Massachusetts Institute of Technology Department of Mechanical Engineering 2.003 Modeling Dynamics and Control I Spring 2005 Prelab 5

First Part

In this part, we will measure the step response of the 1st order RC circuits shown in the figure below.

- 1. For each circuit, write the governing differential equation in terms of v_i and v_o .
- 2. Calculate and make an accurate plot of the step response from initial rest for each circuit. Note that for (a) and (c), $v_o(t)$ is discontinuous from $t = 0^-$ to $t = 0^+$. Use the following values: $R_1 = 100 \text{ k}\Omega$, $R_2 = 47 \text{ k}\Omega$, $R_3 = R_4 = 10 \text{ k}\Omega$, $C_1 = 0.1 \mu\text{F}$, and $C_2 = C_3 = 0.047 \mu\text{F}$.

Second Part

In this part, we will calculate and measure the step response of the 2nd order RLC circuit sketched below with L = 4.7 mH, $C = 0.22 \ \mu\text{F}$, and various values of R.

The inductor has an internal resistance R_L of approximately 10 Ω . Therefore a more accurate model of the circuit that we will build in lab is:

where $R = R_1 + R_L$. Here R_1 is the resistor that you get to pick and R_L is the inductor resistance. Derive the governing differential equation relating the input voltage v_i to the output voltage v_o . Determine the values of R_1 that yield each of the following specifications (with $R_L = 10\Omega$):

- 1. The system is underdamped with $\zeta = 0.15$
- 2. The system is critically damped.
- 3. The system is overdamped and the slowest pole has a time constant $\tau = 0.1$ ms.

In each case, use Matlab to plot the response of v_o to a step in v_i .

Note: Be sure to bring a copy of your Matlab plotting routine to the lab for use in overlaying experimental data.