Random Variables

outcomes are numerical values

We poll n "randomly selected" people, and calculate

Discrete Random Variables

Tutroduce sample space

$$\{x_1, ..., x_J\}$$
 real numbers.
Then
 $X = x_j$ with probability P_j , $1 \le j \le J$
where
 $\begin{cases} 0 \le P_j \le 1, 1 \le j \le J \\ J = 1 \end{cases}$

Example: uniform distribution
$$\sum_{j=1}^{2} J_{j} = j$$
, $1 \le j \le J_{j}$
Let $x_{j} = j$, $1 \le j \le J_{j}$
 $J = 6$: die roll face ?
 $J = 12$: birthmonth,
define
 $f_{X}^{unif,J} = \frac{1}{J}$, $1 \le j \le J$.
 P_{j}
(Node $0 \le P_{j} \le 1$, $1 \le j \le J$, and $\sum_{j=1}^{2} P_{j} = 1$.)

Example: Bernoulli parameter
$$\theta$$
, $0 \le \theta \le 1$
Let $T = 2$, and
 $x_1 = 0$ ("tail"), $x_2 = 1$ ("head").
Then
 $f_X(x;\theta) = \begin{cases} 1-\theta & \text{if } x = x_1 = 0 & P_1 \\ \theta & \text{if } x = x_2 = 1 & P_2 \end{cases}$
Note $0 \le P_1, P_2 \le O$ and $P_1 + P_2 = 1$
for any admissible value of θ .

Random Variate Generation (Simulation)

X: a random <u>variable</u> a sample space and probability law x: a random <u>variate</u> - a realization of X a <u>mumber</u>

Physical generation: flip a coin, roll a die OR

Expectation

Given a r.v. X with pmf
$$f_X(x)$$
, and
a univariate function g ,
 $E(g(X)) = \sum_{j=1}^{J} g(x_j) \cdot p_j$
expectation of random outcome probability $f_x(x_j)$
(not random) of quantity
Note
 $E(g(X) = G) = \sum_{j=1}^{J} C'p_j = C \sum_{j=1}^{J} p_j = C'.$

$$\underbrace{\mu, \sigma^{2}, and \sigma}_{\text{mean.}, \mu} : \qquad J \qquad \text{center of mass} \\
 \underbrace{\mu = \mathbb{E}(X) = \int_{j=1}^{\infty} x_{j} P_{j} \\
 nde \mathbb{E}(X - \mu) = \int_{j=1}^{\infty} (x_{j} - \mu) P_{j} \\
 = \int_{j=1}^{\infty} x_{j} P_{j} - \int_{j=1}^{\infty} \mu P_{j} \\
 = \mathbb{E}(X) - \mu \int_{j=1}^{\infty} P_{j} \\
 = \mu - \mu = 0$$

variance,
$$\sigma^2$$
:
 $\sigma^2 \equiv \mathbb{E}((X - \mu)^2)$
 $= \sum_{j=1}^{T} (x_j - \mu)^2 p_j \quad (= \mathbb{E}(X^2) - \mu^2)$
standard deviation, σ spread
(stat dev)
 $\sigma \equiv \sqrt{\sigma^2}$ definition.

Example: uniform distribution
$$\int$$

 $x_j = j, 1 \le j \le J$ $P_j = \frac{1}{J}, 1 \le j \le J$
 $\mu = \mathbb{E}(X) = \int_{j=1}^{J} x_j P_j = \frac{4}{J} \int_{j=1}^{J} j = \frac{1}{J} \left(\frac{J(J+1)}{Z} \right)$
 $\sigma^2 = \mathbb{E}((X - \mu))^2 = \frac{J^2 - 1}{12}$

$$\sigma = \sqrt{\frac{J^2 - L}{12}}$$

Example: Bernoulli,
$$\Phi$$
 $J=2$
 $x_1 = 0, x_2 = 1$ $p_1 = 1 - \theta, p_2 = \theta$
 $\mu = \mathbb{E}(x) = \sum_{j=n}^{Z} x_j p_j = 0 \cdot (1 - \theta) + 1 \cdot \theta = \theta$
 $\sigma^2 = \mathbb{E}((X - \mu)^2) = \sum_{j=1}^{Z} (x_j - \mu)^2 p_j$
 $= \theta^2 \cdot (1 - \theta) + (1 - \theta)^2 \theta = \theta \cdot (1 - \theta)$
 $\sigma = \sqrt{\theta(1 - \theta)}$
Note for $\theta \Rightarrow 0$ or $\theta \Rightarrow 1, \sigma \Rightarrow 0$: sure thing.

Functions of Random Variables

Let given function
$$X$$
 distributed
 $Y = g(X)$ for $X - f_X$.
Then for Y ,
Sample space = {g(x_1), ..., g(x_2)} pruned

Sample space =
$$\{g(x_1), ..., g(x_J)\}$$
 pruned
 $\{y_1, y_2, ..., y_{J_r}\} = J_j$
 $f_Y(y_i) = P(X = any x_j st. g(x_J) = y_i) \cup$
 $= \sum_{j \in X} f_X(x_j), 1 \le i \le J_Y$.

Note

$$\mathbb{E}_{Y}(Y) = \sum_{i=1}^{J_{Y}} g_{i} f_{Y}(y_{i})$$

$$= \sum_{i=1}^{J_{Y}} y_{i} \sum_{j=1}^{J_{X}} f_{x}(x_{j})$$

$$= \sum_{i=1}^{J_{Y}} \sum_{q(x_{j})=y_{i}} y_{i} f_{x}(x_{j})$$

$$= \sum_{i=1}^{J_{Y}} \sum_{q(x_{j})=y_{i}} g(x_{j}) f_{x}(x_{j}) = \sum_{j=1}^{J_{x}} g(x_{j}) f_{x}(x_{j})$$
each x_{j} appears once and only once $= \mathbb{E}_{X}(g(\mathbb{P}))$.

Example: uniform to Bernoulli

$$X - f_X^{unif,J=3} \xrightarrow{x_j=j}, p_j=\frac{1}{3}, 1 \le j \le J \equiv 3$$

$$g(x) = \begin{cases} 0 & \text{if } x = 1 \text{ or } x = 2\\ 1 & \text{if } x = 3 \end{cases}$$

$$\Rightarrow J_Y = Z, \ y_1 = 0, \ y_2 = 1, \text{ and}$$

$$\begin{cases} f_Y(y_1) = P(Y=0) = P(X=1 \text{ OR } X=2)\\ = f_X(1) + f_X(2) = \frac{z}{3}\\ f_Y(y_2) = P(Y=1) = P(X=3) = \frac{1}{3}\\ \text{Bernoulli with parameter } \theta = \frac{1}{3} \end{cases}$$

Random Vectors

$$\begin{array}{l} \underline{\text{Marginal Pmf}}_{x} & \underbrace{\text{Marginal Pmf}}_{x} & f_{x}\left(x_{i}\right) = \mathcal{P}\left(X = x_{i}\right) \\ & = \mathcal{P}\left(X = x_{i}, Y = y_{i} \ \text{OR} \ X = x_{i}, Y = y_{z} \ \text{OR} \cdots\right) \\ & = \sum_{j=4}^{TY} \mathcal{P}\left(X = x_{i}, Y = y_{j}\right) \\ & = \sum_{j=4}^{TY} \mathcal{P}\left(X = x_{i}, Y = y_{j}\right) \\ & = \sum_{j=4}^{TY} \mathcal{F}_{x,Y}\left(x_{i}, y_{j}\right) \ , \quad 1 \leq i \leq J_{x} \\ & f_{y}(y_{j}) = \sum_{i=4}^{Tx} \mathcal{F}_{x,Y}\left(x_{i}, y_{j}\right) \ , \quad 1 \leq j \leq J_{y} \end{array}$$

$$\frac{(\text{onditional Pmf's})}{f_{X|Y}(x_i | y_j)} = \frac{f_{X,Y}(x_i, y_j)}{f_Y(y_j)} \xrightarrow{1 \le i \le J_X} f_{Y|X}(y_j | x_i) = \frac{f_{X,Y}(x_i, y_j)}{f_X(x_i)} \xrightarrow{1 \le j \le J_Y} f_{X|X}(x_i)$$

$$\dots \text{Bayes' Theorem.}$$

Independence

X and Y are independent if
$$x_{Y} = x_{Y} = y_{Y}$$

 $f_{XY}(x_{i}, y_{j}) = f_{X}(x_{i}) f_{Y}(y_{j})$
 $f_{XY}(x_{i}, y_{j}) = f_{X}(x_{i}) f_{Y}(y_{j})$
 $f_{X|Y}(x_{i}|y_{j}) = f_{X}(x_{i})$
 $f_{Y|X}(y_{y}|x_{i}) = f_{Y}(y_{j})$

$$\begin{split} \overline{\mathsf{Expectation}} & \text{ of sums} \\ & X \sim f_X, Y \sim f_Y \\ \mathbb{E}_{X,Y} \left(g(X) + h(Y) \right) = \sum_{i,j} p_{i,j}^{X,Y} \left(g(x_i) + h(y_j) \right) \\ &= \sum_{i,j} p_{i,j}^{XY} g(x_i) + \sum_{i,j} p_{i,j}^{X,Y} h(y_j) \\ &= \mathbb{E}_{X,Y} \left(g(X) \right) + \mathbb{E}_{X,Y} \left(h(Y) \right) \\ \left(= \mathbb{E}_{X} \left(g(X) \right) + \mathbb{E}_{Y} \left(h(Y) \right) \quad \text{if } X, Y \text{ independent} \end{split}$$

$$\frac{\text{Expectation of products}}{X \sim f_X, Y \sim f_Y \text{ independent } r.v.'s}$$

$$\frac{\text{E}(g(X) \cdot h(Y)) = \sum_{i,j} P_{i,j}^{X,Y} g(x_i) h(y_j)$$

$$= \sum_{i,j} P_i^X P_j^Y g(x_i) h(y_j)$$

$$= \sum_i P_i^X g(x_i) \sum_j P_j^Y h(y_j)$$

$$= \mathbb{E}_X (g(X)) \mathbb{E}_Y (g(Y))$$

The Binomial Distribution

i.i.d. Bernoulli trids:
Let population for given
$$\theta$$

 $X_1 \sim f_X^{\text{Bernoulli}}, X_2 \sim f_X^{\text{Bernoulli}}, X_n \sim f_X^{\text{Bernoulli}}$

be n independent identically distributed (i.i.d.) r.v.'s.

Define new vandom variables

$$Z_n = \sum_{i=1}^{n} X_n (* of 1^is), \quad \overline{X_n} = \frac{1}{n} \sum_{i=1}^{n} X_n (\text{fraction of 1}^is),$$

Sample mean
Note each experiment draws
 n Bernoulli r.v.'s $\rightarrow Z_n, \overline{X_n}$.

(Pseudo) random variate generation:
$$\overline{X}_n$$
 $\theta = \frac{1}{2}$

DEMO

Birthmonth Revisited:

Hypothesis:

$$X = \begin{cases} 0 & \text{if birthmonth is [Jan-June]} \\ 1 & \text{if birthmonth is [July - Dec]} \end{cases}$$

is Bernoulli with parameter $\Phi = \frac{1}{2}$,
 $X \sim f_X^{\text{Bannoulli}}(x; \theta = \frac{1}{2})$.

properties of binomial distribution: parameter
$$\Theta$$

punf: or $\mathbb{Z}_n = k$ $\binom{n}{k} = \binom{n}{k} \left(\frac{1-\theta}{k} \right)^n - k \left(\binom{n}{k} \right) = \frac{n!}{(n-k)!k!}$
 $P(\overline{X}_n = \frac{k}{n}) = \binom{n}{k} \frac{\theta^k (1-\theta)^n - k}{\theta^k}$, $k = 0, 4, 2, ..., n$
mote
 $P(\overline{X}_n = 0) = 1 \cdot \theta^0 (1-\theta)^n = (\text{for } \theta = \frac{1}{2}) (\frac{1}{2})^n$
 $L P(X_1 = 0 \text{ AND } X_2 = 0 \text{ AND } ..., X_n = 0) = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$
 $\theta = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$
 $\theta = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$
 $\theta = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$
 $\theta = \frac{1}{2} \cdot \frac{1}$

mean:

$$\mathbb{E}(\bar{X}_{n}) = \mathbb{E}\left(\frac{1}{n}\sum_{i=1}^{n}X_{n}\right) \stackrel{!}{=} \frac{1}{n}\sum_{i=1}^{n}\mathbb{E}_{X_{n}}(X_{n}) = \Theta$$

$$\mathbb{E}\left(\bar{X}_{n}\right) = \mathbb{E}\left(\frac{1}{n}\sum_{i=1}^{n}X_{n}\right) \stackrel{!}{=} \frac{1}{n}\sum_{i=1}^{n}\mathbb{E}_{X_{n}}(X_{n}) = \Theta$$

$$\mathbb{E}\left(\bar{X}_{n}\right) \stackrel{!}{=} \frac{1}{n} = \frac{1}{n}\mathbb{E}\left(\frac{1}{n}\nabla_{x}\right) \stackrel{!}{=} \frac{1}{n}\mathbb{E}\left(\frac{1}{n}\nabla_{x}\right) \stackrel{!}{=$$

Appendix A

$$\begin{split} \sigma_{\overline{X}_{n}}^{2} &= \mathbb{E}\left(\left(\bar{X}_{n}-\theta\right)^{2}\right) = \mathbb{E}\left(\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}-\theta\right)^{2}\right) \\ &= \mathbb{E}\left(\left(\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\theta)\right)\left(\frac{1}{n}\sum_{k=1}^{n}(X_{k}-\theta)\right)\right) \\ &= \frac{1}{n^{2}}\mathbb{E}\left(\sum_{i=1}^{n}\sum_{k=1}^{n}(X_{i}-\theta)(X_{k}-\theta)\right) \\ &= \frac{1}{n^{2}}\sum_{i=1}^{n}\sum_{k=1}^{n}\mathbb{E}\left((X_{i}-\theta)(X_{k}-\theta)\right) \end{aligned}$$

but if
$$i \neq k$$
,
 $E\left((X_i - \theta)(X_k - \theta)\right) = E_{X_i}(X_i - \theta) \cdot E_{X_k}(X_k - \theta) = 0$
and hence
 $\nabla_{X_n}^2 = \frac{1}{n^2} \sum_{i=1}^{n} E\left((X_i - \theta)^2\right) = \frac{1}{n^2} \cdot n \cdot \theta(\Lambda - \theta)$
 $= \frac{\theta(\Lambda - \theta)}{n}$
 $\nabla_{X_n} = \sqrt{\frac{\theta(1 - \theta)}{n}}$
quite tamous \sqrt{n}

2.086 Numerical Computation for Mechanical Engineers Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.