2.003SC

Recitation 5 Notes: Torque and Angular Momentum, Equations of Motion for Multiple Degree-of-Freedom Systems

Things To Remember

- Frame $A x y z$ is attached to (and rotates with) the rotating rigid body
- If A is chosen to be EITHER
fixed in space $\left(\underline{v}_{A}=0\right)$ OR
the rigid body's center of mass $\left(\underline{v}_{A}=\underline{v}_{G}\right)$
then

$$
\Sigma^{A} \tau_{e x t}=\frac{d^{A} \underline{H}}{d t}
$$

- Both ${ }^{A} \underline{H}$ and $\underline{\omega}$ are expressed in the unit vectors of $A x y z$
- The angular momentum can be expressed as

$$
\left[{ }^{A} H\right]=\left[I_{A}\right][\omega]
$$

- If ${ }^{A} \underline{H}$ and $\underline{\omega}$ are not aligned, then
there are non-zero off-diagonal terms in $\left[I_{A}\right]$, and there are components of $\Sigma^{A} \tau_{\text {ext }}$ not in the direction of $\underline{\omega}$

Equations of Motion for Multiple Degree-of-Freedom Systems

Problem Statement

The figure below shows a system of two masses, m_{1} and m_{2}, two springs, k_{1} and k_{2}, and four viscous damping elements, $c_{1}, c_{2}, c_{3}, c_{4}$, as well as an external force $F(t)$ acting on the second mass.

Note that the damping elements c_{3} and c_{4} act between the masses and the ground.

- Draw the system's Free Body Diagrams
- Derive the system's Equations of Motion

Solution

Free Body Diagrams

Free Body Diagrams depict the external forces that act on the mass(es).

Note that forces $F_{k_{2}}$ and $F_{c_{2}}$ appear in both free body diagrams.

Linear System Elements and "Getting The Signs Right"

The figure below shows a linear spring, a linear damper and their respective constitutive relations. Note that in this figure the forces shown are the external forces acting on the spring and damper which are equal and opposite to the forces acting on the masses, e.g. $f_{k}=-F_{k}$.

The magnitudes of the forces acting on the masses are given by

$$
\begin{array}{ll}
F_{k_{1}}=k_{1} x_{1} & F_{k_{2}}=k_{2}\left(x_{2}-x_{1}\right) \\
F_{c_{1}}=c_{1} \dot{x}_{1} & F_{c_{2}}=c_{2}\left(\dot{x}_{2}-\dot{x}_{1}\right) \\
F_{c_{3}}=c_{3} \dot{x}_{1} & F_{c_{4}}=c_{4} \dot{x}_{2}
\end{array}
$$

Equations of Motion

Noting the directions on the free body diagrams, we can sum forces on m_{1} and m_{2},
$\Sigma F_{x}=m_{1} a_{1} \rightarrow \quad F_{k_{2}}+F_{c_{2}}-F_{k_{1}}-F_{c_{1}}-F_{c_{3}}=m_{1} \ddot{x}_{1}$
$\Sigma F_{x}=m_{2} a_{2} \rightarrow \quad F(t)-F_{k_{2}}-F_{c_{2}}-F_{c_{4}}=m_{2} \ddot{x}_{2}$
or
$m_{1} \rightarrow \quad k_{2}\left(x_{2}-x_{1}\right)+c_{2}\left(\dot{x}_{2}-\dot{x}_{1}\right)-k_{1} x_{1}-c_{1} \dot{x}_{1}-c_{3} \dot{x}_{1}=m_{1} \ddot{x}_{1}$
$m_{2} \rightarrow \quad F(t)-k_{2}\left(x_{2}-x_{1}\right)-c_{2}\left(\dot{x}_{2}-\dot{x}_{1}\right)-c_{4} \dot{x}_{2}=m_{2} \ddot{x}_{2}$
Rearranging,

$$
\begin{gather*}
m_{1} \ddot{x}_{1}+\left(c_{1}+c_{2}+c_{3}\right) \dot{x}_{1}-c_{2} \dot{x}_{2}+\left(k_{1}+k_{2}\right) x_{1}-k_{2} x_{2}=0 \tag{1}\\
m_{2} \ddot{x}_{2}-c_{2} \dot{x}_{1}+\left(c_{2}+c_{4}\right) \dot{x}_{2}-k_{2} x_{1}+k_{2} x_{2}=F(t) \tag{2}
\end{gather*}
$$

In Matrix Notation

$$
\left[\begin{array}{cc}
m_{1} & 0 \tag{3}\\
0 & m_{2}
\end{array}\right]\left[\begin{array}{l}
\ddot{x}_{1} \\
\ddot{x}_{2}
\end{array}\right]+\left[\begin{array}{cc}
c_{1}+c_{2}+c_{3} & -c_{2} \\
-c_{2} & c_{2}+c_{4}
\end{array}\right]\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]+\left[\begin{array}{cc}
k_{1}+k_{2} & -k_{2} \\
-k_{2} & k_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
0 \\
F(t)
\end{array}\right]
$$

or

$$
\underline{M \ddot{x}}+\underline{C \dot{x}}+\underline{K x}=0
$$

MIT OpenCourseWare
http://ocw.mit.edu

2.003SC / 1.053J Engineering Dynamics

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

