
38 MONTE CARLO AND GRID-BASED TECHNIQUES FOR STOCHASTIC SIMULATION145

38	 Monte Carlo and Grid-Based Techniques for Stochas

tic Simulation

In this problem you will compare the performance of random vs. regular sampling on a
specific stochastic dynamics problem.

The system we are considering is a simple rotary mass, controlled by a motor:

Jφ ̈= τ	= kti,

where J is the mass moment of inertia, φ is its angular position, τ is the control torque, kt

is the torque constant of the motor, and i is the electrical current applied. While this is a
simple control design problem for given values of J and kt, the situation we study here is
when these are each only known within a range of values. In particular, J is described as
a uniform random variable in the range [5, 15]kg · m2, and kt is a uniform random variable
in the range [4, 6]Nm/A. The basic question we ask is: if the control system is designed for
a nominal condition, say J = 10kg · m2 and kt = 5Nm/A, how will the closed-loop system
vary in its response, for all the possible J and kt?

This is a question of stochastic simulation, that is, finding the statistics of a function output,
given the statistics of its input. The code fragment provided below applies Monte Carlo
and grid-based approaches to find the mean and variance of the function cos(y), when y is
uniformly distributed in the range [2, 5]. Try running this a few times and notice the effects
of changing N . The grid-based approach is clearly giving a good result with far less work
than MC - for this example with only one random dimension. In general, the grid-based
methods suffer greatly as the d dimension increases; for trapezoidal integration, the error
goes as 1/N2/d, whereas for Monte Carlo it is simply 1/N1/2 for any d!

1. For the nominal system model (as above) design a proportional-derivative controller

so that the closed-loop step response reaches the commanded angle for the first time

in about one second and the maximum overshoot is twenty percent. The closed-loop

system equation is

Jφ ̈ = kt(− kp(φ − φdesired) − kdφ̇) −→

Jφ ̈+ ktkdφ̇ + ktkpφ = ktkpφdesired.

Remember that if you write the left-hand side of the equation as φ̈+2ζωn +ωn
2 , you can

tune this up quite easily because the overshoot scales directly with damping ratio ζ ,
and you can then adjust ωn to get the right rise time. Show a plot of the step response
and list your two gains kp and kd.

The step response for the nominal system is shown, along with the ”four corners” of
the parameter space, that is, at the max and min combinations of J and kt. The gains I
used are derived from ζ = 0.455 and ωn = 2.3rad/s; they are kp = 10.58 and kd = 4.19.

2. Keeping your	 controller for the nominal system, use the Monte Carlo technique to

calculate the mean and the variance of the overshoot z, over the random domain that

38 MONTE CARLO AND GRID-BASED TECHNIQUES FOR STOCHASTIC SIMULATION146

%%

clear all;

N = 1000; % how many trials to run

%%%%%%%%%%%%%%

% Monte Carlo

%%%%%%%%%%%%%%

for i = 1:N,

q = 2 + 3*rand ; % random sample from the random domain
z(i) = cos(q); % evaluate the function

end;
meanzMC = sum(z)/N ; % calculate mean
varzMC = sum((z-meanzMC).^2)/N ; % calculate variance

%%%%%%%
% Grid
%%%%%%%
for i = 1:N,

q = 2 + 3/N/2 + (i-1)*3/N ; % regular sample from the random domain
z(i) = cos(q) ;

end;
meanzGrid = sum(z)/N ;
varzGrid = sum((z-meanzGrid).^2)/N ;

disp(sprintf(’Means MC: %7.4g Grid: %7.4g EXACT: %7.4g’, ...
meanzMC, meanzGrid, (sin(5)-sin(2))/3));

disp(sprintf(’Variances MC: %7.4g Grid: %7.4g’, varzMC, varzGrid));
%%

covers all the possible J and kt values. Show a plot of mean z̄ vs. N, and a plot of
variance σz

2 vs. N, for N = [1, 2, 5, 10, 20, 50, 100, 200, ...]. About how high does N
have to be to give two significant digits?

The MC version is pretty noisy, and you’d need at least some hundreds of trials to
say with confidence that z̄ is between 0.19 and 0.20; ditto for the variance. Clearly a
thousand or more trials is preferable.

3. Keeping your controller for the nominal system, use the trapezoidal rule to calculate

the mean and variance of z. Let n1 and n2 be the number of points in the J and the

kt dimensions, and set n1 = n2, so that N = n1n2. Show plots of z̄ and σz

2 vs. N , to

achieve at least two significant digits.

We see the grid-based calculation is much cleaner, evidently reaching very stable values

38 MONTE CARLO AND GRID-BASED TECHNIQUES FOR STOCHASTIC SIMULATION147

of z̄ and var(z) in only a hundred or so trials!

4. Comparing the curves you obtained, which is the superior technique for this problem,

and how can you tell?

The grid!

5. Taking your highest-fidelity result for z̄ (probably the grid-based calculation with high

N) as truth, you can calculate the apparent errors in z̄ for each method, as a function

of N . Making a log-log plot of the absolute values of these errors, can you argue that

the error scaling laws 1/N1/2 (MC) and 1/N2/d = 1/N (grid) hold?

See the last plot. The thin lines indicate trends for N−1/4, N−1/2, N−3/4, N−1, N−5/4 .
The MC points are scattered but generally fit the N−1/2 line. The grid data fit the
N−1 line, and since the dimension is two, it all works out.

Nominal and Four−Corners Step Responses

0	 0.5 1 1.5 2 2.5 3 3.5

time, seconds

0

0.2

0.4

0.6

0.8

1

1.2

1.4

φ,
 r

ad
ia

ns

4

38 MONTE CARLO AND GRID-BASED TECHNIQUES FOR STOCHASTIC SIMULATION148

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

m
ea

n(
z)

Monte Carlo
Uniform Grid

0 1 2 3
10 10 10 10

N

38 MONTE CARLO AND GRID-BASED TECHNIQUES FOR STOCHASTIC SIMULATION149

0

1

2

3

4

5

6
x 10

−3

va
r(

z)

Monte Carlo
Uniform Grid

0 1 2 3
10 10 10 10

N

38 MONTE CARLO AND GRID-BASED TECHNIQUES FOR STOCHASTIC SIMULATION150

Error, Relative to Highest−Fidelity Grid Result
−1

10

−2
10

−3
10

−4
10

−5
10

10
0

10
1

10
2

10
3

10
4

N

Monte Carlo
Uniform Grid

38 MONTE CARLO AND GRID-BASED TECHNIQUES FOR STOCHASTIC SIMULATION151

%%

% Study MC vs. grid-based sensitivity

% FSH MIT 2.017 November 2009

%%

clear all;

global kp kd J kt ;

Jl = 5 ; Ju = 15 ; % lower and upper values of the MMOI

ktl = 4 ; ktu = 6 ; % lower and upper values of torque constant

zeta = .455 ; % set the CL damping ratio and natural frequency

wn = 2.3 ;

tfinal = 4 ; % final time for all simulations

odeset(’AbsTol’,1e-4, ’RelTol’,1e-2); % lower the accuracy a bit = faster

%%

% first, show that the gains achieve the desired step response with

% the nominal system

J = (Jl + Ju)/2 ; % nominal values = midpoints

kt = (ktl + ktu)/2 ;

kp = J*wn^2/kt ; % control gains - work these out for the nominal

kd = 2*zeta*wn*J/kt ; % case and then leave them alone

[t,s] = ode45(’MCvsGridDeriv’,[0 tfinal],[0 0]);

figure(1);clf;hold off;

plot(t,s(:,2),’LineWidth’,2);

grid;

xlabel(’time, seconds’);

ylabel(’\phi, radians’);

% also run the four corners to make sure the time scale is about right

J4corners = [Jl Jl Ju Ju];

kt4corners = [ktu ktl ktl ktu] ;

figure(1);hold on;

for i = 1:4,

38 MONTE CARLO AND GRID-BASED TECHNIQUES FOR STOCHASTIC SIMULATION152

J = J4corners(i);
kt = kt4corners(i);
[t,s] = ode45(’MCvsGridDeriv’,[0 tfinal],[0 0]);
plot(t,s(:,2),’--’);

end;
title(’Nominal and Four-Corners Step Responses’);
pause ;

%%%%%%%%%%%%%%%%%
% do the MC runs
%%%%%%%%%%%%%%%%%

% Nvec carries the sizes of the ensembles for which we will do statistics
Nvec = [1,2,5,10,20,50,100,200,500,1000,2000,5000] ;

% Note that as written, we do just the largest ensemble, and then
% use portions of it for the statistics

tic;
for i = 1:max(Nvec),

J = (Ju-Jl)*rand + Jl ; % generate random J in the domain
kt = (ktu-ktl)*rand + ktl ; % generate random kt in the domain
[t,s] = ode45(’MCvsGridDeriv’,[0 tfinal],[0 0]);
z(i) = max(s(:,2)-1); % get the overshoot
if rem(i,100) == 0,

disp(sprintf(’Done with %d/%d’, i,max(Nvec)));
end;

end;
toc ;

% calculate the mean and variance for subsets given by Nvec
for k = 1:length(Nvec);

meanzMC(k) = mean(z(1:Nvec(k))) ;
varzMC(k) = var(z(1:Nvec(k)),1) ;

end;

figure(2);clf;hold off;
semilogx(Nvec,meanzMC,’.-’,’LineWidth’,2) ;
a=axis ; axis([min(Nvec) max(Nvec) a(3) a(4)]);
grid;

figure(3);clf;hold off;
semilogx(Nvec,varzMC,’.-’,’LineWidth’,2) ;
a=axis ; axis([min(Nvec) max(Nvec) a(3) a(4)]);

38 MONTE CARLO AND GRID-BASED TECHNIQUES FOR STOCHASTIC SIMULATION153

grid;

pause(.1);

%%%%%%%%%%%%%%%%%%%
% do the grid runs
%%%%%%%%%%%%%%%%%%%

% N1vec is the set of (one-diminsion) ensemble sizes for which we will
% compute statistics. Note we will use N1 = N2 so that the total number
% of evaluations is N = N1 * N2
N1vec = [1 2 3 4 7 10 14 22 32 45 71];

% Most of the grids don’t overlap, so we just use the brute force - do
% all the ensembles and their statistics independently. It’s more
% expensive than what we did for MC

tic;
for k = 1:length(N1vec),

clear z ;
for i = 1:N1vec(k),

for j = 1:N1vec(k),
J = Jl + (Ju-Jl)/N1vec(k)/2 + (i-1)*(Ju-Jl)/N1vec(k) ;
kt = ktl + (ktu-ktl)/N1vec(k)/2 + (j-1)*(ktu-ktl)/N1vec(k);
[t,s] = ode45(’MCvsGridDeriv’,[0 tfinal],[0 0]);
z(i,j) = max(s(:,2)-1);

end;

end;

meanzGrid(k) = mean(mean(z)); % the mean is easy...

% but the variance calculation takes a little more attention

sumsq = 0 ;

for i = 1:N1vec(k),

for j = 1:N1vec(k),

sumsq = sumsq + (z(i,j) - meanzGrid(k))^2 ;

end;

end;

varzGrid(k) = sumsq / N1vec(k)^2 ;

disp(sprintf(’Done with %d/%d’, sum(N1vec(1:k).^2),sum(N1vec.^2)))
end;
toc;

figure(2);hold on;

38 MONTE CARLO AND GRID-BASED TECHNIQUES FOR STOCHASTIC SIMULATION154

semilogx(N1vec.^2,meanzGrid,’r’,’LineWidth’,2);

axis(’auto’);a=axis ; axis([min([Nvec,N1vec.^2]) max([Nvec,N1vec.^2]) a(3) a(4)]);

legend(’Monte Carlo’, ’Uniform Grid’);

xlabel(’N’);ylabel(’mean(z)’);

figure(3);hold on;

semilogx(N1vec.^2,varzGrid,’r’,’LineWidth’,2);

axis(’auto’);a=axis ; axis([min([Nvec,N1vec.^2]) max([Nvec,N1vec.^2]) a(3) a(4)]);

legend(’Monte Carlo’, ’Uniform Grid’);

xlabel(’N’);ylabel(’var(z)’);

figure(4);clf;hold off;

surf(z);

title(’Values of z Seen Over the Random Domain’);

figure(5);clf;hold off;

loglog(Nvec,abs(meanzMC - meanzGrid(end)),’LineWidth’,2);

hold on;

loglog(N1vec.^2,abs(meanzGrid - meanzGrid(end)),’r’,’LineWidth’,2);

for i = 3:7,

loglog([1e0 1e4], [.01 10^(-i)]) ;
end;
title(’Error, Relative to Highest-Fidelity Grid Result’);
legend(’Monte Carlo’, ’Uniform Grid’);
a = axis ; axis([a(1) a(2) abs(meanzGrid(end-1)-meanzGrid(end)), a(4)]);
xlabel(’N’);

%%

%%

function [sdot] = MCvsGridDeriv(t,s) ;
global kp kd J kt ;

phidot = s(1);
phi = s(2);

torque = kt*(-kp*(phi-1) - kd*phidot); % control action

phidotdot = torque/J ; % equation of motion

sdot(1,1) = phidotdot;
sdot(2,1) = phidot ;

38 MONTE CARLO AND GRID-BASED TECHNIQUES FOR STOCHASTIC SIMULATION155

%%

MIT OpenCourseWare
http://ocw.mit.edu

2.017J Design of Electromechanical Robotic Systems
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

