
MITOCW | 11. Mass Moment of Inertia of Rigid Bodies

The following content is provided under a Creative Commons license. Your support

will help MIT OpenCourseWare continue to offer high quality educational resources

for free. To make a donation or to view additional materials from hundreds of MIT

courses, visit MIT OpenCourseWare at ocw.mit.edu.

PROFESSOR: Today we're going to talk all about moments of inertia, and the last time we did [?

muddy ?] cards, there were a lot of questions. The most common question-- where

did all those terms come from? And I'm going to do a brief kind of intro around that

so as to facilitate the rest of the discussions.

Some basic assumptions here today. We're going to consider bodies that rotate

about their center of mass, or fixed points. That's the kind of problems we're doing.

And secondly-- all through this lecture today, there's four or five significant

assumptions or conditions that are really important to the whole discussion. I'm

going to really try to highlight them. And starting with two here. The other one is

we're going to use reference frames attached to the bodies.

That's why we did all that work in kinematics figuring out how to do velocities of

things that are in translating and rotating references frame, it's so that we can do

these problems. So this said, here's a inertial frame. Here's some rigid body. Here's

a point on it, that's my origin. And here is a set of coordinates attached to the rigid

body-- an xyz system-- the body rotates and translates, it goes with it.

And if we consider a little piece of this body, a little part-- I'll call it little mass element

mi-- from here to here is some distance y with respect to A, then the angular

momentum of that little mass particle is by definition of angular momentum Ri cross

Pi. And the P is always the linear momentum defined in an inertial frame. That's the

definition of angular momentum.

So you have seen this little demo before. So this is now my rigid body that I'm

talking about. In this case, the axis of rotation is this one. And I'm just going to

define my rigid body as essentially rotating about this fixed point, this is A now. And
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my coordinate system is xyz, so the rotation is omega z. And this rigid body-- this is

massless, consists of a single point mass.

So we've done this before, but we tended to do this kind of problem using polar

coordinates. And now I really wanted to strictly think in terms of XYZ. The answers

come out exactly the same. Polar coordinates also moved. You could do this in rhat,

thetahat, z. We're going to do it in xyz attached to the body. And y is going into the

board, and we'll have no values in the y direction for this problem.

Here's our little mass, we'll call it m1. It's at a position out here x1, z1 are its

coordinates, and y is zero. And we want to compute its angular momentum, h1 with

respect to A. That's our R1A cross P1 and 0. And for this problem that's x1 in the i

hat plus z1 in the k hat, that's the R-- cross P and P is mass times velocity, m1. And

the velocity is just omega cross R. We've done this before. So we need a length on

this thing.

We've done this enough times before I'm assuming you can make this leap with me.

The momentum is into the board, in the y direction. The linear momentum is R

cross with that. And that will give us-- let me write it-- omega z. So that's the linear

momentum. It's in the j direction, its velocity is x1 omega z. The radius times the

rotation rate is the velocity, the direction is that direction. So this is your momentum.

You multiply out this cross product, you get two terms-- m1 x1 squared omega z k,

minus m1 x1 z1 omega z i. And these two terms then we would identify. This is the

angular momentum in the k direction, angular momentum in the i direction. There

doesn't happen to be any in the z direction, in general there could be. But this is h

for this particle, particle one. I want to particularly emphasize this one-- oops, this is-

- excuse me-- z.

And this is the piece we call hx. So there's a complement of the angular momentum

that's in the z direction, there's a component in the x direction. We know that if we

compute-- just to tie it back to previous work a little further-- d by dt of h1A gives us

the external torques in the system, a vector of torques when we compute that out.
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I'm not going to calculate it, I don't need it for the purposes of the rest of the

discussion. This one gives you omega z dot term. This one gets two terms because

you have to take the derivative of i. So you get three terms which are torque in the

x, torque in the y, torque in the z directions. Two of them are static, because it's

trying to bend this thing back and out, and one of them, the z direction one, is the

one that makes it spin faster.

So we've seen that, that's a review. And to make the leap from that to rigid bodies--

Capital H, now, a collection of particles with respect to its the origin attached to the

rigid body is going to be the summation over all the little mass particles. Their

position vector crossed with the linear momentum of all those little mass particles.

Sum all that out.

Because it's a rigid body, this is always something of the form that looks like omega

cross R, m omega cross R. And I can then write this as the summation of [? oper ?]

i of the mi, RiA cross omega with respect to 0, cross RiA. That gives you the

velocity, m gives you the linear momentum, crossed with this one again makes it

into an angular momentum. So the angular momentum of every particle-- the bits of

this come out looking like an R squared omega. Or at least has dimensions of R

squared omega.

These can be like x1 squared, but these can also end up being terms like x1 z1,

those cross product terms. But in general, these things all add up. And this is a

vector, this is a vector, so this is a vector-- these are all vectors, the result's a

vector. And therefore we would break this down, this whole thing. Once you write all

that out and sum it all up, you're going to get a piece of it that we would say that is

in the i hat direction and we call that Hx.

Another piece that's in the j hat direction, which we call Hy and Hz in the k hat.

That's just how that all shakes out. In general you get three parts. Yeah?

AUDIENCE: Why do you have mass multiplied by displacement and the momentum?

PROFESSOR: Why do we have the mass multiplied by a position vector times the momentum?

3



Because that is the definition of angular momentum. It's R cross P, all right?

[INTERPOSING VOICES]

PROFESSOR: Ah, I see what I've done. Yeah you're right. This m doesn't belong-- I got ahead of

myself-- it doesn't belong here. It pops out of this to here. Thanks for catching that.

Absolutely right. So every term here is made up of things that look like x1, z1, m1

omega x. Or omega y, or omega z, because this is a vector, and it can have three

components-- a piece in the i, a piece in the j, a piece in the k direction.

So there's a lot of possible terms, and we're in the practice of writing this out. This H

vector can be written then as a-- I'm going to run out of room here. So the Hx term--

the piece that comes out with all little bits in the i direction-- when you just break it

apart, we would write it Ixx omega x, plus Ixy omega y, plus Ixz omega z. All the i

terms that float out of this, we just collect them together-- all the ones that are

multiplied by omega x ends up being some terms that look like sums of mi-- x, mi z

squared terms, and there's some y squared terms.

But we collect them all together and we call this constant in front of it Ixx. Just what

floats out of this stuff. We break it into three pieces, the part of the angular

momentum due to the rotation in the x, the part due to the rotation in the y, the part

due to the rotation in the z. And you do the same thing for Hy, and you get in Iyz

omega x plus an Iyy omega y plus an Iyz omega z, and you're finally get and Hz

term. Izx omega x, Izy omega y, Izz omega z.

That's everything that falls out of just doing this calculation. And where in the habit

of writing that in a matrix notation as the product of this thing called the inertia

matrix. And so forth, with this bottom term being Izz multiplied by omega x, omega

y, omega z.

You multiply that times the top row, you get Hx, middle row, you get Hy, bottom row,

you get the Hz. So where this stuff comes from is just from carrying out the

summation over all the mass bits. So it basically starts with the definition of angular

momentum. And this is just a convenient way to write it. So for example, the Ixz
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term-- the one in the upper right there that's part of Hx, the Ixz term-- is minus the

summation of all the little mass bits times their location xi zi. And this, the xz, always

matches xz.

And when you want to do this over a continuous object, you integrate that. And for

Izz, this is the summation over i, all the bits of mi xi squared plus yi squared. So in

general this, by summations, that's where these terms come from. They just come.

They've started with this calculation. And in general, from that calculation. So for our

one particle system, for this thing. So where this is x and z, it's one single particle.

So for our one particle system.

And there's no y1 in here because it's a zero in this problem. The coordinate of that

little mass particle is x1, 0, y1. So in general, this is x1 squared plus yi squared, but

that's 0. So it's just mx1 squared. So that's where all these things come from. Now

let's kind of look at-- the units of these things are always mass times length

squared.

The diagonal terms the Ixx, Iyy, Izz terms will all be of the form of something

squared. And what it is is it's always just the distance of the mass particles from the

axis of rotation, call that r. It's just a summation of this perpendicular distance from

the axis of rotation. For Izz, the axis of rotation is z. And this piece here is always

the distance squared that the mass particle is from the axis of rotation.

Now that's the set up for today. And when we want to get onto the real meat of the

discussion, talking about things like what principal axes are and so forth. Now we're

going to move on to the part of this conversation about principal axes. So a really

important point.

For every rigid body, even weird ones. For every rigid body, there is a coordinate

system that you can attach to this body, an xyz set of orthogonal coordinates that

you can fix in this body such that you can make this inertia matrix be diagonal. Any

weird body at all, there is a set of coordinates that if you use that set, this matrix

turns out to be diagonal. And what that means in dynamics terms is if you then

rotate the object about one of those axes, it will be dynamically balanced.
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And so when you rotate a shaft-- this is an object for which I know-- it's a circular

uniform disk, one of the axes through the center is a principal axis. And if I rotate

the object about that-- this one the hole's kind of out around so it wobbles a bit but if

I rotate it about that it will make no torques about this axis that are because it's

unbalanced.

It's essentially the dynamic meaning of principal axis-- an axis about which you can

rotate the thing and it'll just be smooth, no away-from-the-axis torques. So that's so

those are pretty important. We want to know what those are for rigid bodies and

how to find them. So there's a mathematical way to find them and you can just read

about in the textbook. It's sort of a-- I'm trying to think of the mathematical term. I

forgot it. But what I want to teach you today is for many, many objects, if you just

look at their symmetries, you can figure out by common sense where their principal

axes are. So that's what we're going to do next.

We started off saying that we're talking about bodies that are either rotating about

their centers of mass or about some other fixed point. So we're going to define our

principal axes assuming we are rotating about the center of mass. There is an easy

method known as the parallel axis theorem to get to any other point. So why do we

care about doing it about the center of mass? Why is that useful to know about the

properties around the center for dynamics purposes? What kind of dynamics

problems do you care about the center of mass? Rotation about the center of mass.

AUDIENCE: [INAUDIBLE].

PROFESSOR: So when I throw this thing in the air, it's rotating, it's translating, and when it rotates,

what's it's rotating about?

AUDIENCE: Center of mass.

PROFESSOR: Center of mass. So there's just lots and lots of problem in which in fact the rotation

is going to occur around the center of mass. Any time the thing is off there and

there's nothing constraining its rotational motion, the rotation will be about the

center of mass. So that's a good enough reason, and a very practical reason then
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for computing these things or knowing how to find these things about the center of

mass.

All right so we're now going to do principal axes, and we're going to teach you some

symmetry rules. Maybe first a little common sense. This thing-- is this a principal

axis? No way, right? And we know for a fact that it has off-diagonal terms because

I've defined my coordinates as being an x, y, z, like this, and this is often at some

strange angle. So as a practical matter, how could I alter this object so that this is a

principal axis?

Essentially, how would you balance this?

AUDIENCE: [INAUDIBLE].

PROFESSOR: Take the mass off, fix it.

[LAUGHTER]

Or? All right. Where do I put it? Down here? Ah, you want it like this. This is steel

going into aluminum, I have to be careful that I don't strip the threads. There we go.

And now test one, this is axis of rotation, is it dynamically in balance? Smooth as

silk. This now is a principal axis.

Its mass distribution is symmetric. Where is there a plane of symmetry for this

problem, for this object? That's what we're going to talk about now, planes of

symmetry and axis of symmetry. Ah, you're saying one like back? You're right, that's

a plane of symmetry. Is there another one for this one? Like this. So there's two

planes of symmetry.

So let's say come up with some symmetry rules. So this first one is there exists-- by

this I mean diagonal, it's a diagonal matrix. You can find a set of orthogonal axes

such that this matrix is diagonal. That's what we mean when we go to find principal

axes. And pick a board here-- rules. And we're going to have three of them, so just

leave room on your paper. We're going to build these up. And I'm going to talk

about it, and then you add another one and so forth.
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So rule one.

AUDIENCE: [INAUDIBLE] the inertia matrix [INAUDIBLE].

PROFESSOR: What is the inertia matrix--

AUDIENCE: No, I mean the second one.

PROFESSOR: This thing with the diagonals? This is going to have all the off-diagonal terms are

zeroes. That's what I mean. It's a diagonal matrix, the mass moments of inertia and

products of inertia-- you only have Ixx, Iyy, Izz if you properly pick this set of

orthogonal coordinates attached to the body-- if you pick them right.

What it means if then you spin that object about one of those axes, it's in balance.

So rule one, if there it is an axis of symmetry-- Remember the caveat here is we're

talking about uniform density objects or at least objects in which the density is

symmetrically distributed. So the geometric symmetry and mass symmetry mean

the same thing.

What does that mean? So axis of symmetry. Does this have an axis of symmetry?

Where?

AUDIENCE: It has multiple ones down the middle and it's also symmetric [INAUDIBLE].

PROFESSOR: That's a plane of symmetry, the [? other ones you think, ?] axis of symmetry.

AUDIENCE: Well I mean the line right through it.

PROFESSOR: Which way?

AUDIENCE: Well any.

PROFESSOR: Nope.

AUDIENCE: Perpendicular to it.

PROFESSOR: Axis of symmetry means that there is a mirror image from that point-- that point
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mirror image over here is always identical. But you think any from angle, it doesn't

matter where you start, it's reflected through the axis. So things that are circularly

shaped tend to have axes of symmetry. So this has an axis of symmetry. Everything

is reflected exactly just across the axes, you don't have to pick any particular line.

So what it's saying if it's an axis of symmetry, then it is a principal axis, and rotation

about that axis-- the things will be nice perfectly in balance. If you go through all the

hairy details of calculating the hard way, the Ixx, Iyy, et cetera terms-- all of the off

diagonal terms will come out zero. And the reason is that for every mass particle

over here, let's say there's a little bit right here in the corner, there is one exactly like

it on the other side.

So if this one we're trying to bend this thing up as it spins around, this one over here

is telling it to come back. Yeah?

AUDIENCE: How come this is not an axis, if you hold it-- yeah--

[INTERPOSING VOICES].

PROFESSOR: So if you do this. So I think it's kind of just the definition we're getting to of an axis of

symmetry. Because in simple terms, what the object looks like this way is it's a

narrow object, it is in fact a mirror image reflection. But it looks different when you

go to this angle. And it looks different when you go to this angle so it's not an axis of

symmetry, that's a plane of symmetry. We're going talk about that next.

So axes of symmetry-- the thing essentially looks the same at all orientations about

that axis. But it is certainly dynamically balanced. Every mass bit here balances one

over there, it doesn't wobble. All right. So that's for sure true. Now keep in mind that

exists a set of orthogonal axes. So that means once you find one, you know that the

other two are perpendicular to it and perpendicular to each other. So for this

system, when I got the x and y here, there has to be an x and y perpendicular that

that are the other two.

And because it's actually symmetric, it doesn't matter where you out them, you just

could say it's these two, these two, it doesn't matter. You just have to decide where
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you're going to put them on the object, they're all the same. So for this axis

symmetry, they're just two more. They're going to be in the body perpendicular to

the first. Now we're going to do about g so the book uses g to talk about the center

of mass, so I'll use g. So the center of mass of this thing is right in the middle of this

and in the middle here.

So it's inside this body. Right in the dead center of it. So the three principal axes are

an orthogonal set, one of which goes through it and the other two are embedded in

it right angles. So this is the simplest rule. If you have an axis of symmetry, you

know right way just about everything you need to know about the principal axes of

the body. Shoot.

AUDIENCE: It seems like then there would only be axis of symmetry in objects that are either

round or spherical, is that correct?

PROFESSOR: Pretty much.

AUDIENCE: So it's a very limited special case.

PROFESSOR: Yeah but there sure appear an awful lot in machines because they have this

beautiful property of just being balanced in all directions. So everything rotating in

the world tends to have an almost perfect axial symmetry. Just thinking about order

here. Let's do this and then I'm going to go do a couple of examples.

The second rule-- if you have one plane of symmetry, a plane of symmetry. So this

is kind of the opposite direction, in this you have the least information. Here's an

object, does it have a plane of symmetry?

AUDIENCE: Yes.

PROFESSOR: Where?

AUDIENCE: Straight through [INAUDIBLE].

PROFESSOR: Show me. That cut. All right. So I've got these little dotted marks on this thing. So if I

slice through that, I create two pieces that are identical. So that's a plane of
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symmetry. There is image match across that plane at every point. So if I have a

plane of symmetry, what do you think you can say about a principal axis? One of

the principal axis?

AUDIENCE: It'll be on that plane.

PROFESSOR: It'll be on that plane. That turns out to be true, but that's the second point I want to

make.

AUDIENCE: It might be perpendicular.

PROFESSOR: She says there might be one perpendicular to it. And that's the one I was searching

for, you're right too. There's going to be a principal axis that's perpendicular to that

plane of symmetry, and since we want to define our moments of inertia for this to

get started with with respect to g, where will it pass through?

AUDIENCE: Through g.

PROFESSOR: G, kind of by definition. So we're going to have it pass through g. If there's a plane

of symmetry, then there is a principal axis perpendicular to it. And we'll0 define it, for

the purposes of our discussion, we'll just let it pass through g. It doesn't have to, but

that's how we're going about this discussion. Let it pass through the center of mass,

this point we call g.

All right, so that means that there's a center of mass in this thing. And I'm just

guessing roughly where it is. But in fact if I hung this thing up here like this, and let

gravity find it's natural hanging angle, and I drew a plumb line down here, just drew

a line that the string would take with a plumb bob. Then I went to some other point

and did it again and hung a plumb bob on it drew the line-- where they intersect is

the center of mass.

And then you know since it's got symmetry this way that's in the middle. So I

guesses that that's about where it is. And there then is a principal axis of this object

that's perpendicular to it, passing through the plane-- perpendicular to the plane.

And that means now there's two more. But this gets a little more difficult, and I have
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no clue. There are two more, because the principal axes always come in an

orthogonal set. So now that I know one, I know that there's two more somewhere

around oriented this way, someplace in this plane.

Maybe one like that, maybe one like this, such that if you spun it about one of those

axes, it'd be in balance. You can see that gets a little messy, I can't guess where it

is. And so there are ways to find it, one of them would be doing an experiment,

seeing which axis it spins nicely around. So that's the second rule. But even just with

that one plane of symmetry, you get some pretty good insight.

Now what if there are two planes of symmetry? Yeah?

AUDIENCE: You said that the principal axis does not have to pass through the center of mass?

PROFESSOR: No, I'm saying it doesn't have to pass through the center of mass. The question is?

AUDIENCE: How could it not because it becomes stable [INAUDIBLE].

PROFESSOR: So she's saying it'd be unstable if it's not passing through there. Like if I put an axle

through this wheel, and I spun it about some point out here, you don't know

because I had that shaker in here, that thing is going to shake like crazy. But does it

produce unbalanced torques about my rotation point? It produces centrifugal force

that you'll feel like crazy, but does it produce a torque that you'd have to resist with

some static torque? What do you think? It won't.

So there's a nuance to this unbalanced thing, and I was going to get to it, probably

next lecture, but that is the when we say an object is dynamically balanced, we

mean that it doesn't have any unbalanced torques. If it is statically balanced, it's

rotating about its center of mass. But you can be statically unbalanced and let it go

around this axis, but it'll produce no torques. It's still dynamically balanced.

And the angular momentum of an object which is rotating-- And this we know has a

principal axis here, I just moved it off to the side. It's rotating about this. It is

dynamically balanced, and if you computed about this point now the Ixy, Ixz off-

diagonal entries in that moment of inertia matrix, they're all 0. You'd get no
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unbalanced torques, but you do have an unbalanced centrifugal force as this thing

goes around. And we'll talk a bit more about that.

AUDIENCE: Is that sort of analogous to the homework problem we had a few weeks back with

the motorcycle wheel and you just had mass on one side and not on the other?

PROFESSOR: Right. So she's asking about the motorcycle wheel problem where we had that little

mass that got there. I think in the next lecture I'm going to come back to that

problem just so we could tie a bow around this whole thing and understand why it's

unbalanced, how you can balance it, and the difference between static unbalance

and dynamic unbalance.

But today, we're talking about symmetry rules. Finally, so I was saying, let's talk

about something that has two planes of symmetry. This actually has three planes of

symmetry, but we'll settle for two. Pick a plane of symmetry for this object. If I pick--

OK, so she picked the one-- slice it this way. What about the second? Like that.

Then a third, right? There's even one like that. So this has three planes of

symmetry. But if you have two planes of symmetry that intersect, that are

orthogonal to one another, what do you think you can say about that line of

intersection?

AUDIENCE: It's the principal axis.

PROFESSOR: It sure is. And it's probably right through g. So if you have two planes of symmetry--

Now make them orthogonal. You can make all sorts of symmetry rules, and I'm just

picking these three to help you out. This just to help you see principal axes. If you

have two orthogonal planes of symmetry their intersection-- and once you know

that, then you go back to rule two. And it tells you everything else you need to know.

Because you have one plane of symmetry, you know there is a principal axis

perpendicular to it.

Well if you have two planes of symmetry, the rule still holds. There's one

perpendicular to each one. The intersection, let's say, of this plane of symmetry and

this plane of symmetry is a line which goes right through the center of this thing that
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way. So there's a principal axis this way. But since there is a plane of symmetry

here, there must also be a principal axis perpendicular to it. So sure enough, three

principal axes for this thing are through the center, perpendicular this way,

perpendicular that way.

You instantly know. Two planes of symmetry-- you instantly know where the three

orthogonal principal axes are that past through the center of mass. Yeah?

[? AUDIENCE: Does this all apply ?] just like a constant mass throughout?

PROFESSOR: Not constant, symmetrically distributed density. Right so I'm choosing my words

carefully so that I succeed in the following-- that the planes defining mass symmetry

will be the same as the planes defining geometric similarity. But you actually don't

have to have a constant density, it just has to be distributed so that what I just said

is true. So that the geometric symmetries are the same as the mass distribution

symmetries.

All right so those are my three rules of symmetry. You could make up others. Those

are the three that I've made up to help you see objects. That object, it's a circular

disk put on top of another object such that their centers of mass line up. Where are

the principal axes of this object using those rules? If you think you know one, tell

me.

AUDIENCE: Through the middle.

PROFESSOR: Through the middle of both of them. Probably, good guess. How about another

one? Where does this thing have planes of symmetry?

AUDIENCE: So there's a plane of symmetry if you cut it in half. [INAUDIBLE] cut it in half,

[INAUDIBLE].

PROFESSOR: OK, and?

AUDIENCE: The other way.

PROFESSOR: One like that, we've got all three. And if we're going to want it to go through the
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center of mass, then we're going to have to find where the center of mass is this

way, but it's about there. So just using the symmetry ideas, you can right away

figure out where these principal axes be. And that means from a dynamic point of

view, if you spin it about one of those axes, it's nice and dynamically balanced. If

you spin it off in some other weird direction is it necessarily dynamically balanced

about that axis of spin?

So let me restate that question. We know that this thing has an axis of symmetry

principal axis through the center, and another one this way, and another one this

way. And if I spin it about any one of those, it's dynamically balanced. But if I pick

some other strange direction for the spin, and I spin it about that axis, will I feel

unbalanced torques on this axle, on the bearings having to hold this thing in place?

Yeah, you better believe it, this thing wobbles like crazy.

So the principal axes are a property of the object, they're not a property of the

angular momentum. The angular momentum comes then from multiplying the mass

moment of inertia that you've determined times the actual rotation vector. And you'll

find out then you get angular components of angular momentum that are not in the

direction of spin, and as soon as that happens, you have unbalanced terms.

I've got to get on to something else to help you do homework. So for my disk, with z

coming out of the board, the Izz-- so let's say here's x, y, z coming out of the board-

- Izz, the mass moment of inertia about this z axis is, from the basic definition, the

summation of the mis, xi squared plus yi squared. It's just that for every little mass

particle it's the radius squared away from the center of rotation.

That's what the x squared plus y squared is. And we can turn this into an integral.

It's the integral of r squared, that distance, times the little mass bit that's there. And

that's the same. If you wanted to do the integral as x squared plus y squared dm.

But to do this integral for a nice circular, symmetric disk, you can pick a little mass

bit that has thickness dr and width rd theta. And this angle here is d theta.

And that's a little bit of area. That's a little dA which has area r dr d theta. It's just

length times width. When it's small enough, it's a little rectangle, and it has that
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area. And it has a volume, dV-- the volume of that thing is just the area times the

thickness of it. So here's our disk here, but it has some thickness, and I'll call that h.

So the volume is just h r dr d theta. And the mass, dm, is a density times dV. So I

want to integrate this, all I have to integrate the integral then of r squared dm is the

integral from 0 to 2pi, 0 to r of rho dV. Rho h-- oh, and I need an r squared-- r

squared dV is rho h r dr d theta. So this is 1802 integrals, right?

So is any of this a function of theta? No, so it's a trivial integral, you integrate that

over theta, you just get theta, evaluate it 0 to 2pi. So this is 2pi rho h, can all come

to the outside, integral 0 to R of r cubed dr. And that ends up-- the r cubed goes to r

to the 4th over 4. And the final result of this one is 2pi r to the 4th over 4 rho h, and

when new account for h times pi r squared is the volume times rho is the mass.

This all works out to be m r squared over 2. So Izz-- so I needed to do this once for

you. For simple things integrate, Izz in this case, you just integrate it out, account for

all little mass bits, that is the mass moment of inertia with respect to the axis passing

through the center like this. Pardon?

AUDIENCE: [INAUDIBLE]

PROFESSOR: It's this, this is what I'm talking about. Moving on to the last bit. So we need to know

how to be able rotate things about places other than their centers of mass. So this is

a stick, I can rotate about the center of mass, but it's more interesting if I rotate it

about some other point. It makes it a pendulum when I do it around here. So I need

to be able to calculate mass moments of inertia about a point that's not through the

center of mass.

I know you've seen this before in [? 8.01, ?] so this is going to be a quick reminder.

But I'll show you where it comes from. So here's my stick. And it has a center of

mass, and that's where G is located here. It has a total length l. I'm going to give it a

thickness b, a width a. So it's a stick. a wide, b thick, l long. Uniform has a center

gravity right in the middle. And I'm going to attach to this stick-- and this point is kind

of hard to draw.
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This point is at the center of the stick, OK? I'm going to put my coordinate system

attached at the center of gravity, center of mass, and I'm going to make it the--

that's x prime downward, z prime, and y prime is then going off that way. So this is a

body set of coordinates at the center of mass. x prime, y prime, z prime. And x

happens to be down. And I want to calculate my mass moment of inertia with

respect to a point up here that is d, this distance. I've moved up the x-axis an

amount d.

I'm going to set a new coordinate system up here. So if this was z prime, my new z

is here. It's getting a little messy. Maybe I'll do just a face view. If my previously y

prime and x prime were like that, z coming out of the board, now I have a new

system that is y and x like this, z still coming out of the board.

Now the coordinate. So how do I calculate mass moment of inertia? Well I want Izz.

I probably know Iz'z'. Iz'z' is the mass moment of inertia about this point. I know it's

a principal axis from all the things we just-- that square block is the same as this.

That's a principal axis in the z prime direction. I know the Izz' with respect to G, I

want to know what with respect to this point.

So well Izz, which is my new location up here, and we'll call it A. So Izz here with

respect to A is the integral of r squared dm. We've got to do the same integral now.

But that's the integral of x squared plus y squared dm. Now I can look at this and I

can say oh, well, these are d-- this is separated by d.

I only moved it in the x. The ys haven't moved and the zs didn't change. I just

moved my point only in the x direction. So I can now say that in terms of my new

coordinate, it's the same as x prime plus d, the distance from here to a point down

her, some arbitrary mass point xi is going to be xi' plus d.

So to do this integral in the new coordinates, this is going to be the integral of x

prime plus d squared plus y. Now y prime equals y and z prime equals z. Those

haven't changed. I didn't move my new coordinate system in the y direction or the z

direction. So the coordinate in the new system in y is the same as before. So this is

just y prime squared. And this whole thing times d, integrated times every little mass
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bit.

If I square this, I get x prime squared, 2x'd, d squared, plus y squared. So this

integral, Izz with respect to A, when you rearrange it, looks like x prime squared plus

y prime squared dm and the integral of a sum is the sum of the integrals. So I break

it into bits here, there's a d squared, which is a constant, dm. And then the last term

is plus 2d and it's x prime dm.

Just multiply this out, rewrite it, break it apart. Well let's do this one. Integral of x

prime squared plus y prime squared dm. That's something that we already have a

name for. This is IGzz. It's the original mass moment of inertia with respect to the

original coordinate system at G in the z direction. So it's [? IzzG, ?] we already know

that. That's given for the object. Plus, this is the integral of dm over the whole extent

of the object? Just the mass of the object.

This integral, this is the integral in terms of the x-coordinate. And every mass bit

from here, if I go out here and find one, there's an equal and opposite one up here.

This is the definition of the center of mass. This integral, if I'm at the center of mass

integrating out from it, this is zero because of the definition the center of mass. And

I've just proven the parallel axis theorem. Izz about this new point is I about G plus

Md Squared, where d squared is the distance I've moved this z-axis to a new place

parallel to it.

So Izz with respect to G, the original mass moment of inertia for Izz is m L squared

plus a squared over 12. And Ixx m L squared plus b squared over 12. And Izz-- oh,

we already know that one. Wait a minute. I haven't told you what that is. That's Izz,

Ixx, Iyy.

Just a little messy here. Iyy for this problem is-- I have made a mistake. Ixx is a

squared plus b squared. Iyy is m L squared plus b squared. So those are the three--

all with respect to G-- for this stick stick. And I'm going to--

AUDIENCE: [INAUDIBLE]? Is that also divided by 12?
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PROFESSOR: Yeah. That kind of sets us up where I can pick up next time. So let's finish by asking

ourselves the question, what do we think about-- if I've moved to this new put new

position, and I'm not rotating about the center, is this new axis-- this one around the

center before, that one we know is a principal axis.

If I rotate about this new place which I've defined the mass moment of inertia about

that place? Is this a principal axis?

AUDIENCE: Yes.

AUDIENCE: Yes.

PROFESSOR: How many think yes? How many think no? OK, so lots of people not sure. So my

dynamic definition of principal axis is if you can rotate the object about that axis and

produce no unbalanced torques, it's a principal axis. And I can do that and this thing

will just spin all day long. Now there is a force, you could think of a fictitious force.

There's a center of mass out here.

As it spins around, there's a centripetal acceleration making it go in the circle, that

means that fictitious force is like there is a centrifugal force pulling out on it. Do I feel

that? Do I have to this resist that force as it goes round and round? Yes. So that is

an unbalance of a kind we know as a static imbalance, but it doesn't produce

torques about my axis right lined up on the center.

AUDIENCE: Doesn't gravity pull on the center of mass [INAUDIBLE].

PROFESSOR: Sure, gravity does, but that's now a different problem. That's what makes this thing

act like an oscillator. The torques of the kind I'm talking about is if I compute the

angular momentum of this thing and compute dh/dt-- the time rate of change of the

angular momentum is a torque on the system, right? I will get the term that makes it

spin faster, and I will get, if they exist, terms that make it want to bend this way or

bend back.

It only happens if-- if I hold this thing over here, and spin it, get it spinning, and I

compute the angle momentum with respect to this point, will I get torques? Yeah,
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but that's not how I-- that's a different problem. The IG is as if I were computing the

angular momentum. Remember I started defining mass moment of inertia matrix

based on an angular momentum computation at G. So it's right there in the center

of this object, there's no moment arm that is causing torques that's trying to twist

this thing about that point.

So the answer to the question is this is a principal axis. Yeah?

AUDIENCE: So if you take the derivative of the angular momentum would you get torques that

are not in that direction?

PROFESSOR: If you get torques that aren't in that direction, either you made a mistake doing the

math, or you were in error in identifying the mass moment of inertia matrix to begin

with. Because if you get torques, there must be non-zero off-diagonal terms and in

mass moment of inertia matrix. They are what account for the torques.

So by this parallel axis theorem, any other axis you go to-- if you started at a

principal axis, any other axis you create is also a principal axis. That's the

movement of just one axis. If you do two, if you move this way and this way, all bets

are off. You get a difference answer. And if you're interested in that more

complicated problem, read that Williams thing because he does the complete

parallel axis, parallel planes and comes up with a super compact little way of

calculating them. See you on Thursday.
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