3 Fourier Series

Compute the Fourier series coefficients A_{0}, A_{n}, and B_{n} for the following signals on the interval $t=[0,2 \pi]$:

1. $f(t)=4 \sin (t+\pi / 3)+\cos (3 t)$

First, write this in a fully expanded form: $y(t)=4 \sin (t) \cos (\pi / 3)+4 \cos (t) \sin (\pi / 3)+$ $\cos (3 t)$. Then it is obvious that

$$
\begin{aligned}
& A_{0}=0 \text { (the mean) } \\
& A_{1}=4 \sin (\pi / 3) \\
& B_{1}=4 \cos (\pi / 3) \\
& A_{3}=1
\end{aligned}
$$

and all other terms are zero, due to orthogonality.
2. $f(t)=\left\{\begin{array}{l}t, t<T / 2 \\ t-T / 2, t \geq T / 2\end{array}\right.$ (biased sawtooth)
$A_{0}=\pi / 2$, the mean value of the function. Let's next do the A_{n} 's:

$$
\begin{aligned}
A_{n} & =\frac{1}{\pi} \int_{0}^{2 \pi} \cos (n t) f(t) d t \\
& =\frac{1}{\pi} \int_{0}^{\pi} \cos (n t) t d t+\frac{1}{\pi} \int_{\pi}^{2 \pi} \cos (n t)(t-\pi) d t \\
& =\frac{1}{\pi} \int_{0}^{2 \pi} \cos (n t) t d t-\int_{\pi}^{2 \pi} \cos (n t) d t \\
& =\left.\frac{1}{\pi}\left(\frac{\cos (n t)}{n^{2}}+\frac{t \sin (n t)}{n}\right)\right|_{0} ^{2 \pi}-0 \\
& =0
\end{aligned}
$$

This makes sense intuitively because the cosines are symmetric functions around zero (even), whereas $f(t)$ is not. The signal's information is carried in the sine terms:

$$
\begin{aligned}
B_{n} & =\frac{1}{\pi} \int_{0}^{2 \pi} \sin (n t) f(t) d t \\
& =\frac{1}{\pi} \int_{0}^{\pi} \sin (n t) t d t+\frac{1}{\pi} \int_{\pi}^{2 \pi} \sin (n t)(t-\pi) d t \\
& =\frac{1}{\pi} \int_{0}^{2 \pi} \sin (n t) t d t-\int_{\pi}^{2 \pi} \sin (n t) d t
\end{aligned}
$$

Now the second integral is $-2 / n$ for n odd, and zero otherwise. Let's call it $q(n)$. Then continuing we see

$$
\begin{aligned}
B_{n} & =\left.\frac{1}{\pi}\left(\frac{\sin (n t)}{n^{2}}-\frac{t \cos (n t)}{n}\right)\right|_{0} ^{2 \pi}-q(n) \\
& =-2 / n-q(n)
\end{aligned}
$$

Hence $B_{n}=-2 / n$ for even n, and zero otherwise. Try it out by making a plot!

MIT OpenCourseWare
http://ocw.mit.edu

2.017J Design of Electromechanical Robotic Systems

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

