
EIGENVALUES and EIGENVECTORS 

Consider the following matrix equation, 

Ax = λx (1) 

where A is a matrix of size nxn , x is a vector of length n, and λ is a scalar 

For a given matrix, A , the values of λi and xi , i = 1, ..., n that satisfy the above equation are called (the 
matrix’s) eigenvalues and eigenvectors, respectively. 

Eigenvalues and eigenvectors are a very important and valuable concept that arises in many technical 
fields, especially vibrations. 

Consequently, well-established, robust computational procedures exist for evaluating the eigenvalues and 
eigenvectors of a matrix. 

Connection to Vibrations 

Recall the matrix form of the equations of motion for an n-degree-of-freedom system, 

Mẍ + Kx = 0 

This can be re-written as 

ẍ + M−1Kx = 0 

or 

M−1Kx = −ẍ

Recall that, for harmonic motion 

ẍ = −ω2 x 

So, the matrix equation has the same form as (1) above, i.e. can be seen to be an eigenvalue problem. 

(M−1K)x = (ω2)x 

where 

• A = M−1K is the system matrix 

• the eigenvalues, λi , are the natural frequencies, ωi 
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• the eigenvectors, xi , are the natural modes 1
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Double Pendulum System - Problem Statement 

Consider a system of two masses and one spring as shown in the figure below. Note that θ1 and θ2 are 
small-angle displacements. 

The system’s equations of motion are 

g k k¨ θ1 + + θ1 − θ2 = 0 
l m1 m1 

k g k¨ θ2 − θ1 + + θ2 = 0 
m2 l m2 

For the special case where m1 = m2 = m , 

• Write the equations of motion in matrix notation. 

• Find the characteristic equation 

• Find the natural frequencies and natural modes 
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Double Pendulum System - Solution 

EQUATIONS OF MOTION IN MATRIX NOTATION

          
¨ (g k − k1 0 θ1 + ) θ1 0l m1 m1+ k = (1)

0 1 θ̈  
2 − k (g + ) θ2 0

m2 l m2 

or 

Mẍ + Kx = 0 

Setting m1 = m2 = m, the equations of motion are

          
1 0 θ̈  

1 (g + k ) − k θ1 0
l m m 

¨ + − k (g k = (2)
0 1 θ2 + ) θ2 0

m l m 

3



CHARACTERISTIC EQUATION  

Assume the two masses undergo harmonic motion, i.e. they oscillate with the same frequency, ω, albeit 
different amplitudes, a1, a2. 
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[
θ1

θ2

]
=

[
a1

a2

]
cos(ωt− φ)

[
θ̈1

θ̈2

]
= −ω2

[
a1

a2

]
cos(ωt− φ)

(3)

(4)

Substituting (3) and (4) into (2), we obtain,[
−ω2 0

0 −ω2

] [
a1

a2

]
cos(ωt− φ) +

[
(g

l
+ k

m
) − k

m

− k
m

(g
l

+ k
m

)

] [
a1

a2

]
cos(ωt− φ) =

[
0
0

]

Dividing by cos(ωt− φ), we obtain[
−ω2 + (g

l
+ k

m
) − k

m

− k
m

−ω2 + (g
l

+ k
m

)

] [
a1

a2

]
=

[
0
0

]
(5)

Setting the determinant equal to zero produces the CHARACTERISTIC EQUATION/POLYNOMIAL.

h2 − 2hω2 + ω4 − k

m

2

= 0 where h =
g

l
+
k

m

( )



NATURAL FREQUENCIES AND NATURAL MODES  

Applying the quadratic formula to the characteristic equation, 
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ω2 = h± k

m
=

g

l
+
k

m
± k

m

( )
or

ω1 =

√
g

l
; ω2 =

√
g

l
+ 2

k

m

From the first row of (5), (
−ω2 +

g

l
+
k

m

)
a1 −

k

m
a2 = 0

we can obtain the formula for the natural modes,

a2

a1

=
−mω2 + 2k

k

which we evaluate at each of the natural frequencies,

ω1 =

√
g

l
→ a2

a1

= 1

ω2 =

√
g

l
+ 2

k

m
→ a2

a1

= −1



General Solution 

In general, however, (i.e. for arbitrary initial conditions), the system’s free response will contain BOTH 
natural frequencies, 

where A1, A2, φ1, φ2 are determined by initial conditions. 

This general response can appear to be very irregular, with little discernible pattern. When the natural 
frequencies are close together, ”beating” behavior can be observed. 
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[
x1

x2

]
= A1

[
1
1

]
cos(ω1t− φ1) + A2

[
1
−1

]
cos(ω2t− φ2)
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