7 Fourier Series Calculations

Compute the Fourier series coefficients A_{0}, A_{n}, and B_{n} for the following signals on the interval $T=[0,2 \pi]$:

1. $f(t)=2 \sin (t+\pi / 4)+\cos (5 t+\pi / 3)$

Solution: use trigonometric identities to rewrite this as
$f(t)=2 \sin (t) \cos (\pi / 4)+2 \cos (t) \sin (\pi / 4)+\cos (5 t) \cos (\pi / 3)+\sin (5 t) \sin (\pi / 3)$. Thus, $A_{0}=0, A_{1}=2 \sin (\pi / 4)=\sqrt{2}, B_{1}=2 \cos (\pi / 4)=\sqrt{2}, A_{5}=\cos (\pi / 3)=1 / 2$, $B_{5}=\sin (\pi / 3)=\sqrt{3} / 2$, and all the other coefficients are zero.
2.

$$
f(t)=\left\{\begin{array}{l}
1, t<T / 2 \\
0, t \geq T / 2
\end{array}\right. \text { (biased square wave) }
$$

Solution: A_{0} is the mean value of the signal, or $A_{0}=1 / 2$. Applying the formulas for the coefficients, we get

$$
\begin{aligned}
A_{n} & =\frac{1}{\pi} \int_{0}^{2 \pi} f(t) \cos (n t) d t=\frac{1}{\pi} \int_{0}^{\pi} \cos (n t) d t=\left.\frac{1}{n \pi} \sin (n t)\right|_{0} ^{\pi}=0 \\
B_{n} & =\frac{1}{\pi} \int_{0}^{2 \pi} f(t) \sin (n t) d t=\frac{1}{\pi} \int_{0}^{\pi} \sin (n t) d t=-\left.\frac{1}{n \pi} \cos (n t)\right|_{0} ^{\pi}=z(n)
\end{aligned}
$$

where z is zero if n is even, and z is $2 / n \pi$ if n is odd. Try this out in MATLAB!

MIT OpenCourseWare
http://ocw.mit.edu

2.017J Design of Electromechanical Robotic Systems

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

