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16 Road Vehicle on Random Terrain 

An autonomous, four-wheeled road vehicle travels over an uncertain terrain. You are asked 
to characterize the vertical motion of the center of gravity, and the pitching (nose-up vs. 
nose-down) response of the vehicle, as it crosses the terrain, using a linear model. We  
know that the vehicle chassis has a mass of m = 42kg and a pitching moment of inertia 
of J = 25kg m2 . Consider the tires and suspension to have zero mass, but the front and 
back suspension systems are each modeled as having a spring of stiffness k = 1000N/m, in  
parallel with a linear damper having coefficient b = 100N/(m/s). The distance between the 
front and rear wheels is 2l = 0.9m. The vehicle travels at a speed U , which we will vary 
below.  Because we consider  U to be constant, you can use it directly to map between the 
horizontal terrain coordinate x and time t in this problem. 

The terrain roughness has been described only statistically (e.g., using an orbiting cam
era or some other remote sensing system). Its content is given by the following harmonic 
components: 

n 
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wave number, 1/m

(kn = 2π/λn)


0.250
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0.325
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amplitude, m 
(an) 
0.01 
0.02 
0.02 
0.04 
0.03 
0.02 
0.01 
0.03 
0.05 
0.01 
0.02 

9

10

11


Here, kn is the n’th wave number (spatial frequency) and λn is the n’th wavelength (spatial 
period). We model the ground elevation as a function of the horizontal coordinate: 

h(x) =  an sin(knx + φn). 
n 

Notice that 2l <<  min(λ); the vehicle is much shorter than the smallest wavelength, so you 
can approximate 

h(x) ≈ [h(x + l) +  h(x − l)]/2, 

h′(x) =  dh(x)/dx ≈ [h(x + l) − h(x − l)]/2l, 

h′′(x) =  d 2h(x)/dx2 ≈ [h′(x + l) − h′(x − l)]/2l, and so on. 
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1. Develop a model that describes the response of the vehicle to terrain variations h(x). 
It should comprise two uncoupled second-order differential equations, one for vertical 
motion and the other for pitch. Make an annotated figure to go with the equations. 
You may like to use the fact that the vertical velocity of the ground seen from a 
reference frame moving horizontally at velocity U , is  Uh′(x). 

Newton’s laws and some geometry give us 

mz̈ = −k[(z + lθ − h(x + l)) + (z − lθ − h(x − l))] 

−b[(ż + lθ̇ − Uh′(x + l)) + (ż − lθ̇ − Uh′(x − l))] 

≈ −k[2z − 2h(x)] − b[2ż − 2Uh′(x)] 

¨ Jθ = −kl[(z + lθ − h(x + l)) − (z − lθ − h(x − l))] 

−bl[(ż + lθ̇ − Uh′(x + l)) − (ż − lθ̇ − Uh′(x − l))] 

≈ −kl[2lθ − 2lh′(x)] − bl[2lθ̇ − 2lUh′′(x)]. 

As advertised, these equations are uncoupled, except through the input h(x) and its 
derivatives. 

2. What are the damped and undamped natural frequencies of the two systems?	 What 
are the damping ratios? List all six numbers, with units. 

For the vertical motion, the undamped natural frequency is ωn = 2k/m ≈ 6.9rad/s, 
and the damping ratio is ζ = 2b/2mωn ≈ 0.35, giving a damped natural frequency of √ 
ωd = ωn 1 − ζ2 ≈ 6.5rad/s. For the pitch motion, the undamped natural frequency 
is ωn = 2l2k/J ≈ 4.0rad/s, and the damping ratio is ζ = 2l2b/2Jωn ≈ 0.20, giving √ 
a damped natural frequency of ωd = ωn 1 − ζ2 ≈ 3.9rad/s. Both of these modes are 
rather lightly damped and so may exhibit resonance behavior. 

3.	 Create a set of elevation data h(x) based on the above (spatial) frequency content, 
and plot it. Consider the range of x from zero to twenty times the longest wavelength; 
your spacing in x should be no more than one-tenth of the smallest wavelength, to get 
a good picture. Use a random phase angle φn for each of your components. 

See the attached figures and code. Note that I used fifty cycles of the longest wavelength 
(not twenty). 

4. What is the maximum amplitude of elevation	 h(x) in the terrain data you created? 
What is the maximum amplitude of the slope? 

The maximum amplitude shown is about 0.21m, with a maximum slope of about 4.8◦ . 
These values come out differently each time the program is run because the phases are 
determined randomly. 

5. Now run your vehicle model over this terrain at U = 5m/s. What is the maximum 
amplitude of the vertical motion? What is the maximum amplitude of the pitch mo
tion? 
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The maximum vertical motion amplitude is about 0.23m and the pitch is about 6.4◦ 
both of these are larger than the terrain itself, indicating that some dynamic effect is 
occurring. 

6. Repeat this calculation for speeds of 10, 15, 20, and 25m/s. Make a tabular listing 
for the vehicle’s maximum amplitudes of vertical motion and pitch, as a function of 
U . Are the motions consistent with the systems’ resonant frequencies and damping 
properties? 

The vertical motion amplitudes for U = [5, 10, 15, 20, 25]m/s are approximately 
[0.23, 0.29, 0.34, 0.29, 0.23]m, respectively. The peak amplification is 0.34/0.23 or al
most fifty percent, consistent with the damping ratio we found. The driving frequencies 
from the terrain are given by ωn = Ukn, so  that  15m/s × 0.45rad/m = 6.75rad/s 
a high-amplitude harmonic input (0.05m) is occurring very close to the damped reso
nant frequency. The pitch motion amplitudes are approximately [6.4, 9.9, 4.9, 2.2, 1.3]◦ . 
The peak amplification is over two, consistent with the lower damping ratio in pitch. 
The slope of any particular terrain harmonic goes as knan, so again the input at 
k = 0.45rad/m is the dominant one. 10m/s × 0.45rad/m = 4.5rad/s, again pretty 
close to our damped natural frequency. 

7.	 What different effects could we expect if the wheelbase became long compared to some 
of the terrain harmonic components? (No calculations.) 

We would start to see spatial aliasing. This would grotesquely deform our neat expla
nations above, and invalidate the approximations we used for the slopes and average 
values of h(x). This latter point could, however, be easily fixed in the code simply by 
carrying out the full expressions, that is, using h(x + l), h(x − l), and  so  on.  
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Figure 2: Bretschneider spectrum and vehicle pitch response spectra.
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Land Vehicle Moving Over Rough Terrain

% MIT 2.017 FSH Sept 2009

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


clear all;

global U m J l k b phi a kk;


k = .25:.025:.5 ; % terrain wavenumbers

a = [.01 .02 .02 .04 .03 .02 .01 .03 .05 .01 .02] ; % amplitudes


m = 42 ; % mass of body

J = 25 ; % rotary moment of inertia about centroid

l = .45 ; % half-width between wheels, m

kk = 1000 ; % strut stiffness, N/m

b = 100 ; % strut damping coefficient


phi = 2*pi*rand(length(k),1) ; % set the random phase angles for this run


% set up and calculate a few derived items


vertDrawingScale = .3 ; % drawing parameters

pitchDrawingScale = .3 ;


if length(a) ~= length(k), 
disp(’Inconsistent k and a!’); 
break; 

end;


lam = 2*pi./k ; % wavelengths


dk = mean(diff(k));

k = k + rand(size(k))*dk/2 ; % randomize the wavenumbers a little bit


dx = min(lam)/10; % pick x-spacing to get ten points in the fastest cycle 
xvec = 0:dx:max(lam)*50; % a vector of x-values we’ll look at; this 

% gets 50 cycles of the slowest harmonic 

% Characterize the resonance and damping properties of the two LTI systems


disp(’--------------------------’);

wnVert = sqrt(2*kk/m) ;

disp(sprintf(’Undamped natural freq. of vertical system: %g rad/s’, wnVert));
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zetaVert = 2*b / 2 /sqrt(2*kk*m);

disp(sprintf(’Damping ratio of vertical system: %g’, zetaVert)) ;


if zetaVert < 1, 
wdVert = wnVert*sqrt(1-zetaVert^2) ; 
disp(sprintf(’Damped natural freq. of vertical system: %g rad/s’, wdVert)); 

else, 
disp(’Vertical system is overdamped.’); 
wdVert = NaN ; 

end;


disp(’ ’);


wnPitch = sqrt(2*l^2*kk/J) ;

disp(sprintf(’Undamped natural freq. of pitch system: %g rad/s’, wnPitch));


zetaPitch = 2*l^2*b / 2 / sqrt(2*l^2*kk*J) ;

disp(sprintf(’Damping ratio of pitch system: %g’, zetaPitch)) ;


if zetaPitch < 1, 
wdPitch = wnPitch*sqrt(1-zetaPitch^2) ; 
disp(sprintf(’Damped natural freq. of pitch system: %g rad/s’, wdPitch)); 

else, 
disp(’Pitch system is overdamped.’); 
wdPitch = NaN ; 

end; 

% build up the elevation profile for this set of phase angles 
for i = 1:length(xvec), 

x = xvec(i) ; 
h(i) = 0 ; 
dhdx(i) = 0 ; 
for j = 1:length(k), 

h(i) = h(i) + a(j)*sin(k(j)*x + phi(j)) ; 
dhdx(i) = dhdx(i) + a(j)*k(j)*cos(k(j)*x + phi(j)) ; 

end; 
end; 

figure(1);clf;hold off;

subplot(’Position’,[.15 .15 .7 .75]);

plot(xvec,h,’LineWidth’,2) ;

xlabel(’x, m’);

ylabel(’h(x) (bold) and z(x), m’);
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figure(2);clf;hold off;

subplot(’Position’,[.15 .15 .7 .75]);

plot(xvec,dhdx,’LineWidth’,2);

xlabel(’x, m’);

ylabel(’dh(x)/dx (bold) and theta(x), rad’);


disp(’ ’); 
disp(sprintf(... 

’Terrain: max|h| %5.3f m max|dh/dx| %4.2f rad / %4.2f deg’,... 
max(abs(h)), max(abs(dhdx)), max(abs(dhdx))*180/pi)); 

i = 1 ;  
for U = [5 10 15 20 25], 

% simulate the system behavior over this terrain 
clear t s ; 
[t,s] = ode45(’vehicleOnTerrainDeriv’,[0 max(xvec)/U], [0 0 0 0]’); 

figure(1);

hold on;

plot(t*U,s(:,2) + vertDrawingScale*i);

axis(’tight’);

text(max(t*U)*1.03,mean(s(:,2)) + vertDrawingScale*i,...


sprintf(’U: %d m/s’,U));

figure(2);

hold on;

plot(t*U,2*s(:,4) + pitchDrawingScale*i) ;

axis(’tight’);

text(max(t*U)*1.03,mean(s(:,4)) + vertDrawingScale*i,...


sprintf(’U: %d m/s’,U)); 

disp(sprintf(... 
’U %2d m/s: max|z| %5.3f m max|theta| %4.2f rad / %4.2f deg’,... 
U, max(abs(s(:,2))), max(abs(s(:,4))), max(abs(s(:,4)))*180/pi)); 

pause(.1); 
i = i + 1 ;  

end; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [dsdt] = vehicleOnTerrainDeriv(t,s) ;

global U m J l k b phi a kk;


x = U*t ; % horizontal location of the vehicle
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% build up the elevation and its derivatives at the current time and x

h = 0 ; 

dhdx = 0 ;

ddhddx = 0 ;

for j = 1:length(k),


h = h + a(j)*sin(k(j)*x + phi(j)) ;

dhdx = dhdx + a(j)*k(j)*cos(k(j)*x + phi(j)) ;

ddhddx = ddhddx - a(j)*k(j)^2*sin(k(j)*x + phi(j)) ;


end;


% parse out the state vector

zdotIn = s(1);

zIn = s(2) ;

thetadotIn = s(3) ;

thetaIn = s(4) ;


% here are the dynamic equations

zddot = -kk/m*(2*zIn - 2*h) - b/m*(2*zdotIn - 2*U*dhdx);

zdot = zdotIn ;

thetaddot = -kk*l/J*(2*l*thetaIn - 2*l*dhdx) - ...


b*l/J*(2*l*thetadotIn - 2*l*U*ddhddx) ; 
thetadot = thetadotIn ; 

% build the state vector derivative

dsdt = [zddot zdot thetaddot thetadot]’ ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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