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27 Walking Robot Constraints 

The ”Big Pig” project, which involves a pig-like quadruped robot, wants to understand how 
to control the device when it operates on a slippery surface. Viewed from above, each foot is 
at a location described by the vector �ri, comprising the x (positive forward) and y (positive 
to the left) coordinates relative to the center of mass; the vertical direction is z. Clearly 
static stability is possible only if the centroid is contained within one of the triangles created 
by the planted foot locations. Hence, slow walking can be achieved by moving the centroid 
into different triangle sets, and moving the feet in turn. Also in every such configuration, the 
roll and pitch moments have to balance to zero. Things get harder during actual locomotion, 
because we do not want slippage on any of the feet. This occurs when force in the horizontal 
plane exceeds a critical fraction of the vertical (normal) force: when Fi,x ≥ μFi,z, where  
μ is the Coulomb friction coefficient. A similar constraint would apply of course in the 
y-direction. 

Here we take on a simplified, three-leg problem that lays out some very practical issues in 
large and slowly moving walking robots. Consider the statically stable condition 
r = [[1.1, 0.8];[1.2,-0.7];[-1.5,-0.7]] meters, where each pair gives the x and y 
coordinates of three planted legs (forward left, forward right, back right). The weight of 
the Big Pig is 4600 Newtons, and the value of μ is 0.12. Along with the non-slip constraint 
for  each foot  in the  x-direction, we have a mechanical design constraint that the x force 
magnitude on any foot cannot exceed 250 Newtons. Also, since a foot cannot ”pull” on the 
ground, each Fi,z has to be positive. This is a total of nine inequality constraints. 

There are also three equality constraints. First, the sum of the vertical forces has to equal the 
vehicle weight. Second, the sum of moments due to the vertical forces in the pitch direction 
(nose-up or nose-down) has to be equal to zero. Third, due to the construction of the robot, 
moments caused by the actuators that make x-direction forces have to equalize front and 
back: Ffl,x  + Ffr,x  − Fbr,x = 0.  

Note that forces in the y-direction do not play any role in our problem. 

The Question: What is the maximum forward force ( 
�

i
3
=1 Fi,x) that can be exerted on the 

chassis without slipping? Please give the the three Fz’s and the three Fx’s that go with your 
answer. 

There are three equalities and nine inequalities, for six unknowns. We write: 

F1,z + F2,z + F3,z = 4600 (sum of vertical forces supports the weight) 

r1,xF1,z + r2,xF2,z + r3,xF3,z = 0 (sum of pitch moments due to vertical forces is zero) 

F1,x + F2,x − F3,x = 0 (actuator moment constraint) 

−F1,z ≤ 0 (vertical forces positive only for each foot) 

−F2,z ≤ 0 

−F3,z ≤ 0 

−μF1,z + F1,x ≤ 0 (no-slip condition for each foot) 



27 WALKING ROBOT CONSTRAINTS 88 

−μF2,z + F2,x ≤ 0 

−μF3,z + F3,x ≤ 0 

F1,x ≤ 250 (absolute horizontal load limit for each foot) 

F2,x ≤ 250 

F3,x ≤ 250. 

Since the solution lies on a vertex in this linear problem, we have to consider all possible 
combinations of the three equality constraints, and three of the nine inequalities. We solve 
a 6x6  Ax = b problem for each one, and the number of combinations is 9!/(9 − 3)!3! = 84. 
Solutions are made infeasible by either of the following problems: 1) the 6x6 linear problem 
cannot be solved because the A-matrix is singular, or 2) the solution violates one of the other 
six inequalities. I get six feasible solutions: 

#1 Feasible Solution: 
s[ 0.00 2555.56 2044.44 | 0.00 245.33 245.33 ] -> 490.67 N 

#2 Feasible Solution: 
s[ 0.00 2555.56 2044.44 | -4.67 250.00 245.33 ] -> 490.67 N 

#3 Feasible Solution: 
s[ 2653.85 -0.00 1946.15 | 233.54 0.00 233.54 ] -> 467.08 N 

#4 Feasible Solution: 
s[ 2653.85 -0.00 1946.15 | 250.00 -16.46 233.54 ] -> 467.08 N 

#5 Feasible Solution: 
s[ 2083.33 549.38 1967.28 | 250.00 -13.93 236.07 ] -> 472.15 N 

#6 Feasible Solution: 
s[ 490.38 2083.33 2026.28 | -6.85 250.00 243.15 ] -> 486.31 N 

and the best of them is 490.67 N. Note the variety of feasible solutions and how close they 
are to one another! 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Solve the Big Pig three-leg, no-slip problem. 

% FSH MIT 2.017 March 2008 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clear all; 

% radius vectors for the feet, meters [x y] 
r = [[1.1, 0.8];[1.2,-0.7];[-1.5,-0.7]] ; 

W = 4600 ; % weight of the chassis 
mu = .12 ; % Coulomb friction coefficient 
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maxXForce = 250 ; % maximum x-force allowed on any leg 

% plot the layout of the feet

figure(1);clf;hold off;

plot(r(:,1),r(:,2),’ro’,0,0,’bs’,’LineWidth’,2);

axis(’equal’);

grid;


% Unknowns are the three Fz’s, and the three Fx’s;

% let the vector of unknowns be x = [Fz1 Fz2 Fz3 Fx1 Fx2 Fx3].

% We write everything in the form of Ax = b, where the top part

% has the equalities, and the lower part has the inequalities of the

% form Ax <= b


% three equality constraints first - the first two rows of A and b

A(1,1:3) = ones(1,3) ; % sum of Fz’s equals the weight

b(1,1) = 4600 ;

A(2,1:3) = r(:,1)’ ; % sum of pitch moments due to Fz’s equals zero

b(2,1) = 0 ;

A(3,4:6) = [1 1 -1] ; % sum of moments due to feet actuators is zero

b(3,1) = 0 ;


% now nine inequality constraints - rows 4-12 of A and b

A(4:6,1:3) = -eye(3,3) ; % Fz’s are positive only

b(4:6,1) = zeros(3,1) ;

A(7:9,1:3) = -mu*eye(3,3) ; % no slippage: F_xi - mu*Fzi <= 0

A(7:9,4:6) = eye(3,3) ;

b(7:9,1) = zeros(3,1) ;

A(10:12,4:6) = eye(3,3) ; % upper limit on x-load for each foot

b(10:12,1) = maxXForce*ones(3,1) ;


% We have six unknowns - so at each vertex we have to solve six

% equations. There are twelve equations total, of which we must

% use the first three (equalities). We have nine inequalities,

% so there will be 9!/(9-3)!3! = 84 combinations of three

% inequalities to try out. Re the lecture notes,

I =  9; 

E =  3; 

n =  6; 


% Count out some index sets for the equations we will use and not use in

% each linear system we solve. These are SPECIFIC to the problem as

% written, i.e., only three equations to use, out of nine possible
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% each row indexes the set of equations to use

ct = 0 ;

for i = 4:10,


for j = i+1:11, 
for k = j+1:12,


ct  =  ct +  1 ; 

indUse(ct,:) = [i j k] ;


end; 
end; 

end; 

% each row of indUnused is the set of equations to _not to use_ 
% (also problem SPECIFIC as written, to three used inequalities) 
for i = 1:length(indUse), 

ct = 0 ;

for j = E+1:I+E,


if indUse(i,1) ~= j & indUse(i,2) ~= j & indUse(i,3) ~= j, 
ct  =  ct +  1 ;  
indUnused(i,ct) = j ; 

end; 
end; 

end; 

% make a plot just to make sure we have no mistakes! (the figure should

% be nothing but a straight line)

figure(2);clf;hold off ; hold on;

for i = 1:length(indUnused),


plot(sort([indUnused(i,:),indUse(i,:)])); 
end; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Here is the linear programming engine, in a general form 

% now go through the various n-dimensional subproblems 
Atemp(1:E,:) = A(1:E,:) ; % first E rows for all cases - equalities 
btemp(1:E,1) = b(1:E,1) ; 

for i = 1:length(indUse), 
% make up the other rows we need 
Atemp(E+1:n,:) = A(indUse(i,:),:) ; 
btemp(E+1:n,:) = b(indUse(i,:),1) ; 

% solve the system if Atemp can be inverted

if rank(Atemp) == n,
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xtemp(:,i) = Atemp \ btemp ; % (see  help - solves A*x=b) 

% check against all the unused constraints

for j = 1:I+E-n,


if A(indUnused(i,j),:)*xtemp(:,i) > b(indUnused(i,j),:), 
xtemp(:,i) = NaN*ones(n,1); % mark bad ones with NaN 
break ; 

end; 
end; 

else, % if we can’t invert Atemp, we cannot get a solution 
xtemp(:,i) = NaN*ones(n,1) ; 

end; 
end; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% display results and optimum Big Pig x-load 
ct = 0 ; 
f = fopen(’bigPigSolution.dat’,’w’); 
fprintf(f,’\n\\begin{verbXXXatim}\n’); 
for i = 1:length(xtemp), 

if ~isnan(xtemp(1,i)), 
ct  =  ct + 1  ;  
disp(’----------------------------------------------------------’); 
disp(sprintf(’#%d Feasible Solution [%g %g %g | %g %g %g]’,... 

ct,xtemp(:,i)’)); 
disp(sprintf(’has x-load of %g N.’,sum(xtemp(4:6,i)’))); 
fprintf(f,’#%d Feasible Solution: \n’,ct); 
fprintf(f,... 

’ s[ %7.2f %7.2f %7.2f | %6.2f %6.2f %6.2f ] -> %6.2f N\n’,... 
xtemp(:,i)’,sum(xtemp(4:6,i)’)); 

end; 
end; 
fprintf(f,’\\end{verXXXbatim}\n’); 
fclose(f) ; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

MATLAB



MIT OpenCourseWare
http://ocw.mit.edu 

2.017J Design of Electromechanical Robotic Systems 
Fall 2009 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms



