Electronics Essentials for 2.017

Reviewing Basics

- Kirchoff's Voltage rule: voltages V at a node are the same.
- Kirchoff's Current rule: sum of currents i flowing into and out of a node is zero.
- Analogy: Voltage is like fluid pressure, current is like fluid volumetric flow rate. The wire is like a pipe.
- Resistor R: V = IR,
- Dissipation: Resistive Power $P=I^{2} R=V^{2} / R \quad W_{\text {Ohms, }, ~}$
- Analogy: viscous losses in pipe flow
- Capacitor C: $\mathrm{i}=\mathrm{C} d \mathrm{~V} / \mathrm{dt}$
- Analogy: a hydraulic accumulator
- Inductor H: V = L di/dt
- Analogy: inertia of water in a pipe
- 1 - farads, f
- (CD) henries, h

The Op-Amp

Two inputs (called inverting and non-inverting); one output.
The output voltage is a HUGE gain multiplied by the difference between the inputs.

Horiwitz's \& Hill's golden rules:
a. The op-amp enforces (in proper use)

$$
V_{i n v}=V_{n o n-i n v}
$$

b. No current flows into the device at either input

Example Op-Amp: Adding a Voltage Bias

Voltage bias useful for bringing signal levels into the range of sensors.

The op-amp is discussed in detail by Horowitz and Hill, covering integrators, filters, etc.
$\left(V-V_{\text {inv }}\right) / R_{1}=\left(V_{\text {inv }}-V_{\text {out }}\right) / R_{2}$ and $\mathrm{V}_{\text {inv }}=\mathrm{V}_{\text {non-inv }} \rightarrow$
$\mathrm{VR}_{2}=\mathrm{V}_{\text {inv }}\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)-\mathrm{V}_{\text {out }} \mathrm{R}_{1} \rightarrow$
$V_{\text {out }}=V_{\text {non-inv }}\left(R_{1}+R_{2}\right) / R_{1}-V R_{2} / R_{1}$
Letting R1 = R2, then
$\mathrm{V}_{\text {out }}=2 \mathrm{~V}_{\text {non-inv }}-\mathrm{V}$
The circuit inverts the input V and adds on $2 V_{\text {non-inv }}$
IF $V_{\text {non_inv }}$ is ground, then $V_{\text {out }}$ is just $-V$. This is just an inverting amplifier.

Serial Communications

- How to transmit digital information fast and reliably over a few wires?
- Examples: RS-232, RS-485, etc. refer to pins \& wires
- A minimal case of RS-232 (DB25 connector is full case):
- Asynchronous operation; both sides agree on BAUD rate
- Three wires: send (TX), receive ($R X$), ground
- No error checking! No flow contro!!

EXAMPLE using CMOS components:

EXAMPLE: A GPS String

- Garmin GPS25 series - Smart embedded device!
- Similar to TT8's interface with you - I/O strings are passed through a serial port
- Reconfigurable through special commands
- Output at 1 Hz
- String maintains exactly the same syntax: e.g.,
\$GPRMC,hhmmss,V,
ddmm.mmmm,N,dddmm.mmmm,E, 000.0,000.0,ddmmyy,000.0,E,N,*XX<CR><LF>
$\rightarrow 73$ chars appear as one line:
\$GPRMC,hhmmss,V,ddmm.mmmm,N,dddmm.mmmm,E,000.0,000.0,ddmmyy,000.0,E,N,*XX

Serial devices communicate using characters encoded into bits. This includes upper- and lowercase letters, carriage returns and linefeeds, punctuation, etc.
Characters are not numbers! E.g.,

```
char c = '7';
char d[2] = '92' ;
```

int \mathbf{n};

The numerical value of \mathbf{c} is [00110111] (binary) or 55 (decimal).
But because the ASCII characters '0','1','2','3','4','5','6','7','8', and '9' occur in order, making simple conversions is easy:

$$
\mathrm{n}=\mathrm{c}-\mathrm{'}^{\prime} \text {; }
$$

assigns to \mathbf{n} the actual number 7. The ASCII character that goes with 7 is known as BEL - on many machines this will ring a bell if it is sent to the screen as a character! - printf("\%c",n) ;

How to turn d[2] into a number?

$$
\left.\mathrm{n}=10 \text { (} \mathrm{d}[0]-\mathbf{~ ' 0}^{\prime}\right)+\left(\mathrm{d}[1]-\mathbf{~ ' 0}^{\prime}\right) \text {; }
$$

Pulse Width Modulation

- A Regular Waveform

- PWM frequency (Hz) = $1 /$ PWM period
- Duty cycle = Pulsewidth / PWM period
- PWM frequencies typically range from 100 Hz into MHz
- Duty cycles can be used from $0-100 \%$, although some systems use much smaller ranges, e.g. $5-10 \%$ for hobby remote servos.
- The waveform has two pieces of information: Period and Pulsewidth, although they are usually not changed simultaneously.

Some PWM Uses

- The Allure: very fast, cheap switches and clocks to approximate continuous processes. Also, two-state signal resists noise corruption.
- Sensors: PWM period is naturally related to rotation or update rate: Hall effect, anemometers, incremental encoders, tachometers, etc.
- Communication: PWM duty cycle is continuously variable \rightarrow like an D/A and an A/D.
- Actuation: At very high frequencies, physical systems filter out all but the mean; i.e.,

$$
V_{\text {effective }}=\text { duty_cycle * } V_{\text {peak }}
$$

> High frequency switching is the dominant mode for powering large motors!

Field Effect Transistor (FET)

- Like a "valve", that is very easy to open or close. When FET is open, resistance is low (milli-Ohms); when FET is closed, resistance is high (mega-Ohms or higher)
- Typically three connections:
- Gate: the signal; low current
- Source: power in
- Drain: power out

- N - and P-type junctions are common, and involve the polarity of the device. (N is shown)
- Extremely sensitive to static discharge! Handle with care.
- MOSFET: modern FET's capable of handling higher power levels.

Bipolar Control with a MOSFET H-Bridge

MOSFET turns on when $V_{\text {gate }}>V_{\text {source }}$

MOSFET turns on when $\mathrm{V}_{\text {gate }}<\mathrm{V}_{\text {source }}$

To make flow UL to LR, set $\mathrm{A}=\mathrm{GND}$ and $\mathrm{D}=\mathrm{V}_{\mathrm{s}}$

To make flow UR to LL, Set $\mathrm{B}=\mathrm{GND}$ and $\mathrm{C}=\mathrm{V}_{\mathrm{s}}$

Connect A and B to V_{s} with pull-up resistors; Connect C and D to GND with pull-down resistors; Control all four gates explicitly

The Basic DC Brush Motor

Torque $\tau \longleftrightarrow$ (coils)(flux density)(current i), or, in a given motor,
$\tau=\boldsymbol{k}_{\boldsymbol{t}}$ * $\boldsymbol{i} \quad$ where k_{t} is the torque constant

But the motion of the coils also induces a voltage in the coil, the back-EMF:
$\boldsymbol{e}_{\boldsymbol{b}}=\boldsymbol{k}_{\boldsymbol{t}}$ * ω (YES, that's the same $\left.k_{t}!\right)$

And the windings have a resistance R :
Vector relations:
force $=$ current x flux
field $=$ velocity x flux

$\boldsymbol{e}_{R}=R^{*} \boldsymbol{i}$

Summing voltages around the loop,
$V_{\text {supply }}=e_{b}+e_{R}$

Properties of the DC Brush Motor

- No-load speed:

$$
\tau=0 \rightarrow i=0 \rightarrow \quad \omega=V / k_{t}
$$

- Zero-speed torque (BURNS UP MOTOR IF SUSTAINED):

$$
\omega=0 \rightarrow e_{b}=0 \rightarrow i=V / R \rightarrow \quad \tau=k_{t} V / R
$$

- Power output:
$P_{\text {out }}=\tau \omega=i e_{b} \rightarrow$

$$
P_{\text {out }}=i(V-R i)
$$

- Efficiency:

$$
\eta=P_{\text {out }} / P_{\text {in }}=\tau \omega / i V \rightarrow \quad \eta=1-i \mathbf{R} / V
$$

Incremental Encoders for Control

- What is the position of the motor?
- Take advantage of cheap, fast counters \rightarrow make a large number of pulses per revolution, and count them!
- Advantages of the incremental encoder:
- High resilience to noise because it is a digital signal
- Counting chip can keep track of multiple motor turns
- Easy to make - phototransistor, light source, slotted disk
- Two pulse trains required to discern direction: quadrature

Stepper Motors

Switched coils at fixed positions on the stator attract permanent magnets at fixed positions on the rotor.

Smooth variation of switching leads to half-stepping and microstepping

Encoder still recommended!

MIT OpenCourseWare
http://ocw.mit.edu

2.017J Design of Electromechanical Robotic Systems

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

