Introduction to Discrete-Time Systems

- Linear filters will not handle outliers very well - they are interpreted as impulses
- First defense against outliers: find out their origin and eliminate them at the beginning!
- Detection: Exceeding a known, fixed bound, or an impossible deviation from previous values. Example: vehicle speed >> the possible value given thrust level and prior tests.
- Second defense: set data to NaN (or equivalent), so it won't be used in any calculations.
- Third defense: try to fill in.

Example:

$$
\text { if } \begin{gathered}
\operatorname{abs}(x(k)-x(k-1))>M X, \\
x(k)=x(k-1) ;
\end{gathered}
$$

end;
Can get lost if multiple outliers occur!

Time Resolution in Sampled Systems

- The Sampling Theorom shows that the highest frequency that can be detected by sampling at frequency $\omega_{\mathrm{s}}=2 \pi / \Delta \mathrm{t}$ is the Nyquist rate: $\omega_{\mathrm{N}}=\omega_{\mathrm{s}} / 2$.
- Higher frequencies than this are "aliased" to the range below the Nyquist rate, through "frequency folding." Includes sensor noise!
- The required rate for "visual" analysis of the signal, and phase and magnitude calculation is much higher, say ten samples per cycle.

Filtering of Signals in Discrete Time

Use good judgement!

- filtering brings out trends, can reduce noise, but
- filtering obscures some properties of the signal

Causal filtering: $\mathrm{x}_{\mathrm{f}}(\mathrm{t})$ depends only on past measurements appropriate for real-time implementation
Example: $x_{f}(t)=(1-\varepsilon) x_{f}(t-\Delta t)+\varepsilon x(t-\Delta t)$
First-order lag, backward Euler
Acausal filtering: $\mathrm{x}_{\mathrm{f}}(\mathrm{t})$ depends on past and future measurements - appropriate for post-processing Example: $x_{f}(t)=[x(t+\Delta t)+x(t)+x(t-\Delta t)] / 3$

Moving window, centered, uniform weighting

A first-order filter transfer function in the freq. domain:

$$
\left.\mathrm{x}_{\mathrm{f}} \mathrm{j} \omega\right) / \mathrm{x}(\mathrm{j} \omega)=\lambda /(\mathrm{j} \omega+\lambda)
$$

At low ω, this is approximately 1 ($=\lambda / \lambda$)

At high ω, this goes to 0 magnitude, with 90 degrees phase lag $(\lambda / \mathrm{j} \omega=-\mathrm{j} \lambda / \omega)$

Time domain equivalent:

$$
d x_{f} / d t=\lambda\left(x-x_{f}\right)
$$

In discrete time, try this quick algorithm:

$$
\begin{gathered}
\mathrm{x}_{\mathrm{f}}(\mathrm{k})=(1-\lambda \Delta \mathrm{t}) \mathrm{x}_{\mathrm{f}}(\mathrm{k}-1)+ \\
\lambda \Delta \mathrm{t} \times(\mathrm{k}-1)
\end{gathered}
$$

SNR: 0.25, FFiltering at 20 and 60 Samples Rise Time

Thinking about discrete-time signals: time step Δt between x_{k} and $\mathrm{x}_{\mathrm{k}-1}$

Example:

$$
\mathrm{dx} / \mathrm{dt}=\mathrm{u}
$$

Fourier Transform: $\quad \mathrm{j} \omega \mathrm{X}(\mathrm{j} \omega)=\mathrm{U}(\mathrm{j} \omega)$

$$
X(j \omega) / U(j \omega)=1 / j \omega
$$

Let q be the delay operator: q-transform: $\mathrm{X}(\mathrm{q})=\sum_{0}^{\infty} \mathrm{x}_{\mathrm{k}} \mathrm{q}^{-\mathrm{k}}$ This means: $X(q)=x_{0}+x_{1} q^{-1}+x_{2} q^{-2}+\ldots$

Make a discrete-time approximation for the example:

$$
\begin{aligned}
\mathrm{dx} / \mathrm{dt}=\mathrm{u} \rightarrow & \left(\mathrm{x}_{\mathrm{k}}-\mathrm{x}_{\mathrm{k}-1}\right) / \Delta \mathrm{t}=\mathrm{u}_{\mathrm{k}-1} \\
& \mathrm{X}(\mathrm{q})(1-\mathrm{q}) / \Delta \mathrm{t}=\mathrm{q} \mathrm{U}(\mathrm{q}) \\
& \mathrm{X}(\mathrm{q}) / \mathrm{U}(\mathrm{q})=\mathrm{q} \Delta \mathrm{t} /(1-\mathrm{q})
\end{aligned}
$$

So $\mathrm{j} \omega=(1-\mathrm{q}) / \mathrm{q} \Delta \mathrm{t} \quad$ for this case backward Euler

$$
q=1 /(1+j \omega \Delta t)
$$

Try a different method:

$$
\begin{aligned}
\mathrm{dx} / \mathrm{dt}=\mathrm{u} \rightarrow & \left(\mathrm{x}_{\mathrm{k}}-\mathrm{x}_{\mathrm{k}-1}\right) / \Delta \mathrm{t}=\mathrm{u}_{\mathrm{k}} \\
& \mathrm{X}(\mathrm{q})(1-\mathrm{q}) / \Delta \mathrm{t}=\mathrm{U}(\mathrm{q}) \\
& \mathrm{X}(\mathrm{q}) / \mathrm{U}(\mathrm{q})=\Delta \mathrm{t} /(1-\mathrm{q})
\end{aligned}
$$

So $\mathrm{j} \omega=(1-\mathrm{q}) / \Delta \mathrm{t} \quad$ for this case forward Euler

$$
q=1-j \omega \Delta t
$$

Let's do a more careful job by using both old and new u's:

$$
\begin{aligned}
\mathrm{dx} / \mathrm{dt}=\mathrm{u} \rightarrow & \left(\mathrm{x}_{\mathrm{k}}-\mathrm{x}_{\mathrm{k}-1}\right) / \Delta \mathrm{t}=\left(\mathrm{u}_{\mathrm{k}}+\mathrm{u}_{\mathrm{k}-1}\right) / 2 \\
& X(\mathrm{q})(1-\mathrm{q}) / \Delta \mathrm{t}=\mathrm{U}(\mathrm{q})(1+\mathrm{q}) / 2 \\
& X(\mathrm{q}) / \mathrm{U}(\mathrm{q})=(1+\mathrm{q}) \Delta \mathrm{t} / 2(1-\mathrm{q})
\end{aligned}
$$

So $j \omega=2(1-q) /(1+q) \Delta t$
bilinear approximation

$$
q=(1-j \omega \Delta t / 2) /(1+j \omega \Delta t / 2)
$$

Translating an analog system into discrete-time, e.g., Digital Filtering and Control:
Example:
$\mathrm{dx} / \mathrm{dt}=-\mathrm{x}+\mathrm{u} \quad$ (low-pass filter with cutoff frequency $1 \mathrm{rad} / \mathrm{s}$)
$\mathrm{X}(\mathrm{j} \omega) / \mathrm{U}(\mathrm{j} \omega)=1 /(\mathrm{j} \omega+1)$
Substitute the bilinear approximation:
$\mathrm{X}(\mathrm{q}) / \mathrm{U}(\mathrm{q})=(1+\mathrm{q}) /[(1+2 / \Delta \mathrm{t})+\mathrm{q}(1-2 / \Delta \mathrm{t})]$
$\mathrm{x}_{\mathrm{k}}=\left[-(1-2 / \Delta \mathrm{t}) \mathrm{x}_{\mathrm{k}-1}+\mathrm{u}_{\mathrm{k}}+\mathrm{u}_{\mathrm{k}-1}\right] /(1+2 / \Delta \mathrm{t})$
Pseudo-code: It's ready to go!
Fact: TF’s X(j ω) / U(j ω) and $\mathrm{X}(\mathrm{q}) / \mathrm{U}(\mathrm{q})$ have almost the same magnitude and phase plots vs ω when $\mathrm{q}=\mathrm{e}^{-\mathrm{j} \omega \Delta t}$ (up to the Nyquist rate)

Consider vector case: $\quad \mathrm{d} \underline{x} / \mathrm{dt}=\mathrm{A} \underline{x}, \quad \underline{x}(0)=\underline{x}_{0}$
Solution must satisfy

$$
\mathrm{d} \underline{x}(0) / \mathrm{dt}=\mathrm{A} \underline{x}_{0} \text { and } \underline{x}(0)=\underline{\mathrm{x}}_{0}
$$

Solution is

$$
\underline{\mathrm{x}}(\mathrm{t})=\mathrm{e}^{\mathrm{At}} \underline{\mathrm{x}}_{0}
$$

where the $\mathrm{e}^{\text {At }}$ is a matrix exponential, obeying many of the rules of the scalar exponential:

$$
\begin{array}{ll}
\mathrm{d}\left(\mathrm{e}^{\mathrm{At}}\right) / \mathrm{dt}=\mathrm{Ae} \mathrm{e}^{\mathrm{At}} & \mathrm{e}^{\mathrm{At}}=\mathrm{I}+\mathrm{At}+\mathrm{A}^{2 \mathrm{t}} / 2!+\ldots \\
\mathrm{e}^{0}=\mathrm{I} \quad \text { (identity) } & \text { etc } \ldots
\end{array}
$$

Consider the system $\quad \mathrm{d} \underline{x} / \mathrm{dt}=\mathrm{A} \underline{x}+\mathrm{Bu}$ $e^{A t} B$ is the impulse response of the system such that

$$
\begin{aligned}
& \underline{\mathrm{x}}(\mathrm{t})=\mathrm{e}^{\mathrm{At}} \underline{\mathrm{x}}_{0}+\int_{0}^{\mathrm{t}} \mathrm{e}^{\mathrm{A}(\mathrm{t}-\tau)} \mathrm{Bu}(\tau) \mathrm{d} \tau \quad \text { OR } \\
& \underline{\mathrm{X}}_{\mathrm{k}}=\mathrm{e}^{\mathrm{A} \Delta \mathrm{t}} \underline{\mathrm{X}}_{\mathrm{k}-1}+\int_{\mathrm{tk}-1}^{\mathrm{tk}} \mathrm{e}^{\mathrm{A}(\mathrm{tk}-\tau)} \mathrm{Bu}(\tau) \mathrm{d} \tau
\end{aligned}
$$

Let u be constant on t_{k-1} to t_{k} (zero-order hold):

$$
\begin{array}{lr}
\underline{\mathrm{x}}_{\mathrm{k}}=\mathrm{e}^{\mathrm{A} \Delta \mathrm{t}} \underline{\mathrm{x}}_{\mathrm{k}-1}+\int_{\mathrm{tk}-1}^{\mathrm{tk}} \mathrm{e}^{\mathrm{A}(\mathrm{tk}-\mathrm{t})} \mathrm{d} \tau \mathrm{~B} \mathrm{u}_{\mathrm{k}-1} \\
\underline{\mathrm{x}}_{\mathrm{k}}=\Phi \underline{\mathrm{x}}_{\mathrm{k}-1}+\Gamma \mathrm{u}_{\mathrm{k}-1} & \text { 1:1 mapping between continuous and } \\
\text { discrete-time systems }
\end{array}
$$

MIT OpenCourseWare
http://ocw.mit.edu

2.017J Design of Electromechanical Robotic Systems

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

