Topics in Machine Elements

Images by Silberwolf, Red Rooster, ruizo, and Aspectomat at Wikimedia Commons, and lim indisposed and David on LRM on Flickr.

Critical speed of a shaft with a mass synchronous case (slowest)

At $\omega^{\prime}=1$, no steady-state configuration; deflection grows linearly with time!

Shaft has stiffness k at the location of the flywheel, ε is eccentricity

In steady-state,

$$
\begin{aligned}
\mathrm{kx} & =\mathrm{m} \omega^{2}(\mathrm{x}+\varepsilon) \rightarrow \\
\left(\mathrm{k}-\mathrm{m} \omega^{2}\right) \mathrm{x} & =\mathrm{m} \omega^{2} \varepsilon \rightarrow \\
\mathrm{x} / \varepsilon & =\mathrm{m} \omega^{2} /\left(\mathrm{k}-\mathrm{m} \omega^{2}\right) \\
& =\omega^{\prime 2} /\left(1-\omega^{\prime 2}\right) \quad \text { where } \omega^{\prime}=\omega / \omega_{\mathrm{m}}
\end{aligned}
$$

ADDITIONAL formulas available for multiple masses on a shaft

Circular shafts in combined loading

Polar moment of inertia:
Bending moment of inertia:
Torque:
Angular deflection

Bending shear stress:
Bending moment:
Max shear stress (at shaft surface):
Max bending stress (at top/bottom surface):
Transverse shear stress (on u/d centerline):
$\mathrm{J}=\pi \mathrm{d}^{4} / 32$
$\mathrm{I}=\pi \mathrm{d}^{4} / 64 \quad(=\mathrm{J} / 2)$
T
$\phi=\mathrm{T} L / \mathrm{J}$ G
$\mathrm{V}(\mathrm{x})$
$d \mathrm{M}(\mathrm{x}) / \mathrm{dx}=\mathrm{V}(\mathrm{x})$
$\tau_{\max }=\mathrm{Tr} / \mathrm{J}=16 \mathrm{~T} / \pi \mathrm{d}^{3}$
$\sigma_{b}(x)=M(x) r / I=32 M(x) / \pi d^{3}$
$\sigma_{t}(x) \sim 16 V(x) / 3 \pi d^{2}$
... and don't forget stress concentration!

Just what you need - Mohr stress!

Fatigue of Engineering Materials

Basquin's equation: $\mathbf{L}=\mathbf{k}_{\mathrm{b}} \sigma^{-\mathrm{b}}$ where L is the lifetime (cycles) at stress level σ k_{b}, b are determined from test data Curve fits data for cycles at a given, constant stress level

Figure by MIT OpenCourseWare. Adapted from Fig. 6-11 in Shigley \& Mischke.

For loading at multiple levels, Consider Miner's equation:

$$
\mathrm{N}_{1} / \mathrm{L}_{1}+\mathrm{N}_{2} / \mathrm{L}_{2}+\ldots=1
$$

where
L_{i} is the lifetime at stress level σ_{i} N_{i} is the number of cycles actually executed at σ_{i}

Concept: Accumulation of damage

Simplified approach does not take into account the sequence of loading levels

Effects of exponent b on random fatigue life: Spotts data

q : twice the standard deviation of the underlying Gaussian stress

Four-Bar Linkage Kinematics

I = length of longest link
$s=$ length of shortest link
$p, q=$ lengths of intermediate links
Grashof's theorem:
If $s+l<=p+q$, then at least one link will revolve.
If $s+/>p+q$, then all three links are rocking.

Categories

$$
\begin{array}{ll}
I+s<p+q & \text { double-crank, if } s \text { is the frame } \\
I+s<p+q & \text { rocker-crank, if } s \text { is one side } \\
I+s<p+q & \text { double rocker, if } s \text { is coupler } \\
I+s=p+q & \text { change point } \\
I+s>p+q & \text { triple-rocker }
\end{array}
$$

Let ϕ_{i} be the absolute angle of link r_{i} vector as shown
The chain satisfies:
X-loop: $r_{1} \cos \phi_{1}+r_{2} \cos \phi_{2}+r_{3} \cos \phi_{3}+r_{4}=0 \quad\left(\right.$ note $\left.\phi_{4}=0\right)$
Y-loop: $r_{1} \sin \phi_{1}+r_{2} \sin \phi_{2}+r_{3} \sin \phi_{3}=0$
Two equations, two unknowns $\left[\phi_{2}, \phi_{3}\right]$ if ϕ_{1} given - use a nonlinear solver

Courtesy of Alex Slocum. Used with permission.
B. Paul, Kinematics and dynamics of planar machinery, 1984.

Figure by MIT OpenCourseWare. Adapted from Fig. 1.51-1 in Paul, Burton. Kinematics and Dynamics of Planar Machinery. Englewood Cliffs, NJ : Prentice-Hall, 1979.

Slider-Crank Kinematics

X-loop: $\mathbf{r} \boldsymbol{\operatorname { c o s }} \theta-\mathrm{L} \boldsymbol{\operatorname { c o s } \phi - \mathbf { s } = \mathbf { 0 }}$
Y-loop: $r \sin \theta-L \sin \phi-\mathbf{e}=\mathbf{0}$
Two equations, two unknowns [s, ϕ] if θ is given
$s_{\text {max }}=s_{1}=\operatorname{sqrt}\left[(L+r)^{2}-e^{2}\right]$
$s_{\text {min }}=s_{2}=\operatorname{sqrt}\left[(L-r)^{2}-e^{2}\right]$
θ at $s_{\max }=\theta_{1}=\arcsin (e /(L+r))$
θ at $\mathrm{s}_{\text {min }}=\theta_{2}=\pi+\arcsin (\mathrm{e} /(\mathrm{L}-r))$
Slider moves to the right $\mathrm{s}_{\text {min }} \rightarrow \mathrm{s}_{\text {max }}: \theta_{2} \rightarrow \theta_{1}$ Slider moves to the left $\mathrm{s}_{\text {max }} \rightarrow \mathrm{s}_{\text {min }}: \theta_{1} \rightarrow \theta_{2}$

So time ratio TR $=\left(\theta_{2}-\theta_{1}\right) /\left(2 \pi-\theta_{2}+\theta_{1}\right)$: captures "quick-return" characteristic

Figure by MIT OpenCourseWare. Adapted from Fig. 1.42-1 in Paul, Burton. Kinematics and Dynamics of Planar Machinery. Englewood Cliffs, NJ: Prentice-Hall, 1979.

Radial Ball Bearings

Ball Bearings in radial loading

- Load rating is based on fatigue:
- Basic Rating Load C causes failure in 10\% of bearings at 1 million cycles
- Hardness and finish of balls and rollers is critical!
- Use e.g., high-carbon chromium steel 52100, min 58 Rockwell.
- Finish balls to 50nm typical, races to 150nm typical
- Quality indexed by ABEC rating: 1 to 9
- Examples of Ratings:
- \#102: 15mm bore, 9x32mm dia: $\quad 4.3 \mathrm{kNC} \quad 2.4 \mathrm{kN}$ static
- \#108: 40mm bore, 15x68mm dia: 13.6 kN C 10.9 kN static
- \#314: 70mm bore, 20x110mm dia: 80 kN C 59 kN static
- Note static load rating < dynamic load rating!
- Scaling: life goes as load cubed
- Decreasing the load by $1 / 2$ will increase expected life by 8 -fold, etc.

Effect of Axial Loading on Radial Bearings: Equivalent radial load

$$
\operatorname{Max}\left(1.2 P_{r}, 1.2 X P_{r}+Y P_{a}\right)
$$

where P_{r} and P_{a} are axial and radial loads, and $X, Y \rightarrow$

Service factor $\mathrm{C}_{1}=[1-3+]$ to account for shock loads:

$$
\operatorname{Max}\left(1.2 \mathrm{C}_{1} \mathrm{P}_{\mathrm{r}}, 1.2 \mathrm{C}_{1} X \mathrm{P}_{\mathrm{r}}+\mathrm{C}_{1} \mathrm{YP}_{\mathrm{a}}\right)
$$

Concept of accumulated damage (Miner's equation) applies

Use tapered roller bearings for large combined loads OR
Radial bearings and thrust bearings separately

$\mathrm{P}_{\mathrm{a}} / \mathrm{ZiD}^{2}$
X Y 25 0.56 2.3 50 0.56 2.0 100 0.56 1.7 200 0.56 1.5 500 0.56 1.2 1000 0.56 1.0

Z = number of balls
$\mathrm{i}=$ number of rings
D = ball diameter

Confidence levels adjustment to lifetime:

90\%
1.0

95\% 0.62
99\% 0.21

Helical Springs

Yes, you can derive the stiffness in a helical spring!

Let
Number of coils
Wire length
Wire area
Rotary MOI of wire
Axial load
Wire torsion from load
$\mathrm{c}=\mathrm{D} / \mathrm{d}=$ coil diameter / wire diameter N
$\mathrm{L} \sim \pi \mathrm{DN}$
$\mathrm{A}=\pi \mathrm{d}^{2} / 4$
$\mathrm{J}=\pi \mathrm{d}^{4} / 32$
P
$\mathrm{T}=\mathrm{P}$ D / 2

Torsional shear at wire surface
Transverse shear at mid-line
Total shear stress

$$
\begin{aligned}
& \tau_{\mathrm{T}}=\mathrm{Td} / 2 \mathrm{~J}=8 \mathrm{PD} / \pi \mathrm{d}^{3} \text {, and } \\
& \tau_{\mathrm{t}}=1.23 \mathrm{P} / \mathrm{A}=(0.615 / \mathrm{c}) \times \tau_{\mathrm{t}} \text {, so } \\
& \tau=\tau_{\mathrm{t}}+\tau_{\mathrm{T}}=(1+0.615 / \mathrm{c}) \times \tau_{\mathrm{t}} \\
& \quad(\text { but } 0.615 / \mathrm{c} \text { is small if } \mathrm{c} \text { is big })
\end{aligned}
$$

Differential angle
Differential deflection Integrated deflection Stiffness

$$
\delta \phi=\mathrm{T} \delta \mathrm{~L} / \mathrm{J} \mathrm{G}=16 \mathrm{Pc} \mathrm{c}^{2} \delta \mathrm{~N} / \mathrm{d}^{2} \mathrm{G}
$$

$\delta x=\delta \phi \mathrm{D} / 2$ (90 degrees away) $\sim 8 \mathrm{Pc}^{3} \delta \mathrm{~N} / \mathrm{d} \mathrm{G}$ $x=8 \mathrm{Pc}^{3} \mathrm{~N} / \mathrm{dG}$
$\mathrm{k}=\mathrm{P} / \mathrm{x}=\mathrm{Gd} / \mathbf{8 c}^{\mathbf{3}} \mathrm{N}$

Belleville Spring

Useful in assembly operations...

Spur Gears

Kinematic compatibility for friction cylinders: $r_{1} \omega_{1}=r_{2} \omega_{2}$

Fundamental Law of Gears:

If the velocity of the driving gear is constant, so is the velocity of the driven gear

Fundamental Law dictates certain tooth shapes!

Example of Involute gear teeth \rightarrow Cycloidal teeth also satisfy Fund. Law

Rolling contact when interface is between gear centers, otherwise sliding contact

Load is always applied along AB - so actual loading is the power transfer

Images from Wikimedia Commons, |http://commons.wikimedia.org load, amplified by $1 / \cos \phi$

Epicyclic/Planetary Gearing!

Angle α on the power side (crank):
leads to
rotation of the planet by $-\alpha \mathrm{N}_{2} / \mathrm{N}_{1}$ and
rotation of the crank arm by α
The planet rotation alone (fix the crank angle to zero) drives the output shaft through an angle

$$
\begin{gathered}
\left(\mathrm{N}_{3} / \mathrm{N}_{4}\right) \times\left(-\alpha \mathrm{N}_{2} / \mathrm{N}_{1}\right)=-\alpha \mathrm{N}_{3} \mathrm{~N}_{2} / \mathrm{N}_{4} \mathrm{~N}_{1} \\
\text { while }
\end{gathered}
$$

the crank rotation alone (fix the planet angle to zero) rotates the output shaft by α

The net gear ratio is

$$
\omega_{\text {load }} d \omega_{\text {power }}=1-N_{3} N_{2} / N_{1} N_{4}
$$

Super-compact form

Because slight variations between N_{2} and N_{4}, and N_{1} and N_{3}, are easy to achieve, very high reductions are possible in a single stage, e.g., 100:1

Image sources

```
two spur gears
http://www.globalspec.com/NpaPics/23/3125_083020069743_ExhibitPic.JPG
epicyclic gears
http://www.swbturbines.com/products/images/img18.jpg
radial ball bearings (3)
http://product-image.tradeindia.com/00093642/b/Ball-Bearing.jpg
thrust ball bearing
http://www.germes-online.com/direct/dbimage/50187265/Thrust_Ball_Bearing.jpg
roller bearing
http://www.drives.co.uk/images/news/SKF%20high%20efficiency%20roller%20bearing.jpg
needle radial bearing
http://www.joburgbearings.co.za/products/cagerol.JPG
chain drive on engine
http://www.dansmc.com/counterbalance_chain.JPG
motorcycle belt drive
http://www.banditmachineworks.com/graphics/3instd-1024.jpg
titanium spring
http://www.le-suspension.com/catalog/images/springs-ti.jpg
belleville springs
http://www.globalspec.com/NpaPics/43/980_011020075888_ExhibitPic.jpg
```

MIT OpenCourseWare
http://ocw.mit.edu

2.017J Design of Electromechanical Robotic Systems

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

