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1 Objectives 

In this laboratory session we will review elementary concepts concerning the isotropic 
linear elastic behavior of materials and structures. We will consider elastic loading 
in simple tension, cantilever beambending, vibration and buckling. We also intro
duce experimental methods for quantifying elastic properties of materials and elastic 
response of structural components. 

2 Lab Tasks 

In this laboratory module we will perform the following tasks: 

•	 review concepts of stress and strain, and the definition of the isotropic elastic 
constants: Young’s modulus (E) and Poisson’s ratio, (ν); 

•	 conduct an elasticlevel tension test on a strip specimen of 6061T6 aluminum 
alloy, mounted with two strain gages. The load and applied to the specimen 
will be monitored (load cell), and strain gauges mounted both parallel and 
perpendicular the bar axis will monitor the respective strain components (axial 
and transverse). 

•	 review elastic analysis of tiploaded cantilever beams and use a cantilever beam 
as a leaf spring, inferring Evalues from both local bending strain measurements 
and from tip deflection. 

•	 review elastic theory for lateral buckling of slender axiallycompressed members 
(Euler buckling), and conduct simple buckling experiments to obtain estimates 
of E in slender members of different materials, crosssections, and lengths. 

•	 review elastic beam vibration, and use the natural vibration frequency of can
tilever beams to estimate E of the material. 
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3 Lab Assignments: Specific Questions to Answer 

1. Using the dimensions of the tensile specimen, recorded values of the axial load, 
and the axial and transverse strain gage readings, determine Young’s modulus 
(E) and the Poisson ratio (ν) for this material. 

2. Record the specimen dimensions and strain gage locations on the instrumented 
cantilever. Record the values for axial strain at each gage, and the lateral tip 
deflection, for the tip loadings applied in class. How well do these measurements 
agree with theoretical values based on beam theory? How well do they predict 
E? Discuss. 

3. Use the elastic structural stiffnesses (load/tipdisplacement) measured via can
tilever bending of the specimens, along with specimen dimensions, to infer an 
Evalue for each material. How well do these values agree with other measure
ments of E? Discuss. 

4. Use the critical elastic buckling load measured on the specimens you are given 
to estimate E for that material. How well do these values agree with other 
measurements of E? 

5. Use the natural frequencies of the vibrating cantilever beams measured in the 
lab, along with the specimen dimensions and the appropriate mass values to 
estimate Young’s modulus, E. 

6. Do the different test methods (tension test with strain gauges; instrumented 
cantilever and cantilever stiffness; natural frequency, buckling) provide consis
tent estimates of E? Discuss. 

4 Review of Cantilever Beam Bending 

(See also Crandall, Dahl and Lardner, sections 3.5; 7.5; 8.3) 

Shear force and bending moment equations: 

The distributed loading (force/length) is q(x); transverse shear force is V (x); and 
bending moment is M (x). For the cantilever, q(x) = 0 in 0 < x < L. (See the 
CDL text for sign conventions on positive deflection, shear force, distributed load, 
and bending moment.) 

dV (x) 

dx 
+ q(x) = 0; 

dV (x) 

dx 
= 0 ⇒ V (x) = constant = −P ; (4.1) 

dM (x) 

dx 
+V (x) = 0; 

dM (x) 

dx 
= −V (x) = +P ; ⇒ M (x) = P x+constant = −P (L−x). 

(4.2) 
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Here the integration constants can be directly evaluated from free body diagrams of 
the endportion of the cantilever in the interval [x, L]. 

Axial stress at a generic point (x,y,z): 

M(x)y
σxx(x, y, z) = − = 

P (L − x)y 
(4.3)

I I 

Note: in writing the previous expressions for −M(x) = P (L − x), we have assumed 
that the origin of the xaxis is at the base of the cantilever (x = 0), and that the tip 
where load is applied is at x = L; thus, the generic coordinate value “x” measures 
distance from the base of the cantilever. The drawing of the coordinate axes in the 
figure can give rise to confusion here. 

Axial strain at a generic point (x,y,z): 

σxx(x, y, z) M(x)y
�xx(x, y, z) = = − = 

P (L − x)y
, (4.4)

E EI EI 

where I ≡ 
� 

y2 dA is the area moment of inertia of the crosssection, which, for 
rectangular crosssections of this orientation, is equal to: 

bh3 

I = , (4.5)
12 

with b the width and h the thickness of the beam. 

Assuming that axial strain �(surf )(x) at position x has been measured on the surface 
of the beam (at y = h/2), in the presence of cantilever load P , we can obtain a| |
localstrainbased estimate of the elastic modulus E as 

. M(x) h/2 6P (L − x)
E = E(gaged cantilever) = 

| | 
= . (4.6)

I �(surf )(x)| bh2 �(surf )(x)|| |
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Here we use absolute value of the bending moment and the surface strain (even if it 
is measured on the compression side) in order to get a positive modulus. Convince 
yourself that this is mathematically correct in either case, y = ±h/2. 

An axiallyoriented strain gage, mounted on the face of a cantilever beam, gives 
a signal proportional to the bending moment at its location; from the differential 
equation of moment equilibrium, the difference in signal (∝ ΔM) between two such 
gages, mounted a distance Δx apart, provides a direct measure of shear force (V = 
−ΔM/Δx). 

Lateral displacement v(x) and rotation φ(x): 

Within the assumptions of traditional elastic beam theory, the lateral displacement of 
the beam in the vertical (+y) direction is v(x), the [small] counterclockwise rotation 

. . .
about the +zaxis is φ(x) = v�(x), and the curvature is κ(x) = φ�(x) = v��(x). For 
elastic response, the curvature is related to the bending moment by 

d2v(x) dφ(x)
= κ(x) = 

M(x) −P (L − x) 
= = . (4.7)

dx2 dx EI EI 

This equation can be integrated once, introducing a constant of integration C1 (to be 
determined): 

2dv(x)
= φ(x) = 

−P 
�

Lx − 
x

+ C1 

� 

. (4.8)
dx EI 2 

Using the condition that there is no rotation at the base (φ(x = 0) = 0) provides 
the numerical value of the integration constant as C1 = 0. A second integration, 
integration constant, and the boundary condition v(x = 0) = 0 provide the complete 
displacement field as 

Px2 

v(x) = (3L − x). (4.9)−
6EI 

The lateral displacement at the tip, x = L, is termed “δ”; its evaluation [positive 
‘downward’, assuming tip load in the −ydirection] provides 

P L3 

v(x = L) = + ; (4.10)δ ≡ −
3EI 

the stiffness of the cantilever can be defined as 

P 3EI 
k(cantilever) ≡ = . (4.11)

δ L3 

A rearrangement of this equation provides a stiffnessbased estimate of the elastic 
modulus as 

. PL3 

E = E(cantilever stiffness) ≡ . (4.12)
3Iδ 
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5 Elastic Buckling of Long Slender Columns 

(See also Crandall, Dahl, and Lardner, section 9.4) 

The elastic buckling load of an axially compressed cylindrical body (a column) can 
be expressed as 

π2EI 
Fcr = c

L2 
, (5.1)× 

where L is the length of the column, I is the minimum centroidal area moment of 
inertia of the section, E is the Young’s modulus, and c is a dimensionless constant 
which depends on the fixity of the end conditions. For axial compression load F which 
are smaller than Fcr , the column remains substantially straight, but as F Fcr , the →
critical buckling load, equilibrium of a straight column is not stable, and buckling 
to a laterally deflected shape occurs. The shape of the deflected column is called 
the buckling mode, and the particular buckling mode, along with its critical buckling 
load, depends on the boundary conditions applied at the column ends. 

Equivalently, the buckling load can be predicted from the following formula: 

π2EI 
(5.2)Fcr =

(L�)2 
, 

where the effective length, L�, is related to the actual length, L, by 

L� = KL (5.3) 

with 
1 

K = . (5.4)√
c 

A table of the effective length factors , K, is given below, along with schematic illus
trations of the buckling modes. 

Under simple “pinned” end supports (lateral displacement restrained; free rotation 
implies zero moment at ends), K = 1, so the critical load at which nonzero lateral 
buckling in the central portion is observed provides a bucklingforcebased estimate 
of the elastic Young’s modulus as 

L2 . Fcr
E = E(buckling) ≡ . (5.5)

π2I 

Note that, for solid circular crosssections of diameter “d”, the area moment of inertia 
is I = πd4/64. 
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Buckled shape of column is
shown by  dotted line

Theoretical K value

Recommended  K�(design� value when 
ideal  end conditions are approximated)

0.65 0.8 1.2 1.0 2.1 2.0

0.5 0.7 1.0 1.0 2.0 2.0

End condition code

Rotation fixed and translation fixed

Rotation free and translation fixed

Rotation fixed and translation free

Rotation free and translation free

Figure 1: Effective length factors and buckling mode shapes. 

6 Review of Isotropic Linear Elasticity 

(See also Crandall, Dahl, and Lardner, section 5.4) 

The theory of isotropic linear elasticity is the most common constitutive relation used 
to describ e the mechanical behavior of engineering solids. Its purpose is to quantify 
relations between the components (σij ) of the stress tensor, σ, and those (�ij ) of the 
strain tensor, �. Here, for shorthand, we use the cartesian subscript notation for the 
matrix of stress (or strain) components, with the understanding that “i” and “j” can 
each assume values from one to three, indicating, in turn, three orthogonal spatial 
directions. In particular, we can connect with the alternate “x − y − z” notation by 
equating direction “1” with “x”; direction “2” with “y”; and direction “3” with “z”. 
Thus, the tensile stress in the x (or 1) direction can be expressed as “σxx” or as “σ11”. 
Shear stress components are the offdiagonal components of the stress tensor matrix; 
thus “σxy ” is also “σ12”. 1 

When the macroscopicallymeasured properties of the material under consideration 
are independent of the particular choice of the three orthogonal directions used to 
describe the stress and strain components, the material is said to be “isotropic”. 
In an isotropic linear elastic material, only two independent material properties are 

1We note that, in some texts, a different symbol (e.g., “τ ”) is used to denote shear stress com
ponents, while the symbol “σ” is used for normal stress components. Such a twosymbol notational 
convention is not needed in the doublesubscript notation, since equality of subscripts (e.g., σ22 

(= σyy )) intrinsically denotes a normal stress, while unequal subscripts (e.g., σ23) intrinsically de
note a shear stress component. 
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�

required to quantify the constitutive relation between stress and strain components. 
One common choice for the two independent material properties consists of the pair 
E and ν, the Young’s (or tensile) modulus and Poisson ratio, respectively. Written 
in full, the constitutive relation is 

3

�ij =
1 

� 

(1 + ν) σij − νδij 

�� 
σkk 

�� 

. (6.1)
E 

k=1 

Here “δij ” is the notation for components of the identity matrix, so that its value, for 
any particular choice of i and j, is 

� 
1 if i = j 

(6.2)δij = 0 if i = j. 

Thus, δ11 = δ22 = δ33 = 1 while δ12 = δ21 = δ13 = δ31 = δ23 = δ32 = 0. Since (6.1) can 
be evaluated for any combination of subscripts i and j, it is in fact a “shorthand” 
expressing 9 (= 3× 3) separate strain components in terms of the stress components. 

For a shear stress/strain pair such as ‘2 − 3’, (6.1) provides �23 = (1 + ν)σ23/E. A 
third elastic material property, the shear modulus G, can also be used to describe 
the stressstrain relations; a typical result is γ23 ≡ 2�23 = σ23/G, where “γ” is the 
engineering shear strain. The value of the G is not independent of the values of E 
and ν in an isotropic linear elastic solid; in particular, they are evidently related by 

2G (1 + ν) = E. (6.3) 

For example, (6.1) could also be written in terms of G and ν as 

3
1 

� 
ν 

�� 

�ij = σij − δij 

�� 
σkk . (6.4)

2G (1 + ν) 
k=1 

Both of the expressions (6.1, 6.4) for the stressstrain relations are in fact a set of 
nine (= 3 × 3) equations as i and j independently assume each of the values from 1 
through 3. The nine resulting equations are not independent, as the matrices of both 
stress and strain components are symmetric (e.g., σ23 = σ32), so only six independent 
equations are represented. 

In a uniaxial tension test, where ‘P ’ is the load in loading direction, x1, and specimen 
crosssectional area is A, the only nonzero stress component is σ11 = P/A; σij = 0 
otherwise. When these stress values are inserted into the full stressstrain relations 
(6.1), the nonzero strains are 

σ11 P 
�11 = = ; (6.5a)

E AE 

νσ11 νP 
�22 = �33 = −ν�11 = = . (6.5b)− 

E 
− 

AE 
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Rearrangement of these equations then provides the following, straingageinstrumented 
tensiontestbased estimates of elastic constants as 

σ11 P 
E = E(straingaged tension) = = ; (6.6a)

�11 A�11 

�22
ν = . (6.6b)− 

�11 

7 Lateral Vibration of Cantilever Beams 

7.1 Harmonic oscillator and tipweighted cantilever beam vibration 

The natural frequency of a simple harmonic oscillator depends on both the stiffness 
of the restoring (elastic) member in the system and the mass which is being acceler
ated/decelerated. For a rigid mass m connected to a massless spring of linear stiffness 
k (dimensions: force/length), having one end grounded while the other is attached to 
the moving mass, the natural frequency is simply 

� 
k 

ω = . (7.1) 
m 

Here is it understo od that the timebased displacement of the mass is given, for 
example, by 

u(t) = u0 sin ωt, (7.2) 

where u0 is an arbitrary (but “sufficiently small”) magnitude of (peak) displacement. 

For the timedependent motion (7.2), the velocity of the mass point is u̇(t) = ωu0 cos ωt 
¨and its acceleration is u(t) = −ω2u0 cos ωt = −ω2u(t). When the mass has moved 

one end of the grounded spring by amount u(t), the spring exerts a restoring force 
on the mass of magnitude f(t) = −ku(t). Newton’s law tells us that f(t) = mü(t); 
substituting in terms of u(t) for both sides of the equation, (−k + mω2)u0 sin ωt ≡ 0. 
Since this must hold for all times, t, and for u0 = 0, we directly recover (7.1). 

Because of the periodicity of the sine function, displacements and velocities are equal 
at time intervals separated by the natural period, τ , where 

ωτ = 2π (7.3) 

or 
2π 

� 
m 

τ = = 2π . (7.4)
ω k 

In any finite interval of time, Δt, the number of complete vibration cycles experienced 
by the oscillator, N , is 

Δt 
N = , (7.5)

τ 
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providing the experimental measurement of the natural period as 

Δt 
τ(experimental) = . (7.6)

N 

In turn, for a known mass m and an experimentallyobserved period τ , the system 
stiffness can be predicted to be 

�2� 
2π 

k = m . (7.7)
τ(experimental) 

Now consider the case when a point mass m is mounted at the tip of a cantilever 
beam of length L, thickness h, and breadth b, as before, and vibrating in the plane 
for which the relevant area moment of inertia is I. If the mass density of the beam 
itself is given by ρ, then the mass of the beam within the region 0 ≤ x ≤ L is just 
m(beam) = ρbhL. Providing the tip mass is much larger than the mass of the beam 
(m � m (beam)), the beam’s mass can be ignored by comparison, and the system is, 
approximately, a harmonic oscillator with mass m and a spring constant given by the 
stiffness of the cantilever itself: 

3EI P 
k = k(cantilever) = 

L3 
= . (7.8)

δ 

By combining equations (7.7) and (7.8), an experimental value of the elastic modulus 
can be obtained from the natural frequency measurements as 

. mL3 
� 

2π 
�2 

E = E(harmonic oscillator) = . (7.9)
3I τ (experimental) 

7.2 Continuous uniform cantilever beams 

At the opposite extreme, suppose that no concentrated tip mass is present on a 
vibrating cantilever: the mass elements which are being accelerated perpendicular 
to the axis of the beam are simply those of the beam itself. It is clear, however, 
that different infinitesimal mass elements dm(beam)(x) = ρbh dx = ρA dx, located at 
different positions x along the beam, experience different lateral displacements. But 
at each location, the period of vibration is the same, since the overall beam has one 
and the same fundamental frequency of vibration. 

We can anticipate the functional form for the natural frequency of such a distributed 
system on dimensional grounds: the harmonic oscillator gives us the clue that ω should 
scale as (read: ‘be proportional to’) the squarero ot of a quotient of stiffness divided 
by mass. But (a) what mass?; (b) what stiffness?; and (c) what proportionality 
constant? Since there is only one frequency, after all, we can choose the mass and the 
stiffness arbitrarily, leaving it up to a dimensionless constant α to “fix things up”. 

Returning to our vibrating cantilever beam, we have already evaluated “a” stiffness 
measure for the structure; namely the cantilever stiffness for concentrated tip loads: 

3EI 
k(cantilever) = 

L3 
. (7.8) 
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Similarly, an obvious mass to associate with this vibration is the total mass of the 
beam in the free region 0 ≤ x ≤ L : m(beam) = ρbhL. Thus, guided by the form of 
the harmonic oscillator and pinning our hopes on a dimensionless factor “α” yet to 
be evaluated, we write the fundamental vibration frequency of a uniform cantilever 
beam as 

ω 
. 
= ω(lumped parameter) = 

�
k(cantilever) 

αm(beam) 

= 

� 
3EI 

αρbhL4 
= 

�
3/α 
L2 

�
EI 
ρA 

. (7.10) 

As presented here, the dimensionless factor α could perhaps be considered as a frac
tion accounting for the fact that not “all” of the vibrating beam mass is located at the 
tip, where the cantilever stiffness is evaluated. Alternatively, we might consider 1/α 
as a “stiffness enhancement”, reflecting the fact that the “effective stiffness” of the 
vibrating structure exceeds that of a tiploaded cantilever of length L. For any reason
able choice of α, somewhere in the range 0 < α < 1, this simple “lumped parameter” 
model of the vibrating beam provides an estimate of the natural frequency. 

But we know that a vibrating beam is, in fact, a continuous system, with a spectrum 
of natural frequencies and mode shapes, and such vibration problems can be solved 
by more advanced mathematical methods. An outline of the procedure is presented 
in the following section. For the vibrating uniform cantilever beam, it turns out that 
the lowest (first mode, or fundamental) frequency can be expressed as 

ξ�2 
�

EI 
ω = 

L2 ρA
, (7.11) 

where the numerical value of the dimensionless parameter ξ� is obtained as the lowest 
positive root, ξ = ξ�, to the transcendental equation 

1 + cos ξ cosh ξ = 0. (7.12) 

Obviously, the only solutions to (7.12) occur when cos ξ cosh ξ = −1; there are an 
infinite number of such ξvalues, but the smallest one occurs someplace just past the 

.
point where the cosine function first becomes negative, just beyond ξ = π/2 = 1.57. 
Numerical (or graphical) solution gives the first root as ξ = 1.875104 ≡ ξ� . Evidently, 
by matching the frequency of this exact solution to our simple lumped parameter 
estimate of frequency, we see that the optimal (matching) value of α for the lowest 
mode is obtained by choosing 

3 3 
α = = = 0.24267. (7.13)

(ξ�)4 (1.875194)4 

Combining all the equations of the vibrating uniform cantilever, the elastic modulus 
E of the beam material can be estimated in terms of the firstmode period (τ ), beam 
geometric properties (L, A, and I) and material mass density (ρ) as 

2 
. 

�
L 

�4 �
ρA 

� �
2π 

�
E = E(vibrating cantilever) = 

ξ� 
. (7.14)

I τ 
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In making quantitative use of a result such as (7.14), it is vitally important to use 
consistent units; if available data is expressed in nonconsistent or nonstandard units, 
then appropriate conversions must be performed in order to correctly express the 
desired result in customary units (e. g., in GPa, for E). 

8	 Detailed Derivation of 

Cantilever Beam Vibration 

This section contains a derivation of the fundamental mode shape and frequency for 
a vibrating cantilever beam. As such, it should be considered as background material 
for this lab. You are not expected to fully ‘master’ all of the material in this section. 
But you are likewise not expected to completely ignore it! 

In Section 7.2 above, we rushed to equation (7.14), which could provide an estimate 
of E based on a uniform cantilever beam’s vibration in its first natural mode. Most of 
the details were left out. Here, we quickly summarize those details, for completeness. 
It should be noted that vibration of beam structures is a welldeveloped area of study, 
and many references in structural dynamics contain fuller accounts. 

We seek to find free vibration modes and frequencies for the cantilever beam describ ed 
above. We will adopt classical EulerBernoulli beam dynamics theory to analyze the 
problem; this will provide adequate answers for our purposes. However, more refined 
beam theories, often termed “Timoshenko” beam theory, lead to slightly different 
results, especially for the higher frequencies (Timoshenko beam theory is generally 
more accurate for higher modes). 

We look for solutions to the dynamics equations (Newton’s laws!) in which the beam 
undergoes time and spacedependent lateral displacement (vibration in the local y
direction) of the form: 

v(x, t) = v̄(x) sin ωt,	 (8.1) 

where ω is the natural frequency and v̄(x) is the associated mode shape of the vibra
tion. 

The overall approach consists of the following: 

1. Develop equations of motion for an infinitesimal beam segment undergoing the 
postulated motion. 

2. Use classical	 linear elastic beam theory to cast the driving “force” variables 
in terms of beam curvatures, etc., and on substituting into the equation of 
motion, obtain a differential equation, with frequency ω as a yetundetermined 
parameter, which the mode shape function v̄(x) must satisfy. 

3. Develop the general form for the solution of the resulting (4thorder) ordinary 
differential equation for v̄, including 4 arbitrary constants of integration. 
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4. Use boundary	 conditions at the beam ends x = 0 and x = L to evaluate 
the constants. We will find that a nontrivial solution is possible only if the 
frequency satisfies a particular transcendental “characteristic” equation; the 
spectrum of roots to this equation defines all possible natural frequencies ωi, that 
the beam [model] can exhibit. There are an infinite number of such frequencies, 
as index i = 1, 2, 3, . . . ,. For each frequency ωi, there is a unique mode “shape”, 
v̄i(x), but the amplitude of each mode shape is arbitrary (providing, of course, 
that it is sufficiently small to meet the small strain and small rotation limits of 
elastic beam theory). 

5. For fixed beam geometry, the material property scaling the natural frequencies 
is the “specific stiffness”, E/ρ; in fact, ωi ∝ 

�
E/ρ for each mode. 

(1.) In the absence of distributed loads (q(x) ≡ 0), the net ydirection force applied 
to an infinitesimal beam slice between “x” and “x + dx” is 

� 
Fy = V (x + dx, t)− V (x, t) � dx 

� 
∂V (x, t)

� 

. (8.2)
∂x 

Here V (x, t) is the shear force in the beam at position x and time t. 

The beam segment is instantaneously moving in the ydirection; its ycomponent of 
velocity is 

∂v(x, t) 
v̇(x, t) ≡ = ωv̄(x) cos ωt,	 (8.3)

∂t 
while its acceleration is 

∂2v(x, t) 
v̈(x, t) ≡ = −ω2v̄(x) sin ωt.	 (8.4)

∂t2 

The elemental mass of the slice is dm = dx (ρA), and application of Newton’s laws 
provides, on cancelling the common nonzero factor dx, 

∂V (x, t) 
+ ω2ρAv̄(x) sin ωt = 0.	 (8.5)

∂x 

The zcomponent of the moment balance equation for the slice provides, in similar 
fashion, 

∂M(x, t) 
+ V (x, t) = 0.	 (8.6)

∂x 
Equation (8.6) can be partially differentiated with respect to x, and on inserting the 
value of ∂V/∂x from (8.5), we obtain 

∂2M(x, t) − ω2ρAv̄(x) sin ωt = 0.	 (8.7)
∂x2 

(2.) We can substitute the elastic beam curvature/bending moment equation M(x, t) = 
EIκ(x, t), where κ(x, t) = ∂2v(x, t)/∂x2 is beam curvature, into (8.7), and perform 
the indicated partial derivatives to obtain: 

sin ωt 
� 
EIv̄����(x)− ρAω2v̄(x)

� 
= 0.	 (8.8) 
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Since (8.8) must hold for all times ‘t’, the factor in parentheses provides the differential 
equation for mode shape (v̄(x)) and associated frequency (ω) as 

ρAω2 

v̄����(x)− v̄(x) = 0. (8.9)
EI 

Introduce the parameter β (dimensions: length−1) by 

ρω2A 
β4 ; (8.10)≡ 

EI 

the differential equation (8.9) is then 

v̄����(x)− β4v̄(x) = 0. (8.11) 

(3.) The linear, ordinary differential equation with constant coefficients (8.11) has 
homogeneous solutions 2 of the form 

v̄(x) = C1 cosh βx + C2 sinh βx + C3 cos βx + C4 sin βx, (8.12) 

for tobedetermined constants C1, C2, C3, and C4. In writing (8.12), we make use 
of the wellknown equivalence of linear combinations of exponentials and hyperbolic 

z ix +functions (2 cosh z = e + e−z , etc.) and Euler’s equation (2 cos x = e e−ix, etc.) 
to choose trigonometric and hyperbolic trig functions as the base functions for the 
solution (rather than real and imaginary exponential functions eβx , etc.). 

(4.) The kinematic (geometric) boundary conditions of zero slope and displacement 
v(for all time) at x = 0 require v̄(x = 0) = 0 and ¯�(x = 0) = 0; when these conditions 

are imposed on solutions of the form (8.12), one obtains, respectively, 

C1 + C3 = 0 ⇒ C3 = −C1; (8.13a) 

C2 + C4 = 0 ⇒ C4 = −C2. (8.13b) 

Thus the general mode shape can be expressed in terms of two integration constants, 
C1 and C2, as 

v̄(x) = C1 (cosh βx − cos βx) + C2(sinh βx − sin βx). (8.14) 

The dynamic (‘force’) boundary conditions at x = L are, for all times, M(x = L, t) = 
0 and V (x = L, t) = 0, respectively. In terms of the solution, these in turn require 
v̄��(x = L) = 0 and v̄���(x = L) = 0, respectively. Using matrix notation to write out 
these last two equations as linear combinations of the coefficients C1 and C2, there 
results (after factoring out the constant factor EI and all common powers of β): 

� 
(cosh βL + cos βL) (sinh βL + sin βL) 

�� 
C1 

� � 
0 

� 

. (8.15)= 
(sinh βL − sin βL) (cosh βL + cos βL) C2 0 

2Try v̄(x) = exp λx; then the trial form satisfies the differential equation if λ4 = β4, so that the 
characteristic roots satisfy λ2 = ±β2, leading to the four characteristic roots as λ = or ± iβ,±β 
etc. 
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In order for the matrix equation (8.15) to have a nontrivial solution, it is necessary 
for the determinant of the 2 by 2 matrix to vanish, requiring 

(cosh βL + cos βL)2 = (sinh βL + sin βL)(sinh βL − sin βL) = sinh2 βL − sin2 βL. 
(8.16) 

Rearranging the algebra in (8.16), and using trig and hyperbolic trig identities, gives 

(cos2 βL + sin2 βL) + 2 cos βL cosh βL = sinh2 βL − cosh2 βL ≡ −1, (8.17) 

or 
2 (1 + cos βL cosh βL) = 0. (8.18) 

Now define the dimensionless parameter ξ ≡ βL; roots of (8.18) occur only when 
cos ξ cosh ξ = −1. There are an infinite number of ξvalues satisfying this relation; the 
smallest (corresponding to the lowest natural frequency) is at ξ = βL = 1.875104 ≡
ξ� . Recalling the definition of β, we note that 

ω2ρAL4 

(βL)4 = (ξ)4 = . (8.19)
EI 

(5.) Thus, the lowest natural frequency, ω = ω1, corresponding to the smallest root, 
ξ = ξ1 = β1L ≡ ξ�, of (8.18) is 

� 
ξ1 

�2 
� 

EI 
ω1 = . (8.20)

L ρA 

As to the mode shape of the first mode, note that since the determinant in (8.15) 
equals zero, for the chosen natural frequency, the ratio of the two coefficients C1 and 
C2 is fixed at, for example, 

� 
(cosh βL + cos βL)

�
C2 = C1 ≡ R C1, (8.21)− 

(sinh βL + sin βL) 

where the dimensionless ratio “R” has been introduced. Returning to (8.14), and 
using (8.21), the fundamental mode shape can finally be given by 

v̄(x) = C1 [(cosh βx − cos βx) + R (sinh βx − sin βx)] , (8.22) 

for some constant C1. The final scaling factor for the vibration, C1, is undetermined 
from the analysis, but it is understo od that it remains sufficiently small so that 
only linear elastic deformation occurs, and small enough that the maximum lateral 
displacements and rotations of the beam remain “small”. 

While we focus in the lab on the first mode of vibration, there are, as noted, an infinite 
number of vibration frequencies, ωi, and corresponding vibration modes, v̄i(x). Each 
frequency is given, in turn, by 

� 
ξi 

�2 
� 

EI 
ωi = , (8.23)

L ρA
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where ξi is the ‘ith’ root of (8.18), and the ith mode shape is 

v̄i(x) = C1(i) [(cosh βix − cos βix) + Ri (sinh βix − sin βix)] , (8.24), 

where βi ≡ ξi/L, C1(i) is an arbitrary scale factor for the amplitude of the ith vibration 
mode, and 

(cosh ξi + cos ξi) 
. (8.25)Ri ≡ 

(sinh ξi + sin ξi) 
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