4 Bretschneider Spectrum Definition

The formula for the Bretschneider (one-sided) ocean wave spectrum is

$$
S(\omega)=\frac{5}{16} \frac{\omega_{m}^{4}}{\omega^{5}} H_{1 / 3}^{2} e^{-5 \omega_{m}^{4} / 4 \omega^{4}}
$$

where ω is frequency in radians per second, ω_{m} is the modal (most likely) frequency of any given wave, and $H_{1 / 3}$ is the significant wave height. Make a single figure that shows the Bretschneider spectrum (S as a function of ω) for these cases:

SeaState	$2 \pi / \omega_{m}$, sec	$H_{1 / 3}, \mathrm{~m}$
2	6.3	0.3
3	7.5	0.9
4	8.8	1.9
5	9.7	3.3
6	12.4	5.0

Here is the MATLAB code I used and the resulting figure:
$\% \%$
\% 2. 017 Homework 1. Bretschnieder Spectrum.
\% FSH MIT Mechanical Engineering
clear all;
figure(1);clf;hold off; hold on; \% note: hold is on so we can overlay \% figures
\% show the data from the table in the problem
SSvec $=\left[\begin{array}{lllll}2 & 3 & 4 & 5 & 6\end{array}\right]$; \% sea states
wmvec $=2 *$ pi*ones (size (SSvec)) ./ [6.3 7.5 8.8 9.7 12.4] ;
\% modal frequencies
Hsigvec $=\left[\begin{array}{lllll}0.3 & 0.9 & 1.9 & 3.3 & 5.0\end{array}\right] ; \%$ significant wave heights
\% vector of frequencies for the spectrum calculation
wvec $=$ [.1:.01:2];
\% step through the different seastates
for $i=1: l e n g t h(w m v e c)$,
wm = wmvec (i) ;
Hsig = Hsigvec(i) ;
SS = SSvec (i) ;

```
    for j = 1:length(wvec),
        w = wvec(j) ;
        S(j) = 5/16 * wm^4 / w^5 * Hsig^2 * exp(-5 * wm^4 / 4 / w^4) ;
end;
    % check that we got the right formula!
    disp(sprintf(...
    'Square Root of Integral of Area of S: %g; 4*Hsig: %g', ...
    sqrt(sum(S)*mean(diff(wvec))), 1/4*Hsig));
    % add on the curves and some labels
    plot(wvec,S,'LineWidth',2);
    if SS > 3,
    text(wm-.18,max(S),sprintf('SS %g', SS));
    end;
end;
% finish off the plot
grid;
title('Sea Wave Spectra for Sea States 2-6');
xlabel('frequency \omega, rad/s');
ylabel('S(\omega)');
print -deps hw1_bret.eps
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
```


MIT OpenCourseWare
http://ocw.mit.edu

2.017J Design of Electromechanical Robotic Systems

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

