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1 Background 

A component has been manufactured from 7075-T6 aluminum alloy. The geometry con-
sists of a plate of width 1.5” and thickness 0.2”, containing a centrally located hole of 0.5” 
diameter, as shown schematically in Fig. ??. In service, the component will be subjected 
to cyclic tensile loading, and there is concern about the possibility of fatigue cracks ema-
nating from the stress concentration of the hole. The purpose of this laboratory module 
is the development of a methodology enabling us to estimate the load-carrying capacity 
of this part in the presence of such fatigue cracks. 

0.5" 

0.2" 

1.5" 

P 

P 

P 

0.5" 

0.75" 0.75" 

P 

Figure 1: Geometry of the component.
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This laboratory module will be concerned with standard test procedures to evaluate 
material toughness, and will introduce and apply a methodology to evaluate the residual 
load-carrying capacity of a cracked structure. 

Laboratory Tasks 

1. We will conduct a plane strain fracture toughness test, in which we will measure 
the fracture toughness, KIc, of 7075-T6 aluminum, following the ASTM standard 
(E-399) procedure for determining KIc. We will use a compact tension specimen 
(CTS) geometry to evaluate KIc. 

2. We will use the material properties of the 7075-T6 Al that quantify resistance to 
both 

(a) plastic deformation (σy ), and 

(b) resistance to crack extension (KIc), 

in fracture-based and collapse-based analyses of the effects of cracks of various sizes 
emanating from the equatorial stress concentration of the component in order to 
predict the residual load-carrying capacity (as a function of crack size) for the 
component. 

3. We will conduct load-to-failure tests	 on specimens of the structural component, 
containing pre-existing cracks of various lengths in order to obtain experimental 
values for residual strength, and we will compare these results with our predictions. 

2




3 Lab Assignments: Specific Questions to Answer 

1. During the lab session, we conducted a	KIc  test on a compact tension specimen 
for the 7075-T6 aluminum alloy. The specimen was machined from a rolled plate 
with the crack extension direction parallel to the rolling direction. Describe the 
protocol of material testing, and calculate the value of KIc  according to the ASTM 
standard (σy of 7075-T6 is 500 MP  a). Use the KIc  Test - Data Sheet provided in 
this Handout. 

K

2. Construct the theoretical residual strength curve for the [crack-containing] com-
ponent in Fig. ??: evaluate and plot Pres as a function of crack length, L, for  
0 ≤ L ≤ b, where  b is the semi-width of the plate. The configuration correction fac-
tor for the crack geometry in Figure ?? is given in Fig. ??. Assume σy = 500  MP  a, 
and you should use the appropriate value of the plane strain fracture toughness, 

Ic, as evaluated for this material/crack orientation in the preceding section. 

3. Obtain from the web site the experimental crack-size/failure-load data for the com-
ponent of Figure 6, as evaluated over all of the lab sessions. Compare these exper-
imental values of Pres with your theoretical predictions. Is the agreement satisfac-
tory? Are the predictions conservative? 

4.	 Consider effects of component thickness on crack [fracture] toughness: the so-called 
“plane stress” fracture toughness value, Kc, often exceeds the asymptotic plane 
strain fracture toughness, KIc, obtained from thick[er] test specimens. It is cus-
tomary to use a thickness-dependent toughness value, Kc(B), where B is plate 
thickness, to better fit fracture data in sheets of reduced thickness, B. Fig.  ?? 
shows an experimentally-based normalization of the ratio F ≡ Kc(B)/KIc, appro-
priate to the component geometry of Fig. ??. In  Fig.  ??, the relation between the 
normalization factor, F ≡ Kc(B)/KIc, and the specimen thickness, B, is expressed 
in terms of the normalized thickness B/B0, where B0 is a reference length given 
by � �2

1 KIc
B0 ≡ . 

3π σy 

Choose a ‘thickness-corrected’ value of material toughness, Kc(B) for constructing 
a modified residual strength curve of the component, using Kc(B) in place  of  KIc. 
Can better agreement between the experimental data and the new residual strength 
curve be obtained between predicted ”fracture load” and that experimentally ob-
served? 

Note: use of the thickness-based “correction factor for toughness” shown in Fig. ?? 
can lead to substantial confusion unless it is properly done and interpreted. If 
your attempts at using the figure to estimate a “better” Kc-value for the 0.2 in 
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thick component lead you to unreasonable numbers that do not really improve the 
agreement (compared to the residual strength curve constructed from KIc), then, 
instead, just try to fit the “fracture load” part of the theoretical residual strength 
curve with some value of Kc ≥ KIc.  What  is  your best estimate of  Kc(B = 0.2 in), 
and hence of F = Kc/KIc? 

4. 

1. 

2. 

3. 

: 7075 test dataKC /KICF = 

model 

5 10 15 20 25 30 35 B/B0 

Figure 2: Thickness correction factor for Kc(B) in terms of plane strain fracture tough-
ness, KIc, tensile yield strength, σy, and plate thickness B. The reference thickness B0 
used in normalizing the abscissa depends on the material properties σt and KIc  through 
B0 =  (KIc)

2/(3πσy
2). 
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4 Plane-Strain Fracture Toughness Test Procedure 

Reference: see Dowling sections 8.7 and 8.6 

The ASTM standard (E-399) for plane strain fracture toughness testing provides a pro-
cedure for experimentally determining values of KIc  for metallic materials. The test 
permits three different specimen shapes: a bend specimen, a C-shaped specimen, and 
a so-called “compact tension” (CT) specimen1 . The CT specimen, whose geometry is 
illustrated in Figure ??, will be used in this laboratory.
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Figure 3: Standard ASTM compact tension (CT) specimen.


1In fact, the loading on the remaining, uncracked ligament of the CT specimen is predominantly 
bending, so perhaps a more accurate name for this specimen geometry would be “compact-bending”. 
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The procedure for measuring KIc  with a CT specimen follows: 

1. Make	 a guess2 of the expected value of KIc. This enables you to calculate an 
estimated critical plastic zone size 

� �2
1 KIc  

rIc  ≡ . 
2π σy 

2. To ensure that only small-scale yielding occurs at the crack tip, the length, a, of  
the crack and the remaining ligament, (w − a), should be greater than or equal to 
15rIc: 

a,	 (w − a) ≥ 15rIc. 

3. To ensure plane strain, the thickness, B, of the CT specimen should be greater 
than or equal to 15rIc:


B ≥ 15rIc.


4. Once a CT specimen is machined, according to the dimensions calculated above, a 
sharp crack is introduced at the root of the machined notch. This is accomplished 
by fatigue pre-cracking the specimen. This procedure involves imposing a time-
varying tensile load on the CT specimen to cause a sharp crack to initiate and 
slowly grow at the root of the machined notch. The maximum load during fatigue 
pre-cracking (Pfmax ) should be less than 0.6 times the value of the estimated final 
fracture load (PQ): 

<
Pfmax ∼ 0.6PQ. 

5. The fatigue-generated portion of the crack should be at least 1.2 mm long. The 
.

“target” value for the relative crack size is a/w = 1/2, and provisions are made to 
permit small variations about this value. 

6. Once a suitably long and sharp fatigue crack exists, the actual fracture toughness 
test can be performed. The test consists of monotonically increasing the tensile 
load, P , on the specimen slowly while measuring the opening displacement of the 
crack mouth, ∆. Plotting the P versus ∆ produces a curve similar to the one 
illustrated in Fig. ??. Fast fracture is indicated by a gross nonlinearity in the load-
displacement record. 

2Note that in order to experimentally determine KIc, it is necessary first to specify the specimen 
dimensions on the basis of a known value of KIc! This paradoxical situation is resolved by making 
a suitable overestimate of KIc  on the basis of known values for similar materials, and checking the 
validity after the test. Subsequent tests may then make use of specimens which are more economically 
dimensioned. 
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Figure 4: Schematic load (P ) vs. crack-mouth opening displacement (∆) curve obtained 
during fracture toughness test. The load level “PQ ” is defined as the load at the inter-
section of the P -∆ curve with a straight line from the origin having a slope 5% less than 
the initial linear slope of the P -∆ curve. More details are contained in the ASTM E-399 
standard. 

7. Determine the crack length3 a by measuring the initial crack length, notch plus 
fatigue pre-crack, on the fractured specimen. The fracture surface appearance will 
in general change at the (crack-front) boundary marking the transition between 
[prior] fatigue cracking and rapid fracturing in the test. 

8. Calculate the configuration correction factor, QCT , for the CT specimen geometry 
of relative crack depth, a/w, as:  

QCT (a/w) =  16.7 − 104.7(a/w) + 369.9(a/w)2 − 573.80(a/w)3 + 360.5(a/w)4 . 

A graph of this relation, which has been calibrated from detailed elastic stress 
analysis of the CT specimen, is given in Fig. ??. 

9. To calculate KIc, first calculate a “conditional” value, termed KQ, according to: 

√ 
KQ ≡ QCT σQ πa, 

σ
where


Q ≡ PQ/(Bw).

3Note: the length “a” is measured from the loading line to the crack-front (see Fig. ??). 
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Figure 5: Graph of configuration correction factor, QCT , in the CT specimen geometry, 
vs. relative crack depth, a/w. The graph is of the fourth-order polynomial fit to the 
function QCT given in point number 8. 

As noted above, PQ is determined by projecting a line whose slope is five percent 
less than the original slope of the P − ∆ curve.  PQ is the load corresponding to 
the intersection of this line with the P − ∆ curve.  See  Fig.  ??. (The subtleties of 
determining PQ from variously-shaped P − ∆ records are clearly explained in the 
standard.) 

10. The	 ratio Pmax/PQ should be less than 1.10, where Pmax is the maximum load 
encountered in the test: 

Pmax 
< 1.10. 

PQ 

11.	 If condition 10 holds, then calculate the length-dimensioned entity 

LQ ≡ 
15 

(KQ/σy)
2 . 

2π 
If this quantity, LQ, is less than the specimen thickness, B, the crack length, a, 
and the remaining ligament (w − a), then the fracture toughness, KIc, is  simply  
equal to the previously-calculated value, KQ. If  LQ exceeds any of these specimen 
dimensions, the test is not a “valid” KIc  test, in the sense of the E-399 standard. 
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PLANE STRAIN FRACTURE DATA SHEET


Ba 
w 

Material 7075-T6 Al. Crack ‖ to R.D. 

σy =  5 00  MPa  

B = 0.01285 m 

W = 0.05008 m 

a = ———————– m 

PQ = ———————– N 

σQ ≡ PQ/(B W ) = ———————– MPa 

Configuration correction factor QCT = ———————– 

√ √ 
KQ = QCT · σQ · π a  = ———————– MPa m 

LQ ≡ 15 
2π 

� 
KQ 

σy 

�2 
= ———————– m 

Are {a, (W − a)} > 15 
2π 

� 
KQ 

σy 

�2 
? (small-scale yielding?) ———————– 

Is B >  15 
2π 

� 
KQ 

σy 

�2 
? (plane strain crack plasticity?) ———————– 

If both s.-s.y. and plane strain conditions hold, then 
we have a valid test, and √ 
KIc = KQ = ———————–MPa m 
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5 Residual Structural Load-Carrying Capacity 

of a Cracked Component 

(Residual Structural “Strength”) 

The residual load-carrying capacity, (or “residual strength” 4 , Pres), of a cracked structure 
may be defined as the maximum load which can be applied to the structure without 
reaching either 

(a) the fracture load (Pfract) causing crack extension or 

(b) the collapse (Pcollapse) causing fully-plastic flow (limit load behavior). 

In other words, if the load required to cause fracture by making KI → KIc  is Pfract 

(fracture load), and the load required to cause plastic collapse (by reaching the fully-
plastic limit load) is Pcollapse, then one way to estimate residual load-carrying capacity 
(neglecting any possible interactions between fracture and large-scale yielding) is to take 

Pres ≡ min (Pfract; Pcollapse). 

P
For a fixed structural geometry, both Pfract and Pcollapse depend on crack size, a, so  that  

res is a function of crack size as well. 

In tensile-loaded structures, one estimate of the structural collapse load is obtained 
by assuming that the collapse load brings the average tensile stress on the uncracked 
ligament to the material’s tensile yield strength, σy. Let  Anet denote the net-section area 
on the crack plane. The average tensile stress (or nominal stress, σnom ) acting across 
the uncracked ligament is σnom = P/Anet , and the simple criterion for structural collapse 
then becomes: 

Structural collapse when σnom = σy. 

Equivalently, phrased in terms of load, P , the estimate of collapse load is given by 

P = Pcollapse(a) =  Anet (a) · σnom(collapse) = Anet (a) · σy. 
4In this definition, the term “strength” is used to indicate a “load” level, not a “stress” level. 
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The load required to cause fracture of  a  specimen  with a  sharp crack  is  denoted by  Pfract. 
In tensile-loaded structures, an estimate of the fracture load can be made by stating that 
it corresponds to raising the mode I stress intensity factor KI to the plane strain fracture 
toughness, KIc, of the material. Let A∞ denote the nominal cross-sectional area of the 
component far from the crack plane. The far-field tensile stress, σ∞, is then: 

σ
P∞ ≡ . 

A∞ 

The mode I stress intensity factor is 

√ 
KI = Q σ∞ π a,  

where a is the crack length, and Q is the configuration correction factor applicable to the 
crack geometry in question5 . The simple criterion for structural fracture then becomes: 

Structural fracture when KI = KIc. 

Equivalently, phrased in terms of load, the estimate of fracture load is 

KIc  · A∞
P = Pfract = √ . 

Q(a) · πa 

In this case, the dependence of Pfract on crack length a arises from both the square root √ 
of crack size itself, a, plus the crack-length dependence of the configuration correction 

ˆfactor, Q = Q(a). 

In particular, for the component in Fig. ??, we want to calculate the residual strength 
(maximum supportable load) of the structure in the presence of two identical equatorial 
cracks of length L, emanating from the notch roots, as indicated in Fig. ??. As discussed 
above, the residual strength, Pres, of the cracked component will be a function of crack 
length, L. 

In order to obtain a theoretical prediction for the fracture load, Pfract, associated with 
each value of L, we need to determine the corresponding configuration correction factor, 

5Note: A graph containing information for determining the Q-factor for the component of Fig. ?? 
appears in Fig. ?? below; for this purpose, do not use the graph of Figure ??, which  is  the  Q-factor for 
the CT specimen geometry, QCT . 
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Figure 6: Geometry of the cracked component. 

Q, for this structural crack geometry. Values of Q for this type of component/crack 
geometry can be obtained by making use of the graph in Figure ??, where  Q-factors 
are expressed for various combinations of hole sizes, specimen widths, and crack lengths; 
some interpolation may be needed in order to mathc the current specimen geometry. 
(Note that data are expressed in terms of the corrected crack length, a = L + R, where  
R is the radius of the hole.) 

In order to assess the accuracy of our predictions, we will experimentally measure the 
residual strength of two components. First, we will consider an undamaged component, 
i.e., a component with no cracks (L = 0;  a = R). We will apply increasing levels of 
tensile load to the component, and record the failure load [Pres(L=0)]. We will then 
load to failure a second component which has been pre-cracked by (i) machining starter 

Lstar bynotches, and then (ii) propagating a sharp fatigue crack to total length L = 
subjecting the component to cyclic loading. After testing the pre-cracked component to 
failure, we will measure the initial (fatigue) crack length, L�, by examining the fracture 
surface, and record the experimental failure load [Pres(L = L�)]. 
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Figure 7: Configuration correction factor Q for a central hole in a tensile-loaded strip, 
containing two equal cracks emanating from the stress concentrations of the hole. Source: 
The Stress Analysis of Cracks Handbook, H. Tada, et al., ASME, NY,. 2001 
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