Applying Optimization: Some Samples

Reference

Linear problems example: A.D. Belegundu and T.R. Chandrupatla (1999). Optimization Concepts and Applications in Engineering. Upper Saddle River, New Jersey.

1. Linear Optimization

- Idea: many problems of optimization are linear, but of high dimension.
- Parameter space is $\left[x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right]$ this is what we are trying to find the best values of
- Best parameter set minimizes or maximizes a linear cost, e.g.,

$$
\mathrm{J}=14 \mathrm{x}_{1}+9 \mathrm{x}_{3}+42 \mathrm{x}_{4}
$$

- but the parameter space is confined by some equalities E, e.g.,

$$
x_{1}+3 x_{2}+7 x_{4}=16
$$

- and some inequalities I, e.g.,

$$
3 x_{1}-4 x_{3}+x_{7}<=30 .
$$

- A total of $I+E$ constraint equations for n parameters. Obviously, I+E >= n for a solution to exist

Example of Fuel Selection

A case where $n=I+E$; unique solution

The problem statement:

- Natural gas has 0.12% sulfur, costs $\$ 55 /(\mathrm{kg} / \mathrm{s})$, and gives $61 \mathrm{MJ} / \mathrm{kg}$ heat energy
- Coal has 2.80% sulfur, costs $\$ 28 /(\mathrm{kg} / \mathrm{s})$, and gives $38 \mathrm{MJ} / \mathrm{kg}$ heat energy
- We have a steady 4MW load requirement.
- The sulfur emissions by weight have to be equal to or less than 2.5\%.
- Minimize the money cost.

In mathematical form:
$x_{1}=\mathrm{kg}$ of natural gas to burn per second $x_{2}=\mathrm{kg}$ of coal to burn per second

$$
\begin{equation*}
\mathrm{J}=55 \mathrm{x}_{1}+28 \mathrm{x}_{2} \tag{cost}
\end{equation*}
$$

$61 x_{1}+38 x_{2}=4$
$0.12 \mathrm{x}_{1}+2.8 \mathrm{x}_{2}<=2.5\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right)$
$\rightarrow x_{2}<=8 x_{1}$

Optimum: $x_{1}=0.011, x_{2}=0.087 \mathrm{~kg} / \mathrm{s}$

More complex cases: the 2D case tells all!

Solution always falls within admissible regions defined by inequalities, AND along equality lines

OR

Solution always falls on a vertex of n constraint equations, either I or E.

Leads to a simple systematic procedure for small (e.g., $\mathrm{n}<5, \mathrm{l}+\mathrm{E}<10$) problems

Idea: Calculate J at all existent vertices, and pick the best one.
How many vertices are there to consider?
$\mathrm{N}=$ "Combinations of n items from a collection of $\mathrm{I}+\mathrm{E}$ items" \rightarrow
$\mathrm{N}=(\mathrm{I}+\mathrm{E})!/ \mathrm{n}$! (1+E-n)!
Consider 3-space ($\mathrm{n}=3$);
If $\mathrm{I}+\mathrm{E}=4, \mathrm{~N}=4$ "TETRAHEDRON"
If $I+E=6, N=20$ "CUBE" Not all 20 vertices may exist!
Consider 5-space ($\mathrm{n}=5$);

If $\mathrm{I}+\mathrm{E}=10, \mathrm{~N} \sim 250$ (still quite reasonable for calculations)

1. Step through all combinations of n equations from the $I+E$ available, solving an n-dimensional linear problem for each; $A x=b$, when A is non-singular. If A is singular, no vertex exists for the set.
2. For a calculated vertex location, check that it meets all of the other I+E-n constraints. If it does not, then throw it out.
3. Evaluate J at all the admissible vertices.
4. Pick the best one!

More general case is Linear Programming; very powerful and specialized tools are available!

2. Min-Max Optimization

- Difficulties with the linear and nonlinear continuous problems
- Multiple objectives or costs
- The real world sometimes offers only
 finite choices, with no clear "best candidate." Tradeoffs must be made somehow!
- Sensitivity of solutions depending on poorly defined weights or costs
- Min-max: Select the candidate with the smallest maximum deviation from the optimum value, obtained over all candidates.

We're going to hire a teacher... three were interviewed and scored...

	Modeling	Experiments	Writing
Alice	9	2	7
Barbara	4	8	6
Cameron	4	0	8

For each attribute and candidate, compute peak value and range, e.g.,

Range	5	8	2
Peak	9	8	8

Calculate deviation from peak value, normalize by range for given attribute, e.g.,

$\mathbf{0 / 5}$	$\mathbf{6 / 8}$	$\mathbf{1 / 2}$	
	$5 / 5$	$0 / 8$	$2 / 2$
has smallest alized	$5 / 5$	$8 / 8$	$0 / 2$

maximum deviation from peak values (6/8=0.75)

Alice wins by ranking first, second, and second; is it fair?

3. Dynamic Programming

- Optimal sequences or trajectories, e.g.,
- minimize a scalar cost $J(x(t), u(t), t)$, subject to $d x(t) / d t=f(x(t), u(t), t)$.
- minimize the driving distance through the American highway system from Boston to Los Angeles
- minimize travel time of a packet on the internet
- etc...
- Dynamic programming is at the heart of nearly all modern path optimization tools
- Key ingredient: Suppose the path from A to C is optimal, and B is an intermediate point. Then the path from B to \bar{C} is optimal also.

Seems trivial?

Numerical Example

Brute force: 12 additions

1. Evaluate optima at Stage 1:

$$
\begin{aligned}
& {[A, \text { End }]_{\text {opt }}=\min (3+8,2+7,6+5)=9, \text { path }[A, B, \text { End }]} \\
& {[B, \text { End }]_{\text {opt }}=\min (5+8,5+7,4+5)=9, \text { path }[B, C, \text { End }]}
\end{aligned}
$$

2. Evaluate optima from start:

$$
[\text { Start,End }]_{\mathrm{opt}}=\min (5+9,4+9)=13, \text { path }[\text { Start, B,C,End }]
$$ Inherited values from prior optimization

\rightarrow Total cost is 8 additions

Power of Dynamic Programming grows dramatically with number of stages, and number of nodes per stage.

Consider three decision stages, with N_{1}, N_{2}, and N_{3} choices respectively.
Total paths possible is $N_{1} \times N_{2} \times N_{3}$. To evaluate them all costs $3 N_{1} N_{2} N_{3}$ additions.

Dynamic programming solution:

At stage 2, evaluate the best solution from each node in S_{2} through S_{3} to the end: $\mathrm{N}_{2} \mathrm{~N}_{3}$ additions. Store the best path from each node of S_{2}.
At stage 1, evaluate the best solution from each node in S_{1} through S_{2} to the end; $N_{1} N_{2}$ additions. Store the best path from each node of S_{1}.
At start, evaluate best solution from start through N_{1} to the end; N_{1} additions. Pick the best path!

Total burden is $\mathbf{N}_{2}\left(\mathbf{N}_{1}+\mathbf{N}_{3}\right)+\mathbf{N}_{1}$ additions vs. $\mathbf{3} \mathbf{N}_{1} \mathbf{N}_{2} \mathbf{N}_{3}$ additions.

4. Lagrange Multipliers

Let \underline{x} be a n-dimensional vector - the parameter space
Let $\underline{f}(\underline{x})$ be a vector of m functions that are functions of \underline{x} - constraints SOLVE: min C (\underline{x}) subject to constraints $\underline{f}(\underline{x})=\underline{0}$

Without the constraints, we can solve the n equations $\delta \mathrm{C} / \delta \mathrm{x}_{\mathrm{i}}=0$, because at the optimum point $\underline{x}^{*}, C\left(\underline{x}^{*}\right)$ is flat.

But in the presence of the constraints, we know only that

$$
\begin{array}{rlrlr}
\delta \mathrm{C}\left(\underline{\mathrm{x}}^{*}\right)=0 & \text { and } & \delta \mathrm{f}_{\mathrm{k}}\left(\underline{\mathrm{x}}^{*}\right) & =0 & \text { or: } \\
\Sigma_{\mathrm{i}}\left[\delta \mathrm{C} / \delta \mathrm{x}_{\mathrm{i}}\right] \mathrm{d} \mathrm{x}_{\mathrm{i}} & =0 & \text { and } & \Sigma_{\mathrm{i}}\left[\delta \mathrm{f}_{\mathrm{k}} / \delta \mathrm{x}_{\mathrm{i}}\right] \delta \mathrm{x}_{\mathrm{i}} & =0
\end{array} \text { (m+1 equations) }
$$

Lagrange Multipliers cont.

Use m Lagrange multipliers λ to augment the cost function:
$\mathrm{C}^{\prime}(\mathrm{x})=\mathrm{C}(\underline{\mathrm{x}})+\Sigma_{\mathrm{k}} \lambda_{\mathrm{k}} \mathrm{f}_{\mathrm{k}}(\underline{\mathrm{x}})$
NOTE $\underline{\lambda}$ CAN TAKE ARBITRARY VALUES BY DESIGN
$\delta C^{\prime}=\delta C+\Sigma_{k} \lambda_{k} \delta f_{k}=\Sigma_{\mathrm{i}}\left[\delta C / \delta \mathrm{x}_{\mathrm{i}}+\Sigma_{\mathrm{k}} \lambda_{\mathrm{k}} \delta \mathrm{f}_{\mathrm{k}} / \delta \mathrm{x}_{\mathrm{i}}\right] \delta \mathrm{x}_{\mathrm{i}}$
At optimum \underline{x}^{*}, we have $\delta C^{\prime}=0$; Each [] has to be zero, so we get n equations: $\quad \delta C / \delta x_{i}+\Sigma_{k} \lambda_{k} \delta f_{k} / \delta x_{i}=0, \quad i=1, \ldots, n$

We already had m equations: $f_{k}\left(\underline{x}^{*}\right)=0, \quad k=1, \ldots, m$
Solve the $(m+n)$ equations for the n elements of \underline{x}^{*} and the m values of $\underline{\lambda}$

MIT OpenCourseWare
http://ocw.mit.edu

2.017J Design of Electromechanical Robotic Systems

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

