Applying Optimization: Some Samples

Reference

Linear problems example: A.D. Belegundu and T.R. Chandrupatla (1999). Optimization Concepts and Applications in Engineering. Upper Saddle River, New Jersey.

1. Linear Optimization

- Idea: many problems of optimization are linear, but of high dimension.
- Parameter space is [x₁,x₂,x₃,..., x_n] this is what we are trying to find the best values of
- Best parameter set minimizes or maximizes a linear cost, e.g.,

 $J = 14x_1 + 9x_3 + 42x_4$

 but the parameter space is confined by some equalities E, e.g.,

 $x_1 + 3x_2 + 7x_4 = 16,$

• and some inequalities I, e.g.,

 $3x_1 - 4x_3 + x_7 <= 30.$

A total of I+E constraint equations for n parameters.
Obviously, I+E >= n for a solution to exist

Example of Fuel Selection

A case where *n* = I+E ; unique solution

The problem statement:

- Natural gas has 0.12% sulfur, costs \$55/(kg/s), and gives 61MJ/kg heat energy
- Coal has 2.80% sulfur, costs \$28/(kg/s), and gives 38MJ/kg heat energy
- We have a steady 4MW load requirement.
- The sulfur emissions by weight have to be equal to or less than 2.5%.
- Minimize the money cost.

More complex cases: the 2D case tells all!

Solution always falls within admissible regions defined by inequalities, AND along equality lines

OR

Solution always falls on a vertex of n constraint equations, either I or E.

Leads to a *simple systematic* procedure for small (e.g., n < 5, I+E < 10) problems Idea: Calculate J at all existent vertices, and pick the best one.

How many vertices are there to consider? $N = \text{`Combinations of n items from a collection of I+E items"} \rightarrow$ N = (I+E)! / n! (I+E-n)!Consider 3-space (n=3); If I+E = 4, N = 4 "TETRAHEDRON" If I+E = 6, N = 20 "CUBE" Not all 20 vertices may exist! Consider 5-space (n=5); If I+E = 10, N ~ 250 (still quite reasonable for calculations)

- Step through all combinations of n equations from the I+E available, solving an n-dimensional linear problem for each; Ax = b, when A is non-singular. If A is singular, no vertex exists for the set.
- 2. For a calculated vertex location, check that it meets all of the *other* I+E-n constraints. If it does not, then throw it out.
- 3. Evaluate J at all the admissible vertices.
- 4. Pick the best one! *More general case is Linear Programming; very powerful and specialized tools are available!*

2. Min-Max Optimization

- Difficulties with the linear and nonlinear continuous problems
 - Multiple objectives or costs
 - The real world sometimes offers only finite choices, with no clear "best candidate." Tradeoffs must be made somehow!
 - Sensitivity of solutions depending on poorly defined weights or costs
- Min-max: Select the candidate with the *smallest maximum deviation from the optimum value,* obtained over all candidates.

We're going to hire a teacher... three were interviewed and scored...

	Modeling	Experiments	Writing
Alice	9	2	7
Barbara	4	8	6
Cameron	4	0	8

For each attribute and candidate, compute peak value and range, e.g.,

Range	5	8	2
Peak	9	8	8

Calculate deviation from peak value, normalize by range for given attribute, e.g.,

Alice has smallest normalized	0/5	6/8	1/2
	5/5	0/8	2/2
	5/5	8/8	0/2
maximum deviation			

ma from peak values (6/8=0.75)

Alice wins by ranking first, second, and second; is it fair?

Massachusetts Institute of Technology Subject 2.017

3. Dynamic Programming

- Optimal sequences or trajectories, e.g.,
 - minimize a scalar cost J(x(t),u(t),t), subject to dx(t)/dt = f(x(t),u(t),t).
 - minimize the driving distance through the American highway system from Boston to Los Angeles
 - minimize travel time of a packet on the internet
 - etc...
- Dynamic programming is at the heart of nearly all modern path optimization tools
- Key ingredient: <u>Suppose the path from A to C is optimal</u>, and B is an intermediate point. Then the path from B to <u>C is optimal also</u>.

Seems trivial?

- 1. Evaluate optima at Stage 1: [A,End]_{opt} = min(3 + 8 , 2 + 7 , 6 + 5) = 9, path [A,B,End] [B,End]_{opt} = min(5 + 8 , 5 + 7 , 4 + 5) = 9, path [B,C,End]
- 2. Evaluate optima from start: [Start,End]_{opt} = min(5 + 9, 4 + 9) = 13, path [Start,**B,C,End**] Inherited values from prior optimization

 \rightarrow Total cost is 8 additions

Power of Dynamic Programming grows dramatically with number of stages, and number of nodes per stage.

Consider three decision stages, with N_1 , N_2 , and N_3 choices respectively. Total paths possible is $N_1 \times N_2 \times N_3$. To evaluate them all costs $3N_1N_2N_3$ additions.

Dynamic programming solution:

At stage 2, evaluate the best solution from each node in S₂ through S₃ to the end: N₂ N₃ additions. Store the best path from each node of S₂. At stage 1, evaluate the best solution from each node in S₁ through S₂ to the end; N₁ N₂ additions. Store the best path from each node of S₁. At start, evaluate best solution from start through N₁ to the end; N₁ additions. Pick the best path!

Total burden is $N_2(N_1+N_3)+N_1$ additions vs. $3 N_1N_2N_3$ additions.

GENERAL CASE: N²(S-1)+N vs. SN^s for S stages of N nodes each

4. Lagrange Multipliers

Let <u>x</u> be a n-dimensional vector – the parameter space Let $\underline{f(x)}$ be a vector of m functions that are functions of <u>x</u> - constraints SOLVE: min C(<u>x</u>) subject to constraints $\underline{f(x)} = \underline{0}$

Without the constraints, we can solve the n equations $\delta C/\delta x_i = 0$, because at the optimum point <u>x</u>*, C(<u>x</u>*) is *flat*.

But in the presence of the constraints, we know only that

$$\begin{split} &\delta C(\underline{x}^*)=0 \quad \text{ and } \quad \delta f_k(\underline{x}^*)=0 \quad \text{ or:} \\ &\Sigma_i \left[\delta C/\delta x_i\right] dx_i=0 \quad \text{ and } \quad \Sigma_i \left[\delta f_k/\delta x_i\right] \delta x_i=0 \quad (m+1 \text{ equations}) \end{split}$$

Lagrange Multipliers cont.

Use m Lagrange multipliers λ to augment the cost function: C'(x) = C(<u>x</u>) + $\Sigma_k \lambda_k f_k(\underline{x})$ NOTE $\underline{\lambda}$ CAN TAKE ARBITRARY VALUES BY DESIGN

$$\delta \mathbf{C}' = \delta \mathbf{C} + \Sigma_k \lambda_k \, \delta \mathbf{f}_k = \Sigma_i \left[\delta \mathbf{C} / \delta \mathbf{x}_i + \Sigma_k \, \lambda_k \, \delta \mathbf{f}_k / \delta \mathbf{x}_i \right] \, \delta \mathbf{x}_i$$

At optimum <u>x</u>^{*}, we have $\delta C' = 0$; Each [] has to be zero, so we get n equations: $\delta C/\delta x_i + \Sigma_k \lambda_k \delta f_k/\delta x_i = 0$, i = 1,...,n

We already had m equations: $f_k(\underline{x}^*) = 0$, k = 1, ..., m

Solve the (m+n) equations for the n elements of <u>x</u>* and the m values of $\underline{\lambda}$

2.017J Design of Electromechanical Robotic Systems Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.