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Announcements

• Milestone Presentations on Nov 5 in class
– This is 15% of your total grade:

5% group grade
10% individual grade

– Email your team’s PowerPoint file to Franz and Harrison by 10 am on Nov 5
– Each team gets 30 minutes of presentation + 10 minutes of Q&A
– Select or design your own presentation template and style



Control Systems

• An integral part of any industrial society

• Many applications including transportation, automation, 
manufacturing, home appliances,…

• Helped exploration of the oceans and space

• Examples:
– Temperature control
– Flight control
– Process control
– …



Types of Control Systems
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Control System Comparison 

• Open loop:
– The output variables do not affect the input variables
– The system will follow the desired reference commands if no unpredictable effects occur
– It can compensate for disturbances that are taken into account
– It does not change the system stability

• Closed loop:
– The output variables do affect the input variables in order to maintain a desired system behavior
– Requires measurement (controlled variables or other variables)
– Requires control errors computed as the difference between the controlled variable and the reference 

command
– Computes control inputs based on the control errors such that the control error is minimized
– Able to reject the effect of disturbances
– Can make the system unstable, where the controlled variables grow without bound



Overview of Closed Loop Control Systems
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Control System Representations

• Transfer functions (Laplace)

• State-space equations (System matrices)

• Block diagrams
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Laplace Transform

• Convert functions of time into functions that are algebraic in the 
complex variables.

• Replaces differentiation & integral operations by algebraic 
operations all involving the complex variable.

• Allows the use of graphical methods to predict system 
performance without solving the differential equations of the 
system. These include response, steady state behavior, and 
transient behavior.

• Mainly used in control system analysis and design.



Laplace vs. Fourier Transform

• Laplace transform:

• Fourier transform

• Laplace transforms often depend on the initial value of the 
function

• Fourier transforms are independent of the initial value. 

• The transforms are only the same if the function is the same both 
sides of the y-axis (so the unit step function is different). 
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System Modeling (1st Order System)

Transfer function:Differential equation:
Laplace transform
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System Modeling (2nd Order System)
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2nd Order System Poles
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System Identification (Time Domain)
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System Identification (Frequency Domain)
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Closed-Loop Transfer Function

• The gain of a single-loop feedback system is given by the 
forward gain divided by 1 plus the loop gain.
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PID Controller Transfer Function
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Disturbance Rejection 
(Active Vibration Cancellation)
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Control Actions
• Proportional – improves speed but with steady-state error
• Integral – improves steady state error but with less stability, overshoot,

longer transient, integrator windup
• Derivative – improves stability but sensitive to noise



Root Locus

• Can we increase system damping with a simple proportional control ?
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SISO Design Tool
• command: ‘sisotool’ or ‘rltool’

PID Controller Transfer Function

Courtesy of The MathWorks, Inc. Used with permission.
MATLAB and Simulink are registered trademarks of The MathWorks, Inc.
See www.mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

MATLAB
MATLAB

www.mathworks.com/trademarks


State-Space Representation
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Characteristic Polynomial

Resolvent
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Controllability
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Courtesy of Kamal Youcef-Toumi. Used with permission.



Observability

Courtesy of Kamal Youcef-Toumi. Used with permission.



Stabilizability and Detectability

Courtesy of Kamal Youcef-Toumi. Used with permission.



Example

• Can we observe and/or control the position (x) of the following 
system?

x& xu



Full-State Feedback
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Where to Place The Poles?

• Must meet the performance requirements:
– Stability
– Speed of response
– Robustness

• For a given state the larger the gain, the larger the control input

• Avoid actuator saturation

• Avoid stressing the hardware (not exciting any structural modes)

• The gains are proportional to the amounts that the poles are to be 
moved. The less the poles are moved, the smaller the gain matrix.



Butterworth Pole Configurations

• The bandwidth of a system is governed primarily by its dominant 
poles (i.e., the poles w/ real parts closest to the origin)

• Efficient use of the control signal would require that all the 
closed-loop poles be about the same distance from the origin 
(a.k.a Butterworth configuration)
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State-Space Design Summary

• Formulate the state-space model

• Make sure the system is both controllable and observable by checking the 
ranks of the controllability and the observability matrices
– Add additional actuators if necessary
– Add additional sensors if necessary
– Eliminate redundant states

• Select a bandwidth high enough to achieve the desired speed of response

• Keep the bandwidth low enough to avoid exciting unmodeled high-frequency 
modes and noise

• Place the poles at roughly uniform distance from the origin for efficient use of 
the control effort



Example
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Code

% 2.14/2.140 State-Space Method Example

%% Set up an SS model

A = [0 1

4 -2];

B = [0

1];

C = [1 1];

D = 0;

%% Convert to transfer function

[num,den] = ss2tf(A,B,C,D,1);

sys_tf = tf(num,den)

zpk(sys_tf)

pzmap(sys_tf)

hold

%% Test controllability and observability
CtrlTestMatrix = ctrb(A,B)
rank(CtrlTestMatrix)

ObsrbTestMatrix = obsv(A,C)
rank(ObsrbTestMatrix)

%% Place the poles to Butterworth configuration
p = roots([1 sqrt(2) 1])
% K = acker(A,B,p) % this method is not numerically 
reliable and starts to break down rapidly for problems of 
order greater than 5
K = place(A,B,p)

% check the closed-loop pole locations
eig(A-B*K)
pzmap(1,poly(eig(A-B*K)))

MATLABExample



Frequency Design Methods

• Loop shaping

• Bode, Nyquist

• Crossover frequency 

• Closed-loop bandwidth

• Phase margin



Frequency Response (Gain and Phase)
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Frequency Response (Bode Plot )

• The frequency response of a system is typically expressed as a Bode plot.

Gain Plot

Phase Plot
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