11 Totally ramified extensions and Krasner's lemma

In the previous lecture we showed that in the $A K L B$ setup, if A is a complete DVR with maximal ideal \mathfrak{p} then B is a complete DVR with maximal ideal \mathfrak{q} and $[L: K]=n=e_{\mathfrak{q}} f_{\mathfrak{q}}$. Assuming the residue field extension is separable (true if K is a local field), after replacing K with its maximal unramified extension in L we obtain a totally ramified extension, with ramification index $e_{\mathfrak{q}}=n$ and residue field degree $f_{\mathfrak{q}}=1$. We now consider this case.

11.1 Totally ramified extensions of a complete DVR

Definition 11.1. Let A be a DVR with maximal ideal \mathfrak{p}. A monic polynomial

$$
f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \in A[x]
$$

is Eisenstein (or an Eisenstein polynomial) if $a_{i} \in \mathfrak{p}$ for $0 \leq i<n$ and $a_{0} \notin \mathfrak{p}^{2}$; equivalently, if $v_{\mathfrak{p}}\left(a_{i}\right) \geq 1$ for $0 \leq i<n$ and $v_{\mathfrak{p}}\left(a_{0}\right)=1$. Note that a_{0} is then a uniformizer for A.

Lemma 11.2 (Eisenstein irreducibility). Let A be a DVR with fraction field K and maximal ideal \mathfrak{p}, and let $f \in A[x]$ be Eisenstein. Then f is irreducible in both $A[x]$ and $K[x]$.

Proof. Suppose not. Then $f=g h$ has degree $n \geq 2$ for some non-constant monic $g, h \in A[x]$. Put $f=\sum_{i} f_{i} x^{i}, g=\sum_{i} g_{i} x^{i}, h=\sum_{i} h_{i} x^{i}$. We have $f_{0}=g_{0} h_{0} \in \mathfrak{p}-\mathfrak{p}^{2}$, so exactly one of g_{0}, h_{0} lies in \mathfrak{p}; assume without loss of generality that $g_{0} \notin \mathfrak{p}$ and $h_{0} \in \mathfrak{p}$. Let $i>0$ be the least i for which $h_{i} \notin \mathfrak{p}$; such an $i<n$ exists because h is monic and $\operatorname{deg} h<n$. We have

$$
f_{i}=g_{0} h_{i}+g_{1} h_{i-1}+\cdots+g_{i-1} h_{1}+g_{i} h_{0}
$$

with $f_{i} \in \mathfrak{p}$, since f is Eisenstein and $i<n$, and $h_{j} g_{i-j} \in \mathfrak{p}$ for $0 \leq j<i$, by the minimality of i, which implies $g_{0} h_{i} \in \mathfrak{p}$, contradicting $g_{0}, h_{i} \notin \mathfrak{p}$. Thus f is irreducible in $A[x]$, and since A is a DVR, and therefore a UFD, f is irreducible in $K[x]$, by Gauss's Lemma [1].

Remark 11.3. We can apply Lemma 11.2 to any polynomial $f(x)$ over a Dedekind domain A that is Eisenstein over a localization $A_{\mathfrak{p}}$; the rings $A_{\mathfrak{p}}$ and A have the same fraction field K and f is then irreducible in $K[x]$, hence in $A[x]$; this yields the well known Eisenstein criterion for irreducibility.

Lemma 11.4. Let A be a $D V R$ and let $f \in A[x]$ be an Eisenstein polynomial. Then $B=A[\pi]:=A[x] /(f)$ is a DVR with uniformizer π, where π is the image of x in $A[x] /(f)$.

Proof. Let \mathfrak{p} be the maximal ideal of A. We have $f \equiv x^{n} \bmod \mathfrak{p}$, so by Corollary 10.13 the ideal $\mathfrak{q}=(\mathfrak{p}, x)=(\mathfrak{p}, \pi)$ is the only maximal ideal of B. Let $f=\sum f_{i} x^{i}$; then $\mathfrak{p}=\left(f_{0}\right)$ and $\mathfrak{q}=\left(f_{0}, \pi\right)$, and $f_{0}=-f_{1} \pi-f_{2} \pi^{2}-\cdots-\pi^{n} \in(\pi)$, so $\mathfrak{q}=(\pi)$. The unique maximal ideal (π) of B is nonzero and principal, so B is a DVR with uniformizer π.

Theorem 11.5. Assume $A K L B$ with A a complete $D V R$ and π a uniformizer for B. The extension L / K is totally ramified if and only if $B=A[\pi]$ and the minimal polynomial of π is Eisenstein.

Proof. Let $n=[L: K]$, let \mathfrak{p} be the maximal ideal of A, let \mathfrak{q} be the maximal ideal of B (which we recall is a complete DVR, by Theorem 10.6), and let π be a uniformizer for B
with minimal polynomial f. If $B=A[\pi]$ and f is Eisenstein, then as in Lemma 11.4 we have $\mathfrak{p}=\mathfrak{q}^{n}$, so $v_{\mathfrak{q}}$ extends $v_{\mathfrak{p}}$ with index $e_{\mathfrak{q}}=n$ and L / K is totally ramified.

We now suppose L / K is totally ramified. Then $v_{\mathfrak{q}}$ extends $v_{\mathfrak{p}}$ with index n, which implies $v_{\mathfrak{q}}(K)=n \mathbb{Z}$. The set $\left\{\pi^{0}, \pi^{1}, \pi^{2}, \ldots, \pi^{n-1}\right\}$ is linearly independent over K, since the valuations of $\pi^{0}, \ldots \pi^{n-1}$ are distinct modulo $v_{\mathfrak{q}}(K)=n \mathbb{Z}$ (if $\sum_{i=0}^{n-1} x_{i} \pi^{i}=0$ we must have $v_{\mathfrak{q}}\left(x_{i} \pi^{i}\right)=v_{\mathfrak{q}}\left(x_{j} \pi^{j}\right)$ for some nonzero $x_{i} \neq x_{j}$, which is impossible). Thus $L=K(\pi)$.

Let $f=\sum_{i=0}^{n} a_{i} x^{i} \in A[x]$ be the minimal polynomial of π. We have $v_{\mathfrak{q}}(f(\pi))=\infty$ and $v_{\mathfrak{q}}\left(a_{i} \pi^{i}\right) \equiv i \bmod n$ for $0 \leq i \leq n$. This is possible only if

$$
v_{\mathfrak{q}}\left(a_{0}\right)=v_{\mathfrak{q}}\left(a_{0} \pi^{0}\right)=v_{q}\left(a_{n} \pi^{n}\right)=v_{q}\left(\pi^{n}\right)=n,
$$

and $v_{\mathfrak{q}}\left(a_{i}\right) \geq n$ for $0 \leq i<n$. This implies that $v_{\mathfrak{p}}\left(a_{0}\right)=1$, since $v_{\mathfrak{q}}$ extends $v_{\mathfrak{p}}$ with index n, and $v_{\mathfrak{p}}\left(a_{i}\right) \geq 1$ for $0 \leq i<n$. Thus f is Eisenstein and Lemma 11.4 implies that $A[\pi] \subseteq B$ is a DVR, hence maximal, so $B=A[\pi]$.

Example 11.6. Let $K=\mathbb{Q}_{3}$. As shown in an earlier problem set, there are just three distinct quadratic extensions of $\mathbb{Q}_{3}: \mathbb{Q}_{3}(\sqrt{2}), \mathbb{Q}_{3}(\sqrt{3})$, and $\mathbb{Q}_{3}(\sqrt{6})$. The extension $\mathbb{Q}_{3}(\sqrt{2})$ is the unique unramified quadratic extension of \mathbb{Q}_{3}, and we note that it can be written as a cyclotomic extension $\mathbb{Q}_{3}\left(\zeta_{8}\right)$. The other two are both ramified, and can be defined by the Eisenstein polynomials $x^{2}-3$ and $x^{2}-6$.

Definition 11.7. Assume $A K L B$ with A a complete DVR and separable residue field extension of characteristic $p \geq 0$. The extension L / K is tamely ramified if $p \nmid e_{L / K}$ (always true if $p=0$ or if $e_{L / K}=1$, so an unramified extension is also tamely ramified). Otherwise L / K is wildly ramified if $p \mid e_{L / K}$; this can occur only when $p>0$. If L / K is totally ramified, then it is totally tamely ramified if $p \nmid e_{L / K}$ and totally wildly ramified otherwise.
Theorem 11.8. Assume $A K L B$ with A a complete $D V R$ and separable residue field extension of characteristic $p \geq 0$ not dividing $n:=[L: K]$. The extension L / K is totally tamely ramified if and only if $L=K\left(\pi_{A}^{1 / n}\right)$ for some uniformizer π_{A} of A.
Proof. If $L=K\left(\pi_{A}^{1 / n}\right)$ then $\pi=\pi_{A}^{1 / n}$ has minimal polynomial $x^{n}-\pi_{A}$, which is Eisenstein, so $A[\pi]$ is a DVR by Lemma 11.4. This implies $B=A[\pi]$, since DVRs are maximal, and Theorem 11.5 implies that L / \bar{K} is totally tamely ramified, since $p \nmid n$.

Now assume L / K is totally tamely ramified, in which case $p \nmid n$, and let \mathfrak{p} and \mathfrak{q} be the maximal ideals of A and B with uniformizers π_{A} and π_{B} respectively. Then $v_{\mathfrak{q}}$ extends $v_{\mathfrak{q}}$ with index $e_{\mathfrak{q}}=n$ and $v_{\mathfrak{q}}\left(\pi_{B}^{n}\right)=n=v_{\mathfrak{q}}\left(\pi_{A}\right)$. This implies that $\pi_{B}^{n}=u \pi_{A}$ for some unit $u \in B^{\times}$. We have $f_{\mathfrak{q}}=1$, so B and A have the same residue field, and if we lift the image of u in $B / \mathfrak{q} \simeq A / \mathfrak{p}$ to a unit u_{A} in A and replace π_{A} with $u_{A}^{-1} \pi_{A}$, we can assume that $u \equiv 1 \bmod \mathfrak{q}$. Now define $g(x):=x^{n}-u \in B[x]$ with reduction $\bar{g}=x^{n}-1$ in $(B / \mathfrak{q})[x]$. We have $\bar{g}^{\prime}(1)=n \neq 0$ (since $p \nmid n$), so by Hensel's Lemma 9.15 we can lift the root 1 of $\bar{g}(x)$ in B / \mathfrak{q} to a root r of $g(x)$ in B. Now let $\pi:=\pi_{B} / r$. Then π is a uniformizer for B and $B=A[\pi]$ by Theorem 11.5 , so $L=K(\pi)$, and $\pi^{n}=\pi_{B}^{n} / r^{n}=\pi_{B}^{n} / u=\pi_{A}$, so $L=K\left(\pi_{A}^{1 / n}\right)$ as desired.

11.2 Krasner's lemma

Let K be the fraction field of a complete DVR with absolute value ||. By Theorem 10.6 we can uniquely extend $|\mid$ to any finite extension L / K by defining $| x|:=| N_{L / K}(x) \overline{\left.\right|^{1 / n}}$, where $n=[L: K]$; as noted in Remark 10.7, this induces a unique absolute value on \bar{K} that restricts to the absolute value of K.

Lemma 11.9. Let K be the fraction field of a complete DVR with algebraic closure \bar{K} and absolute value $\left|\mid\right.$ extended to \bar{K}. For all $\alpha \in \bar{K}$ and $\sigma \in \operatorname{Aut}_{K}(\bar{K})$ we have $| \sigma(\alpha)|=|\alpha|$.

Proof. The elements α and $\sigma(\alpha)$ must have the same minimal polynomial $f \in K[x]$, since $f(\sigma(\alpha))=\sigma(f(\alpha))=0$, so $N_{K(\alpha) / K}(\alpha)=f(0)=N_{K(\sigma(\alpha)) / K}(\sigma(\alpha))$, by Proposition 4.51. It follows that $|\sigma(\alpha)|=\left|N_{K(\sigma(\alpha)) / K}(\alpha)\right|^{1 / n}=\left|N_{K(\alpha) / K}(\alpha)\right|^{1 / n}=|\alpha|$, where $n=\operatorname{deg} f$.

Definition 11.10. Let K be the fraction field of a complete DVR with absolute value || extended to an algebraic closure \bar{K}. For $\alpha, \beta \in \bar{K}$, we say β belongs to α if $|\beta-\alpha|<|\beta-\sigma(\alpha)|$ for all $\sigma \in \operatorname{Aut}_{K}(\bar{K})$ with $\sigma(\alpha) \neq \alpha$, that is, β is strictly closer to α than it is to any of its conjugates. This is equivalent to requiring that $|\beta-\alpha|<|\alpha-\sigma(\alpha)|$ for all $\sigma(\alpha) \neq \alpha$, since every nonarchimedean triangle is isosceles (if one side is shorter than another, it is the shortest of all three sides).
Lemma 11.11 (Krasner's lemma). Let K be the fraction field of a complete $D V R$ and let $\alpha, \beta \in \bar{K}$, with α separable over K. If β belongs to α then $K(\alpha) \subseteq K(\beta)$.

Proof. Suppose not. Then β belongs to α but $\alpha \notin K(\beta)$. The extension $K(\alpha, \beta) / K(\beta)$ is separable and non-trivial, so there is an automorphism $\sigma \in \operatorname{Aut}_{K(\beta)}(\bar{K} / K(\beta))$ for which $\sigma(\alpha) \neq \alpha$ (let σ send α to a different root of the minimal polynomial of α over $K(\beta)$). Applying Lemma $\underline{11.9}$ to $\beta-\alpha \in \bar{K}$, for any $\sigma \in \operatorname{Aut}_{K(\beta)}(\bar{K} / K(\beta))$ we have

$$
|\beta-\alpha|=|\sigma(\beta-\alpha)|=|\sigma(\beta)-\sigma(\alpha)|=|\beta-\sigma(\alpha)|,
$$

since σ fixes β. But this contradicts the hypothesis that β belongs to α, since $\sigma(\alpha) \neq \alpha$.
Remark 11.12. Krasner's lemma is another "Hensel's lemma" in the sense that it characterizes Henselian fields (fraction fields of Henselian rings); although the lemma is named after Krasner [2], it was proved earlier by Ostrowski in [3].
Definition 11.13. For a field K with absolute value \| the L^{1}-norm of $f \in K[x]$ is defined by.

$$
\|f\|_{1}:=\sum_{i}\left|f_{i}\right|,
$$

where $f=\sum_{i} f_{i} x^{i} \in K[x]$; it is easily verified that $\left\|\|_{1}\right.$ satisfies all the properties of Definition 10.3 and is thus a norm on the K-vector space $K[x]$.
Lemma 11.14. Let K be a field with absolute value $\left|\mid\right.$ and let $f:=\prod_{i=1}^{n}\left(x-\alpha_{i}\right) \in K[x]$ be a monic polynomial with roots $\alpha_{1}, \ldots, \alpha_{n} \in L$, where L / K is a field with an absolute value that extends $|\mid$. Then $| \alpha \mid<\|f\|_{1}$ for every root α of f.

Proof. The lemma is clear for $n \leq 1$, so assume $n \geq 2$. If $\|f\|_{1}=1$ then we must have $f=x^{n}$ and $\alpha=0$, in which case $|\alpha|=0<1=\|f\|_{1}$ and the lemma holds. Otherwise $\|f\|_{1}>1$, and if $|\alpha| \leq 1$ the lemma holds, so let α is a root of f with $|\alpha|>1$. We have
$0=|f(\alpha)|=\left|\alpha^{n}+\sum_{i=0}^{n-1} f_{i} \alpha^{i}\right| \geq|\alpha|^{n}-\sum_{i=0}^{n-1}\left|f_{i}\right||\alpha|^{i} \geq|\alpha|^{n}-|\alpha|^{n-1} \sum_{j=0}^{n-1}\left|f_{j}\right| \geq|\alpha|-\left(\|f\|_{1}-1\right)$,
where we have used $|a|=|a+b-b| \leq|a+b|+|-b|=|a+b|+|b|$ to get the general inequality $|a+b| \geq|a|-|b|$ which we applied repeatedly to get the first inequality above, we used $|\alpha|>1$ to get the second (replacing $|\alpha|^{i}$ with $|\alpha|^{n-1}$ in each term) and the third (dividing by $|\alpha|^{n-1} \geq 1$). Thus $\|f\|_{1}-1 \geq|\alpha|$, and therefore $\|f\|_{1} \geq|\alpha|+1>|\alpha|$.

Theorem 11.15 (Continuity of roots). Let K be the fraction field of a complete DVR and $f \in K[x]$ a monic irreducible separable polynomial. There exists $\delta=\delta(f) \in \mathbb{R}_{>0}$ such that for every monic polynomial $g \in K[x]$ with $\|f-g\|_{1}<\delta$ the following holds:

Every root β of g belongs to a root α of f for which $K(\beta)=K(\alpha)$.
In particular, every such g is separable, irreducible, and has the same splitting field as f.
Proof. We first note that we can always pick $\delta<1$, in which case any monic $g \in K[x]$ with $\|f-g\|_{1}<\delta$ must have the same degree as f, so we can assume $\operatorname{deg} g=\operatorname{deg} f$. Let us fix an algebraic closure \bar{K} of K with absolute value || extending the absolute value on K. Let $\alpha_{1}, \ldots, \alpha_{n}$ be the roots of f in \bar{K}, and write

$$
f(x)=\prod_{i}\left(x-\alpha_{i}\right)=\sum_{i=0}^{n} f_{i} x^{i} .
$$

Let ϵ be the lesser of 1 and the minimum distance $\left|\alpha_{i}-\alpha_{j}\right|$ between any two distinct roots of f. We now define

$$
\delta:=\delta(f):=\left(\frac{\epsilon}{2\left(\|f\|_{1}+1\right)}\right)^{n}>0
$$

and note that $\delta<1$, since $\|f\|_{1} \geq 1$ and $\epsilon \leq 1$. Let $g(x)=\sum_{i} g_{i} x^{i}$ be a monic polynomial of degree n with $\|f-g\|_{1}<\delta$. We then have

$$
\|g\|_{1} \leq\|f\|_{1}+\|g-f\|_{1}=\|f\|_{1}+\|f-g\|_{1}<\|f\|_{1}+\delta
$$

and for any root $\beta \in \bar{K}$ be of g we have

$$
|f(\beta)|=|f(\beta)-g(\beta)|=|(f-g)(\beta)|=\left|\sum_{i=0}^{n}\left(f_{i}-g_{i}\right) \beta^{i}\right| \leq \sum_{i=0}^{n}\left|f_{i}-g_{i}\right||\beta|^{i}
$$

We have $|\beta|<\|g\|_{1}$ by Lemma $\underline{11.14}$, and $\|g\|_{1} \geq 1$, so $|\beta|^{i}<\|g\|_{1}^{i} \leq\|g\|_{1}^{n}$. Thus

$$
|f(\beta)|<\|f-g\|_{1} \cdot\|g\|_{1}^{n}<\delta\left(\|f\|_{1}+\delta\right)^{n}<\delta\left(\|f\|_{1}+1\right)^{n} \leq(\epsilon / 2)^{n}
$$

and therefore

$$
\prod_{i=1}^{n}\left|\beta-\alpha_{i}\right|=|f(\beta)|<(\epsilon / 2)^{n}
$$

It follows that $\left|\beta-\alpha_{i}\right|<\epsilon / 2$ for at least one α_{i}, and the triangle inequality implies that this α_{i} must be unique since $\left|\alpha_{i}-\alpha_{j}\right| \geq \epsilon$ for $i \neq j$. Therefore β belongs to $\alpha:=\alpha_{i}$.

By Krasner's lemma, $K(\alpha) \subseteq K(\beta)$, and we have $n=[K(\alpha): K] \leq[K(\beta): K] \leq n$, so $K(\alpha)=K(\beta)$. It follows that g is the minimal polynomial of β, since $\operatorname{deg}(g)=[K(\beta): K]$. Thus g is irreducible, and it is also separable, since $\beta \in K(\beta)=K(\alpha)$ lies in a separable extension of K. We now observe that if a root β of g belongs to a root α of f, then for any $\tau \in \operatorname{Aut}_{K}(\bar{K})$ and all $\sigma \in \operatorname{Aut}_{K}(\bar{K})$ such that $\sigma(\alpha) \neq \alpha$ we have

$$
|\tau(\beta)-\tau(\alpha)|=|\tau(\beta-\alpha)|=|\beta-\alpha|<|\alpha-\sigma(\alpha)|=\mid \tau(\alpha-\sigma(\alpha)|=| \tau(\alpha)-\tau(\sigma(\alpha) \mid .
$$

Noting that $\sigma(\alpha) \neq \alpha \Longleftrightarrow \tau(\sigma(\alpha)) \neq \tau(\alpha)$, this implies that $\tau(\beta)$ belongs to $\tau(\alpha)$. Now Aut $_{K}(\bar{K})$ acts transitively on the roots of f and g, so every root β of g belongs to a distinct root α of f for which $K(\beta)=K(\alpha)$. Therefore g has the same splitting field as f.

11.3 Local extensions come from global extensions

Let \hat{L} be a local field. From our classification of local fields (Theorem 9.9), we know that \hat{L} is (isomorphic to) a finite extension of $\hat{K}=\mathbb{Q}_{p}$ (some $p \leq \infty$) or $\hat{K}=\mathbb{F}_{q}((t))$ (some q). We also know that the completion of a global field at any of its nontrivial absolute values is a local field (Corollary 9.7). It thus reasonable to ask whether \hat{L} is the completion of a corresponding global field \bar{L} that is a finite extension of $K=\mathbb{Q}$ or $K=\mathbb{F}_{q}(t)$.

More generally, for any fixed global field K and local field \hat{K} that is the completion of K with respect to one of its nontrivial absolute values ||, we may ask whether every finite extension of local fields \hat{L} / \hat{K} necessarily corresponds to an extension of global fields L / K, where \hat{L} is the completion of L with respect to one of its absolute values (whose restriction to K must be equivalent to $\| \mid$. The answer is yes. In order to simplify matters we restrict our attention to the case where \hat{L} / \hat{K} is separable, but this is true in general.
Theorem 11.16. Let K be a global field with a nontrivial absolute value $|\mid$, and let \hat{K} be the completion of K with respect to ||. Every finite separable extension \hat{L} of \hat{K} is the completion of a finite separable extension L of K with respect to an absolute value that restricts to \|. One can choose L so that $[L: K]=[\hat{L}: \hat{K}]$, in which case $\hat{L}=\hat{K} \cdot L$.
Proof. Let \hat{L} / \hat{K} be a separable extension of degree n. If $\|$ is archimedean then K is a number field and \hat{K} is either \mathbb{R} or \mathbb{C}; the only nontrivial case is $\hat{K} \simeq \mathbb{R}$ and $n=2$, and we may then assume that $\hat{L}=\hat{K}(\sqrt{d}) \simeq \mathbb{C}$ where $d \in \mathbb{Z}_{<0}$ is any nonsquare in K (such a d exists because K / \mathbb{Q} is finite). We may assume without loss of generality that $\|$ is the Euclidean absolute value on $\hat{K} \simeq \mathbb{R}$ (it must be equivalent to it), and uniquely extend || to $L:=K(\sqrt{d})$ by requiring $|\sqrt{d}|=\sqrt{-d}$. Then \hat{L} is the completion of L with respect to $|\mid$, and clearly $[L: K]=[\hat{L}: \hat{K}]=2$, and \hat{L} is the compositum of \hat{K} and L.

We now suppose that $|\mid$ is nonarchimedean, in which case the valuation ring of \hat{K} is a complete DVR and \| is induced by its discrete valuation. By the primitive element theorem (Theorem 4.12), we may assume $\hat{L}=\hat{K}[x] /(f)$ where $f \in \hat{K}[x]$ is monic, irreducible, and separable. The field K is dense in its completion \hat{K}, so we can find a monic $g \in K[x] \subseteq \hat{K}[x]$ such that $\|g-f\|_{1}<\delta$ for any $\delta>0$. It then follows from Theorem 11.15 that $\hat{L}=\hat{K}[x] /(g)$ (and that g is separable). The field \hat{L} is a finite separable extension of the fraction field of a complete DVR, so by Theorem 10.6 it is itself the fraction field of a complete DVR and has a unique absolute value that extends the absolute value $\|$ on \hat{K}.

Now let $L:=K[x] /(g)$. The polynomial g is irreducible in $\hat{K}[x]$, hence in $K[x]$, so $[L: K]=\operatorname{deg} g=[\hat{L}: \hat{K}]$. The field \hat{L} contains both \hat{K} and L, and it is clearly the smallest field that does (since g is irreducible in $\hat{K}[x]$), so \hat{L} is the compositum of \hat{K} and L. The absolute value on \hat{L} restricts to an absolute value on L extending the absolute value || on K, and \hat{L} is complete, so \hat{L} contains the completion of L with respect to \|. On the other hand, the completion of L with respect \| contains L and \hat{K}, so it must be \hat{L}.

In the preceding theorem, when the local extension \hat{L} / \hat{K} is Galois one might ask whether the corresponding global extension L / K is also Galois, and whether $\operatorname{Gal}(\hat{L} / \hat{K}) \simeq \operatorname{Gal}(L / K)$. As shown by the following example, this need not be the case.
Example 11.17. Let $K=\mathbb{Q}, \hat{K}=\mathbb{Q}_{7}$ and $\hat{L}=\hat{K}[x] /\left(x^{3}-2\right)$. The extension \hat{L} / \hat{K} is Galois because $\hat{K}=\mathbb{Q}_{7}$ contains ζ_{3} (we can lift the root 2 of $x^{2}+x+1 \in \mathbb{F}_{7}[x]$ to a root of $x^{2}+x+1 \in \mathbb{Q}_{7}[x]$ via Hensel's lemma), and this implies that $x^{3}-2$ splits completely in \hat{L}. But $L=K[x] /\left(x^{3}-2\right)$ is not a Galois extension of K because it contains only one root of $x^{3}-2$. However, we can replace K with $\mathbb{Q}\left(\zeta_{3}\right)$ without changing \hat{K} (take the
completion of K with respect to the absolute value induced by a prime above 7) or \hat{L}, but now $L=K[x] /\left(x^{3}-2\right)$ is a Galois extension of K.

In the example we were able to adjust our choice of the global field K without changing the local fields extension \hat{L} / \hat{K} in a way that ensures that \hat{L} / \hat{K} and L / K have the same automorphism group. Indeed, this is always possible.

Corollary 11.18. For every finite Galois extension \hat{L} / \hat{K} of local fields there is a finite Galois extension of global fields L / K and an absolute value || on L such that \hat{L} is the completion of L with respect to $|\mid, \hat{K}$ is the completion of K with respect to the restriction of $|\mid$ to K, and $\operatorname{Gal}(L / K) \simeq \operatorname{Gal}(\hat{L} / \hat{K})$.

Proof. The archimedean case is already covered by Theorem 11.16 (take $K=\mathbb{Q}$), so we assume \hat{L} is nonarchimedean and note that we may take $|\mid$ to be the absolute value on both \hat{K} and on \hat{L}, by Theorem 10.6. The field \hat{K} is an extension of either \mathbb{Q}_{p} or $\mathbb{F}_{q}((t))$, and by applying Theorem 11.16 to this extension we may assume \hat{K} is the completion of a global field K with respect to the restriction of $|\mid$. As in the proof of the theorem, let $g \in K[x]$ be a monic separable polynomial irreducible in $\hat{K}[x]$ such that $\hat{L}=\hat{K}[x] /(g)$ and define $L:=K[x] /(g)$ so that \hat{L} is the compositum of \hat{K} and L.

Now let M be the splitting field of g over K, the minimal extension of K that contains all the roots of g (which are distinct because g is separable). The field \hat{L} also contains these roots (since \hat{L} / \hat{K} is Galois) and \hat{L} contains K, so \hat{L} contains a subextension of K isomorphic to M (by the universal property of a splitting field), which we now identify with M; note that \hat{L} is also the completion of M with respect to the restriction of \| to M.

We have a group homomorphism $\varphi: \operatorname{Gal}(\hat{L} / \hat{K}) \rightarrow \operatorname{Gal}(M / K)$ induced by restriction, and φ is injective (each $\sigma \in \operatorname{Gal}(\hat{L} / \hat{K})$ is determined by its action on any root of g in M). If we now replace K by the fixed field of the image of φ and replace L with M, the completion of K with respect to the restriction of $\|$ is still equal to \hat{K}, and similarly for L and \hat{L}, and now $\operatorname{Gal}(L / K) \simeq \operatorname{Gal}(\hat{L} / \hat{K})$ as desired.

11.4 Completing a separable extension of Dedekind domains

We now return to our general $A K L B$ setup: A is a Dedekind domain with fraction field K with a finite separable extension L / K, and B is the integral closure of A in L, which is also a Dedekind domain. Recall from Theorem 8.20 that if \mathfrak{p} is a prime of K (a nonzero prime ideal of A), each prime $\mathfrak{q} \mid \mathfrak{p}$ induces a valuation $v_{\mathfrak{q}}$ of L that extends the valuation $v_{\mathfrak{p}}$ of K with index $e_{\mathfrak{q}}$, meaning that $\left.v_{\mathfrak{q}}\right|_{K}=e_{\mathfrak{q}} v_{\mathfrak{p}}$ (and every valuation of L that extends $v_{\mathfrak{p}}$ arises in this way). We now want to look at what happens when we complete K with respect to the absolute value $\left|\left.\right|_{\mathfrak{p}}\right.$ induced by $v_{\mathfrak{p}}$ to obtain a complete field $K_{\mathfrak{p}}$, and similarly complete L with respect to $\left|\left.\right|_{\mathfrak{q}}\right.$ for some $\left.\mathfrak{q}\right| \mathfrak{p}$ to obtain $L_{\mathfrak{q}}$. This includes the case where L / K is an extension of global fields, in which case we get a corresponding extension $L_{\mathfrak{q}} / K_{\mathfrak{p}}$ of local fields for each $\mathfrak{q} \mid \mathfrak{p}$; as proved below, the embedding $K \hookrightarrow L$ induces an embedding $K_{\mathfrak{p}} \hookrightarrow L_{\mathfrak{q}}$ of topological fields in which the absolute value $\left.\right|_{\mathfrak{p}}$ on $K_{\mathfrak{p}}$ is equivalent to the restriction of $\left.\left|\left.\right|_{\mathfrak{q}}\right.$ to $K_{\mathfrak{p}}$ (if we define $|\right|_{\mathfrak{q}}$ as in Theorem 10.6 then $\left|\left.\right|_{\mathfrak{p}}\right.$ will be the restriction of $\left|\left.\right|_{q}\right)$.

In general the extension $L_{\mathfrak{q}} / K_{\mathfrak{p}}$ may have smaller degree than L / K. If $L \simeq K[x] /(f)$, the irreducible polynomial $f \in K[x]$ need not be irreducible over $K_{\mathfrak{p}}$. Indeed, this will necessarily be the case if there is more than one prime \mathfrak{q} lying above \mathfrak{p}; the DedekindKummer theorem gives a one-to-one correspondence between irreducible factors of f in $K_{\mathfrak{p}}[x]$
and primes $\mathfrak{q} \mid \mathfrak{p}$ (via Hensel's Lemma). The following theorem gives a complete description of the situation.

Theorem 11.19. Assume $A K L B$, let \mathfrak{p} be a prime of K, and let $\mathfrak{p} B=\prod_{\mathfrak{q} \mid \mathfrak{p}} \mathfrak{q}^{e_{\mathfrak{q}}}$ be the factorization of $\mathfrak{p} B$ in B. Let $K_{\mathfrak{p}}$ be the completion of K with respect to $\left|\left.\right|_{\mathfrak{p}}\right.$, and let $\hat{\mathfrak{p}}$ be the maximal ideal of its valuation ring. For each $\mathfrak{q} \mid \mathfrak{p}$, let $L_{\mathfrak{q}}$ denote the completion of L with respect to $\left.\right|_{\left.\right|_{\mathfrak{q}}}$, and $\hat{\mathfrak{q}}$ the maximal ideal of its valuation ring. The following hold:
(1) Each $L_{\mathfrak{q}}$ is a finite separable extension of $K_{\mathfrak{p}}$ with $\left[L_{\mathfrak{q}}: K_{\mathfrak{p}}\right] \leq[L: K]$.
(2) Each $\hat{\mathfrak{q}}$ is the unique prime of $L_{\mathfrak{q}}$ lying over $\hat{\mathfrak{p}}$.
(3) Each $\hat{\mathfrak{q}}$ has ramification index $e_{\hat{\mathfrak{q}}}=e_{\mathfrak{q}}$ and residue field degree $f_{\hat{q}}=f_{\mathfrak{q}}$.
(4) $\left[L_{\mathfrak{q}}: K_{\mathfrak{p}}\right]=e_{\mathfrak{q}} f_{\mathfrak{q}}$;
(5) The map $L \otimes_{K} K_{\mathfrak{p}} \rightarrow \prod_{\mathfrak{q} \mid \mathfrak{p}} L_{\mathfrak{q}}$ defined by $\ell \otimes x \mapsto(\ell x, \ldots, \ell x)$ is an isomorphism of finite étale $K_{\mathfrak{p}}$-algebras.
(6) If L / K is Galois then each $L_{\mathfrak{q}} / K_{\mathfrak{p}}$ is Galois and we have isomorphisms of decomposition groups $D_{\mathfrak{q}} \simeq D_{\hat{\mathfrak{q}}}=\operatorname{Gal}\left(L_{\mathfrak{q}} / K_{\mathfrak{p}}\right)$ and inertia groups $I_{\mathfrak{q}} \simeq I_{\hat{\mathfrak{q}}}$.

Proof. We first note that the $K_{\mathfrak{p}}$ and the $L_{\mathfrak{q}}$ are all fraction fields of complete DVRs; this follows from Proposition 8.11 (note that we are not assuming they are local fields).
(1) For each $\mathfrak{q} \mid \mathfrak{p}$ the embedding $K \hookrightarrow L$ induces an embedding $K_{\mathfrak{p}} \hookrightarrow L_{\mathfrak{q}}$ via the map $\left[\left(x_{n}\right)\right] \mapsto\left[\left(x_{n}\right)\right]$ on equivalence classes of Cauchy sequences; a sequence $\left(x_{n}\right)$ that is Cauchy in K with respect to $\left|\left.\right|_{\mathfrak{p}}\right.$, is also Cauchy in L with respect to $\|_{\mathfrak{q}}$ because $v_{\mathfrak{q}}$ extends $v_{\mathfrak{p}}$. We may thus view $K_{\mathfrak{p}}$ as a topological subfield of $L_{\mathfrak{q}}$, and it is clear that $\left[L_{\mathfrak{q}}: K_{\mathfrak{p}}\right] \leq[L: K]$, since any K-basis b_{1}, \ldots, b_{m} for $L \subseteq L_{\mathfrak{q}}$ spans $L_{\mathfrak{q}}$ as a $K_{\mathfrak{p}}$-vector space: given a Cauchy sequence $y:=\left(y_{n}\right)$ of elements in L, if we write each y_{n} as $x_{1, n} b_{1}+\cdots+x_{m, n} b_{m}$ with $x_{i, n} \in K$ we obtain Cauchy sequences $x_{1}:=\left(x_{1, n}\right), \cdots, x_{m}:=\left(x_{m, n}\right)$ of elements in K (linear maps of finite dimensional normed spaces are uniformly continuous and thus preserves Cauchy sequences), and we can write $[y]=\left[x_{1}\right] b_{1}+\cdots\left[x_{m}\right] b_{m}$ as a $K_{\mathfrak{p}}$-linear combination of b_{1}, \ldots, b_{m}.

The field L is a finite étale K-algebra, since L / K is a separable, so its base change $L \otimes_{K} K_{\mathfrak{p}}$ to $K_{\mathfrak{p}}$ is a finite étale K-algebra, by Proposition 4.36. Let us now consider the $K_{\mathfrak{p}}{ }^{-}$ algebra homomorphism $\phi_{\mathfrak{q}}: L \otimes_{K} K_{\mathfrak{p}} \rightarrow L_{\mathfrak{q}}$ defined by $\ell \otimes x \mapsto \ell x$. We have $\phi_{\mathfrak{q}}\left(b_{i} \otimes 1\right)=b_{i}$ for each of our K-basis elements $b_{i} \in L$, and as noted above, $b_{1}, \ldots b_{m}$ span $L_{\mathfrak{q}}$ as $K_{\mathfrak{p}}$-vector space, thus $\phi_{\mathfrak{q}}$ is surjective. As a finite étale $K_{\mathfrak{p}}$-algebra, $L \otimes_{K} K_{\mathfrak{p}}$ is by definition isomorphic to a finite product of finite separable extensions of $K_{\mathfrak{p}}$; by Proposition 4.32, $L_{\mathfrak{q}}$ is isomorphic to a subproduct and thus also a finite étale $K_{\mathfrak{p}}$-algebra; in particular, $\overline{L_{\mathfrak{q}}} / K_{\mathfrak{p}}$ is separable.
(2) As noted above, the valuation rings of $K_{\mathfrak{p}}$ and the $L_{\mathfrak{q}}$ are complete DVRs, so this follows immediately from Theorem 10.1.
(3) The valuation $v_{\hat{\mathfrak{q}}}$ extends $v_{\mathfrak{q}}$ with index 1 , which in turn extends $v_{\mathfrak{p}}$ with index $e_{\mathfrak{q}}$. The valuation $v_{\hat{\mathfrak{p}}}$ extends $v_{\mathfrak{p}}$ with index 1 , and it follows that $v_{\hat{q}}$ extends $v_{\hat{p}}$ with index $e_{\mathfrak{q}}$ and therefore $e_{\hat{\mathfrak{q}}}=e_{\mathfrak{q}}$. The residue field of $\hat{\mathfrak{p}}$ is the same as that of \mathfrak{p} : for any Cauchy sequence $\left(a_{n}\right)$ over K the a_{n} will eventually all have the same image in the residue field at \mathfrak{p} (since $v_{\mathfrak{p}}\left(a_{n}-a_{m}\right)>0$ for all sufficiently large m and n). Similar comments apply to each $\hat{\mathfrak{q}}$ and \mathfrak{q}, and it follows that $f_{\hat{\mathfrak{q}}}=f_{\mathfrak{q}}$.
(4) It follows from (2) that $\left[L_{\mathfrak{q}}: K_{\mathfrak{p}}\right]=e_{\hat{\mathfrak{q}}} f_{\hat{\mathfrak{q}}}$, since $\hat{\mathfrak{q}}$ is the only prime above $\hat{\mathfrak{p}}$, and (3) then implies $\left[L_{\mathfrak{q}}: K_{\mathfrak{p}}\right]=e_{\mathfrak{q}} f_{\mathfrak{q}}$, by Theorem 5.32.
(5) Let $\phi:=\prod_{\mathfrak{q} \mid \mathfrak{p}} \phi_{\mathfrak{q}}$, where $\phi_{\mathfrak{q}}: L \otimes_{K} \overline{K_{\mathfrak{p}}} \rightarrow L_{\mathfrak{q}}$ is the surjective $K_{\mathfrak{p}}$-algebra homomorphisms defined in the proof of (1). Then $\phi: L \otimes_{K} K_{\mathfrak{p}} \rightarrow \prod_{\mathfrak{q} \mid \mathfrak{p}} L_{\mathfrak{q}}$ is a $K_{\mathfrak{p}}$-algebra homomorphism. Applying (4) and the fact that taking the base change of a finite étale algebra does
not change its dimension (see Proposition 4.36), we have

$$
\operatorname{dim}_{K_{\mathfrak{p}}}\left(L \otimes_{K} K_{\mathfrak{p}}\right)=\operatorname{dim}_{K} L=[L: K]=\sum_{\mathfrak{q} \mid \mathfrak{p}} e_{\mathfrak{q}} f_{\mathfrak{q}}=\sum_{\mathfrak{q} \mid \mathfrak{p}}\left[L_{\mathfrak{q}}: K_{\mathfrak{p}}\right]=\operatorname{dim}_{K_{\mathfrak{p}}} \prod_{\mathfrak{q} \mid \mathfrak{p}} L_{\mathfrak{q}} .
$$

Pick a $K_{\mathfrak{p}}$-basis $\left\{\beta_{i}\right\}$ for $\prod_{\mathfrak{q} \mid \mathfrak{p}} L_{\mathfrak{q}}$, fix $\epsilon>0$, and for each basis element $\beta_{i}=\left(\beta_{i, \mathfrak{q}}\right)_{\mathfrak{q} \mid \mathfrak{p}}$ use the weak approximation theorem proved in Problem Set 4 to construct $\alpha_{i} \in L$ such that $\left|\alpha_{i}-\beta_{i, \mathfrak{q}}\right|_{\mathfrak{q}}<\epsilon$ for all $\mathfrak{q} \mid \mathfrak{p}$. In the metric space $\prod_{\mathfrak{q} \mid \mathfrak{p}} L_{\mathfrak{q}}$ (with the sup norm), each $\phi\left(\alpha_{i} \otimes 1\right)$ is close to β_{i}. The $K_{\mathfrak{p}}$-matrix whose j th column expresses $\phi\left(\alpha_{j} \otimes 1\right)$ in terms of the basis $\left\{\beta_{i}\right\}$ is then close to the identity matrix (with respect to $\left|\left.\right|_{\mathfrak{p}}\right.$), and the determinant D of this matrix is close to 1 (the determinant is continuous). For sufficiently small ϵ we must have $D \neq 0$, and then $\left\{\phi\left(\alpha_{i} \otimes 1\right)\right\}$ is a basis for $\prod_{\mathfrak{q} \mid \mathfrak{p}} L_{\mathfrak{q}}$. It follows that ϕ is surjective and therefore an isomorphism, since its domain and codomain have the same dimension.
(6) We now assume L / K is Galois. Each $\sigma \in D_{\mathfrak{q}}$ acts on L and respects the valuation $v_{\mathfrak{q}}$, since it fixes \mathfrak{q} (if $x \in \mathfrak{q}^{n}$ then $\sigma(x) \in \sigma\left(\mathfrak{q}^{n}\right)=\sigma(\mathfrak{q})^{n}=\mathfrak{q}^{n}$). It follows that if $\left(x_{n}\right)$ is a Cauchy sequence in L, then so is $\left(\sigma\left(x_{n}\right)\right)$, thus σ is an automorphism of $L_{\mathfrak{q}}$, and it fixes $K_{\mathfrak{p}}$. We thus have a group homomorphism $\varphi: D_{\mathfrak{q}} \rightarrow \operatorname{Aut}_{K_{\mathfrak{p}}}\left(L_{\mathfrak{q}}\right)$.

If $\sigma \in D_{\mathfrak{q}}$ acts trivially on $L_{\mathfrak{q}}$ then it acts trivially on $L \subseteq L_{\mathfrak{q}}$, so $\operatorname{ker} \varphi$ is trivial. Also,

$$
e_{\mathfrak{q}} f_{\mathfrak{q}}=\left|D_{\mathfrak{q}}\right| \leq \# \operatorname{Aut}_{K_{\mathfrak{p}}}\left(L_{\mathfrak{q}}\right) \leq\left[L_{\mathfrak{q}}: K_{\mathfrak{p}}\right]=e_{\mathfrak{q}} f_{\mathfrak{q}}
$$

by Theorem 11.19, so \# $\operatorname{Aut}_{K_{\mathfrak{p}}}\left(L_{\mathfrak{q}}\right)=\left[L_{\mathfrak{q}}: K_{\mathfrak{p}}\right]$ and $L_{\mathfrak{q}} / K_{\mathfrak{p}}$ is Galois, and this also shows that φ is surjective and therefore an isomorphism. There is only one prime \hat{q} of $L_{\mathfrak{q}}$, and it is necessarily fixed by every $\sigma \in \operatorname{Gal}\left(L_{\mathfrak{q}} / K_{\mathfrak{p}}\right)$, so $\operatorname{Gal}\left(L_{\mathfrak{q}} / K_{\mathfrak{p}}\right) \simeq D_{\hat{\mathfrak{q}}}$. The inertia groups $I_{\mathfrak{q}}$ and $I_{\hat{\mathfrak{q}}}$ both have order $e_{\mathfrak{q}}=e_{\hat{\mathfrak{q}}}$, and φ restricts to a homomorphism $I_{\mathfrak{q}} \rightarrow I_{\hat{\mathfrak{q}}}$, so the inertia groups are also isomorphic.

Corollary 11.20. Assume $A K L B$ and let \mathfrak{p} be a prime of A. For every $\alpha \in L$ we have

$$
\mathrm{N}_{L / K}(\alpha)=\prod_{\mathfrak{q} \mid \mathfrak{p}} \mathrm{N}_{L_{\mathfrak{q}} / K_{\mathfrak{p}}}(\alpha) \quad \text { and } \quad \mathrm{T}_{L / K}(\alpha)=\sum_{\mathfrak{q} \mid \mathfrak{p}} \mathrm{T}_{L_{\mathfrak{q}} / K_{\mathfrak{q}}}(\alpha) .
$$

where we view α as an element of $L_{\mathfrak{q}}$ via the canonical embedding $L \hookrightarrow L_{\mathfrak{q}}$.
Proof. The norm and trace are defined as the determinant and trace of K-linear maps $L \xrightarrow{\times \alpha} L$ that are unchanged upon tensoring with $K_{\mathfrak{p}}$; the corollary then follows from the isomorphism in part (5) of Theorem 11.19, which commutes with the norm and trace.

Remark 11.21. Theorem $\underline{11.19 \text { can be stated more generally in terms of equivalence classes }}$ of absolute values, or places. Rather than working with a prime \mathfrak{p} of K and primes $\mathfrak{q} \mid \mathfrak{p}$ of L, one works with an absolute value $\left.\left|\left.\right|_{v}\right.$ of K (for example, $|\right|_{\mathfrak{p}}$) and inequivalent absolute values $\left.\left|\left.\right|_{w}\right.$ of L that extend $|\right|_{v}$. Places will be discussed further in the next lecture.

Corollary 11.22. Assume $A K L B$ and let \mathfrak{p} be a prime of A. Let $\mathfrak{p} B=\prod \mathfrak{q}^{e_{\mathfrak{q}}}$ be the factorization of $\mathfrak{p} B$ in B. Let $\hat{A}_{\mathfrak{p}}$ denote the completion of A with respect to $\left|\left.\right|_{\mathfrak{p}}\right.$, and for each $\mathfrak{q} \mid \mathfrak{p}$, let $\hat{B}_{\mathfrak{q}}$ denote the completion of B with respect to $\left|\left.\right|_{\mathfrak{q}}\right.$. Then $B \otimes_{A} \hat{A}_{\mathfrak{p}} \simeq \prod_{\mathfrak{q} \mid \mathfrak{p}} \hat{B}_{\mathfrak{q}}$, as $\hat{A}_{\mathfrak{p}}$-algebras

Proof. After replacing A with $A_{\mathfrak{p}}$ and B with $B_{\mathfrak{p}}$ (localizing B as an A-module), we may assume that A is a DVR and B / A is a free A module of rank $n:=[L: K]=\sum_{\mathfrak{q} \mid \mathfrak{p}} e_{\mathfrak{q}} f_{\mathfrak{q}}$.

Then $B \otimes_{A} \hat{A}_{\mathfrak{p}}$ is a free $\hat{A}_{\mathfrak{p}}$-module of rank n. Viewing $\hat{A}_{\mathfrak{p}}$ and the $\hat{B}_{\mathfrak{q}}$ as valuation rings of $K_{\mathfrak{p}}$ and $L_{\mathfrak{q}}$, it follows from part (4) of Theorem 11.19 that $\prod \hat{B}_{\mathfrak{q}}$ is a free $\hat{A}_{\mathfrak{p}}$-module of $\operatorname{rank} \sum_{\mathfrak{q} \mid \mathfrak{p}}\left[L_{\mathfrak{q}}: K_{\mathfrak{p}}\right]=\sum_{\mathfrak{q} \mid \mathfrak{p}} e_{\mathfrak{q}} f_{\mathfrak{q}}=n$. These isomorphic $A_{\mathfrak{p}}$-modules lie in isomorphic finite étale $K_{\mathfrak{p}}$-algebras $L \otimes_{K} K_{\mathfrak{p}} \simeq \prod L_{\mathfrak{q}}$, by part (5) of Theorem $\underline{11.19 \text {, and this } K_{\mathfrak{p}} \text {-algebra }}$ isomorphism restricts to an \hat{A}_{p}-algebra isomorphism.

Remark 11.23. Let A be a Dedekind domain with fraction field K. If we localize A at a prime \mathfrak{p} we obtain a DVR $A_{\mathfrak{p}}$ with the same fraction field K. We can then complete $A_{\mathfrak{p}}$ with respect to $\left|\left.\right|_{\mathfrak{p}}\right.$ to obtain a complete DVR $\hat{A}_{\mathfrak{p}}$ whose fraction field $K_{\mathfrak{p}}$ is the completion of K with respect to $\left|\left.\right|_{\mathfrak{p}}\right.$, and $\hat{A}_{\mathfrak{p}}$ is then the valuation ring of $K_{\mathfrak{p}}$. Alternatively, we could first complete A with respect to the absolute value $\left|\left.\right|_{\mathfrak{p}}\right.$ induced by \mathfrak{p} and then localize. But as explained in Lecture 8 , completing A with respect to $\|_{\mathfrak{p}}$ is the same thing as taking the valuation ring of $K_{\mathfrak{p}}$, so the completion of A is already the complete DVR $\hat{A}_{\mathfrak{p}}$ we obtained by localizing and completing; there is no need to localize and nothing would change if we did. Completion not only commutes with localization, it makes localization unnecessary.

Henceforth if A is a Dedekind domain and \mathfrak{p} is a prime of A (a nonzero prime ideal), by the completion of A at \mathfrak{p} we mean the ring $\hat{A}_{\mathfrak{p}}$.

References

[1] Michael Artin, Algebra, 2nd edition, Pearson, 2010.
[2] Marc Krasner, Théorie non abélienne des corps de classes pour les extensions finies et séparables des corps valués complets: principes fondamentaux; espaces de polynomes et transformation T ; lois d'unicité, d'ordination et d'existence, C. R. Acad. Sci. Paris 222 (1946), 626-628.
[3] Alexander Ostrowski, Über sogenannte perfekte Körper, J. Reine Angew. Math. 147 (1917), 191-204

MIT OpenCourseWare
https://ocw.mit.edu

18.785 Number Theory I

Fall 2017

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

