
MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING 2.06 Fluid Dynamics

RECITATION #2, Spring Term 2013

Topics: Hydrostatics Examples

Problem 1

A spar of density ρ_0 , length l_0 and constant cross-sectional area A is hinged at one end to a fixed position under water. A concentrated weight is fixed to the end opposite the hinge as shown. The water level is at a distance h above the hinge. The spar comes to rest at an angle θ . The water density is ρ . Please derive an expression for the angle θ in terms of ρ , ρ_0 , l_0 , h, W, A and g. Please assume that the cross-sectional area is small so that $\sqrt{A} \ll h$ and that the weight is above the water surface at all times.

MIT OpenCourseWare http://ocw.mit.edu

2.06 Fluid Dynamics Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.