
17 DYNAMICS CALCULATIONS USING THE TIME AND FREQUENCY DOMAINS51

17 Dynamics Calculations Using the Time and Fre-

quency Domains

1. Don’t turn anything in on this part. The FFT (Fast Fourier Transform) is a standard
method for decomposition of a signal into its harmonic components. You need to know
a few specific items about it:

(a) The length of the input signal x - in the time domain - is N . The FFT itself
doesn’t care about what is the time step between xn and xn+1, although the
spacing must be uniform; below, we’ll call it ∆t. Hence x1 occurs at time 0, x2 is
at time ∆t, and so on, up to xN taken at time (N − 1)∆t.

(b) The formal definition of the transform and its inverse in MATLAB is

Xk =
N∑

n=1

xne−i2π(k−1)(n−1)/N , 1 ≤ k ≤ N ;

xn =
1

N

N∑

k=1

where i =
√−1. So the FFT takes a uniformly-spaced time signal x and makes

a uniformly-spaced frequency signal X, of the same length. It is like a Fourier
integral because of the exponential: eiz = cos z + i sin z. Furthermore, you notice
that the FFT (the transform that makes X) is a summation between the time-
domain signal x and an exponential with imaginary argument, which has unity
magnitude. Thus, the size of the elements in X are roughly the size of x, multiplied
by N . The inverse FFT has the factor 1/N out front so as to cancel this effect
out; ifft(fft(x)) = x;. Because of this arrangement, however, you can’t take
the FFT of two signals, multiply them (to effect a convolution), take the inverse
FFT, and expect to get the right scaling - each FFT induces a scaling of N, but
the IFFT only corrects for one of them. Remembering this point will save you a
lot of trouble in using the FFT in MATLAB!

You can see this scaling for example with
x = sin(0:0.1:100) ; X=fft(x);plot(abs(X));. Here, you plot the absolute
value (abs()) which is synonymous with magnitude, because X is complex.

There is another scaling factor to notice, but this is easier; because the Fourier
integral involves both negative and positive frequencies, it puts half the area on
each side.

(c) What are the uniformly-spaced frequencies that go with X? For the case of odd
N (typical if the final time T is an even multiple of ∆t), we have:

ωk =
[

N
0 1

− 1· · · 1−N

2

2
1

2
· · · −

]
π

N − 1
.

∆t

If you count these, you will see that there are N of them, exactly one frequency
to go with each element of X. More interesting are the values, which start from

Xke
i2π(k−1)(n−1)/N , 1 ≤ n ≤ N,

17 DYNAMICS CALCULATIONS USING THE TIME AND FREQUENCY DOMAINS52

zero and go to the Nyquist rate π/∆t, and then jump back to the negative of the
Nyquist rate, and go to almost zero. Together, these cover completely the range
of negative Nyquist rate to positive Nyquist rate. The FFT can’t see beyond the
Nyquist rate, so we see that, in general, increasing N but keeping ∆T constant
will give more resolution to a Fourier decomposition.

You can try making up the frequency vector that goes with the example above:
Do the indices of the peak value in X correspond with plus and minus one radian
per second?

2. Now we use the FFT as a tool for analyzing system response to both specific and, later,
to stochastic forcing signals.

First, find the impulse response of the system x′′+0.1x′+x = u, using your simulation
based on ode45. You’ll have to construct the impulse explicitly in the derivative call,
with something like this:
if t < epsilon, u0 = 1/epsilon ; else, u0 = 0 ; end;

You can try values of ε < 0.1 or so for this system. The response we are looking for is
x, not x′, so you’ll have to pick one column only out of the vector that ode45 returns;
call it h. Use an initial time of zero in the simulation, and final time T = 100 seconds.

3. Regularize the impulse response you calculated by first making a uniformly spaced
time vector like this: treg = 0:dt:T; a value for dt of 0.1 or so is OK. This treg

is contrasted with the time vector returned by ode45, which is not uniformly spaced,
because MATLAB is automatically adjusting the time step as it does the integration
for you. Use the spline function to make h line up with the uniform time vector treg:
[hreg] = spline(t,h,treg) ;.

4. Now, make up a new input u, that we will use in the rest of this problem: u = 1 if
t < T/2, u = 0 if t ≥ T/2. You need to put this in as an input in the derivative
function for the simulation, and you need to also create it as a vector ureg that lines
up with treg.

5. Now we are ready to make the computation of the system response to the input u in
three different ways! The first is the simplest - just run the simulation with the input
u. Make a plot of x vs. t.

6. The second method is to convolve the input u with the impulse response h. We have
to use a consistent time base, and that is why we made ureg and hreg. MATLAB has
a command called conv which you can use; the convolution integral is the same as this
vector convolution if you multiply the latter by dt; i.e., we have to calculate the area
under the curve.

Plot the first N elements of the convolution result versus treg. It should look almost
the same as what you found from the direct simulation.

7. The third method is to multiply the FFT of the impulse response with the FFT of the
input u. In this case, you will do a vector pointwise multiplication (.* is the syntax)

17 DYNAMICS CALCULATIONS USING THE TIME AND FREQUENCY DOMAINS53

of U = fft(ureg) and the FFT of h. You could execute fft(hreg) of course, which
builds off your original simulation. But the crucial observation here is that we already
know the transform of the impulse response - it is the same as the transfer function!

1
H = √ . −ω2 + 0.1 −1ω + 1

This is the calculation you will make, and you have to use the oddly-ordered frequency
vector that is defined in (a) in order to make it work properly.

In summary for this step then, point-wise multiply the vector U times the vector H ,
then take the inverse FFT to get a third calculation for the response x when the system
is driven by u. The IFFT result plotted versus treg should come out to be very close to
the two results computed before. (Note you will get a little complaint from the plotting
command, which doesn’t know what to do with the very small imaginary parts of the
IFFT result - ignore it.)

8. Why didn’t we have to worry about the N -scaling of the FFT when we did the IFFT?

The overlay plot for the three methods is given in the plot below; code is attached. In the
last question, we don’t have to worry about the N -scaling in the IFFT because H(jω) is not
computed with the FFT and so doesn’t have the factor of N . Thus the IFFT ”undoes” the
N -scaling introduced by the FFT of U , in the same way that ifft(fft(x)) = x.

0 10 20 30 40 50 60 70 80 90 100
seconds

Figure 3: Overlay of system response by three different methods.

−1

−0.5

0

0.5

1

1.5

2

y

simulation
convolution in time domain
convolution in freq. domain

17 DYNAMICS CALCULATIONS USING THE TIME AND FREQUENCY DOMAINS54

%--

% Show the equivalence of time-domain simulation, convolution, and
% frequency-analysis of an LTI system.

% Franz Hover MIT Mechanical Engineering

clear all; close all;
global m b k epsilon T ;

m = 1 ; % mass of oscillator
b = .1 ; % damping
k = 1 ; % stiffness

epsilon = .1 ; % time duration used for delta function
dt = .1 ; % uniform time step
T = 100 ; % final time; make this an even multiple of dt !!!

% Also, if T is big, we can minimize finite length effects

treg = 0:dt:T ; % regular time vector
N = length(treg) ;
ureg = [ones(1,(N+1)/2),zeros(1,(N-1)/2)] ;

% regular input vector (half ones, half zeros)
wreg = [0:(N-1)/2 , (1-N)/2:-1] / (N-1) * 2*pi/dt ;

% regular frequency vector

% first, get the time domain impulse response

[th,h] = ode45(’tripleMethod_dxdt1’,[0 T],[0 0]);

h = h(:,2) ; % pick out just the second column - it goes with state x

[hreg] = spline(th,h,treg) ; % regularize h to align with treg

% 1. make the response to u using the simulation directly

[t1,y1] = ode45(’tripleMethod_dxdt2’,[0 T],[0 0]);

y1 = y1(:,2) ;

% 2. make the response using convolution in time domain

y2 = conv(ureg,hreg) * dt ;

% 3. make the response using the FFT - convolution in freq. domain

U = fft(ureg) ;

H = ones(size(wreg))./(-m*wreg.^2 + sqrt(-1)*wreg*b + k) ;

Y = U.*H ;

y3 = ifft(Y) ;

17 DYNAMICS CALCULATIONS USING THE TIME AND FREQUENCY DOMAINS55

% ... and compare!

figure(1);clf;hold off;

subplot(’Position’,[.2 .2 .6 .4]);

plot(t1,y1,treg,y2(1:N),’--’,treg,(y3),’:’) ;

legend(’simulation’,’convolution in time domain’,’convolution in freq. domain’);

xlabel(’seconds’);

ylabel(’y’);

print -depsc tripleMethod.eps

%%

%--

function [ydot] = tripleMethod_dxdt1(t,y);

global m b k epsilon ;

if t < epsilon,

u = 1/epsilon ;
else,

u = 0 ;
end;
ydot(1,1) = -b/m*y(1) - k/m*y(2) + u ;
ydot(2,1) = y(1) ;
%%

%--

function [ydot] = d2_1_dxdt2(t,y);

global m b k T ;

if t < T/2,

u = 1 ;
else,

u = 0 ;
end;
ydot(1,1) = -b/m*y(1) - k/m*y(2) + u ;
ydot(2,1) = y(1) ;
%%

MIT OpenCourseWare
http://ocw.mit.edu

2.017J Design of Electromechanical Robotic Systems
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

