWare
https://ocw.mit.edu

18.785 Number Theory I
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu

	
	Properties of Dedekind domains
	Fractional ideals
	Fractional ideals under localization
	Unique factorization of ideals in Dedekind domains
	Representing ideals in a Dedekind domain




