Random Variables
outcomes are numerical values

A hypothesis:
Birthdays are umformby distributed over
the first six months
(181 days)
and
the second six months (184 days) of the year.

We poll n "randomly selected" people, and calculate

$$
\begin{aligned}
& \hat{P}_{\text {first half }}=\#(\text { occurrences of Jam -June) } / n \\
& \hat{P}_{\text {second half }}=\# \text { (occurrences of July -Dec) } / n
\end{aligned}
$$

Should we
"accept" or "reject" our hypothesis?

Discrete
Random Variables

Intreduce sample space
$\left\{x_{1}, \ldots, x_{J}\right\} \quad$ real numbers.
Then
$X=x_{j}$ with probablity $P_{j}, 1 \leq j \leq J$
r.v.
where

$$
\left\{\begin{array}{c}
0 \leqslant p_{j} \leqslant 1,1 \leq j \leqslant J \\
\sum_{j=1}^{J} p_{j}=1
\end{array}\right.
$$

Probatility mass function (pmf):

Note

$$
\left\{\begin{array}{l}
0 \leq f_{x}\left(x_{j}\right) \leq 1, \quad 1 \leq j \leq J \\
\sum_{j=1}^{J} f_{x}\left(x_{j}\right)=1
\end{array}\right.
$$

Example: uniform distribution
Let $x_{j}=j, 1 \leq j \leq J$:
$J=6$: die roll face
$J=12$: birth mouth;
define

$$
\begin{aligned}
& f_{x}^{u n i f\left(x_{j}\right)}=\underbrace{1 / J}_{P_{j}}, 1 \leqslant j \leqslant J \\
& \left(\text { Node } 0 \leqslant p_{j} \leqslant 1,1 \leqslant j \leqslant J \text {, and } \sum_{j=1}^{J} p_{j}=1 .\right)
\end{aligned}
$$

Example: Bernoulli parameter $\theta, 0 \leqslant \theta \leqslant 1$
Let $J=2$, and

$$
x_{1}=0(\text { "tail" }), x_{2}=1(\text { "head" })
$$

Then

$$
f_{x}^{\text {Bernoulli }}(x ; \theta)=\left\{\begin{array}{cll}
1-\theta & \text { if } x=x_{1}=0 & p_{1} \\
\theta & \text { if } x=x_{2}=1 & p_{2}
\end{array}\right.
$$

Note $0 \leq p_{1}, p_{2} \leq \rho_{\text {and }} p_{1}+p_{2}=1$
for any admissible for any admissible value of θ.

Random Variate Generation (Simulation)
X: a random variable a sample space and probability law x : a random variate - a realization of X a number

Physical generation:
flip a coin, roll a die,...
$O R$

Pseudo-vandom variate generation: in MATLAS,
randi (J
draws a member from the uniform pint $f_{x}^{\text {unit, }}$ "population"

- a virtual roll of the die, $O R$
- a virtual flip of a (fair) coin, OR

Expectation

Given a r.v. X with pro $f_{X}(x)$, and a univariate function g,

$$
\mathbb{E}(\underbrace{g(X)}) \equiv \sum_{j=1}^{J} g_{j}\left(x_{j}\right) \cdot p_{j}
$$

expectation of random
(not random)
quantity outcome probability $f_{x}\left(x_{j}\right)$
Note

$$
\mathbb{E}(g(X)=C)=\sum_{j=1}^{J} C^{\prime} p_{j}=C \sum_{j=1}^{J} p_{j}=C^{\prime} .
$$

$\frac{\mu, \sigma^{2} \text {, and } \sigma}{\text { mean, } \mu \text { : }}$
center of mass

$$
\mu=\mathbb{E}(X)=\sum_{j=1}^{J} x_{j} p_{j}
$$

note $\mathbb{E}(X-\mu)=\sum_{j=1}^{J}\left(x_{j}-\mu\right) p_{j}$
$=\sum_{j=1}^{J} x_{j} p_{j}-\sum_{j=1}^{J} \mu p_{j}$
$=\mathbb{E}(x)-\mu \sum_{j=1}^{J} P_{j}$

$$
=\mu-\mu=O
$$

variance, σ^{2} :

$$
\begin{aligned}
\sigma^{2} & \equiv \mathbb{E}\left((X-\mu)^{2}\right) \\
& =\sum_{j=1}^{J}\left(X_{j}-\mu\right)^{2} P_{j} \quad\left(=E\left(X^{2}\right)-\mu^{2}\right)
\end{aligned}
$$

standard deviation, σ
(std der)
$\sigma \equiv \sqrt{\sigma^{2}} \quad$ definition
"spread" "
spread

Example: uniform distributior Ω

$$
\begin{aligned}
& x_{j}=j, 1 \leq J=J \quad p_{j}=1 / J, 1 \leqslant j \leqslant J \\
& \mu=\mathbb{E}(x)=\sum_{j=1}^{J} x_{j} p_{j}=\frac{1}{J} \sum_{j=1}^{J}=\frac{1}{J}\left(\frac{J(J+1)}{2}\right) \\
& \sigma^{2}=\mathbb{E}((x-\mu))^{2}=\frac{J^{2}-1}{12} \\
& \sigma=\sqrt{\frac{J+1}{2}} \\
& \frac{J^{2}-1}{12}
\end{aligned}
$$

Example: Bernoulli, θ

$$
J=2
$$

$$
\begin{aligned}
& x_{1}=0, x_{2}=1 \quad p_{1}=1-\theta, p_{2}=\theta \\
& \mu=\mathbb{E}(x)=\sum_{j=1}^{2} x_{j} p_{j}=0 \cdot(1-\theta)+1 \cdot \theta=\theta \\
& \sigma^{2}=\mathbb{E}\left((x-\mu)^{2}\right)=\sum_{j=1}^{2}\left(x_{j}-\mu\right)^{2} p_{j} \\
& =\theta^{2} \cdot(1-\theta)+(1-\theta)^{2} \theta=\theta \cdot(1-\theta) \\
& \sigma=\sqrt{\theta(1-\theta)}
\end{aligned}
$$

Note for $\theta \rightarrow 0$ or $\theta \rightarrow 1, \sigma \rightarrow 0$: "sure thing".

Functions of Random Variobles

Let

$$
Y=g(x) \text { for } x \sim f_{x}^{\text {given function }} \begin{aligned}
& x \text { clistrobted } \\
& \text { according } \\
& Y
\end{aligned}
$$

new res.
Then for Y,

$$
\begin{aligned}
\text { Sample space } \equiv & \left\{g\left(x_{1}\right), \ldots, g\left(x_{J_{X}}\right\}\right. \text { pruned } \\
& \left\{y_{1}, y_{2}, \ldots y_{J_{V}}\right\} \\
f_{Y}\left(y_{i}\right)= & P\left(X=\text { any } x_{j} \text { st. } g\left(x_{j}\right)=y_{i}\right) \quad U \\
= & \sum_{g\left(x_{j}\right)=y_{i}} f_{X}\left(x_{j}\right), 1 \leqslant i \leqslant J_{Y}
\end{aligned}
$$

Note

$$
\begin{aligned}
\text { Note } \\
\begin{aligned}
\mathbb{E}_{Y}(Y) & =\sum_{i=1}^{J_{Y}} y_{i} f_{Y}\left(y_{i}\right) \\
& =\sum_{i=1}^{J_{Y}} y_{i} \sum_{g\left(x_{j}\right)=y_{i}} f_{x}\left(x_{j}\right) \\
& =\sum_{i=1}^{J_{Y}} \sum_{g\left(x_{j}\right)=y_{i}} y_{i} f_{x}\left(x_{j}\right) \\
& =\sum_{i=1}^{J_{Y}} \sum_{g\left(x_{j}\right)=y_{i}} g\left(x_{j}\right) f_{x}\left(x_{j}\right)
\end{aligned}=\sum_{j=1}^{J_{X}} g\left(x_{j}\right) f_{x}\left(x_{j}\right) \\
\text { each } x_{j} \text { appears once and only once } \quad=E_{X}\left(g\left(Q_{1}\right) .\right.
\end{aligned}
$$

Example: uniform to Bernoulli

$$
\begin{gathered}
X \sim f_{X}^{\text {unif, } J=3} x_{j}=j, p_{j}=\frac{1}{3}, 1 \leq j<J \equiv 3 \\
g(x)= \begin{cases}0 & \text { if } x=1 \text { or } x=2 \\
1 & \text { if } x=3\end{cases} \\
\Rightarrow J_{Y}=2, y_{1}=0, y_{2}=1, \text { and } \\
\left\{\begin{aligned}
f_{Y}\left(y_{1}\right)=P(Y=0) & =P(X=1 \text { or } X=2) \\
& =f_{X}(1)+f_{X}(2)=\frac{2}{3} \\
f_{Y}\left(y_{2}\right)=P(Y=1) & =P(X=3)=\frac{1}{3}
\end{aligned}\right.
\end{gathered}
$$

Bernoull: with parameter $\theta=\frac{1}{3}$

Random Vectors

Jant pmif:
(X, Y) sample space $\left\{(x, y)_{1}, \ldots,(x, y)_{J}\right\}$ r. vector $\rightarrow\left\{\left(x_{i}, y_{j}\right), 1 \leq i \leq J_{X}, 1 \leq j \leq J_{Y}\right\}$

$$
\begin{aligned}
f_{X, Y}\left(x_{i}, y_{j}\right) & =P\left(X=x_{i}, Y=y_{j}\right) \quad \text { AND } \\
& =P_{i, j}^{X, Y}, 1 \leqslant i \leqslant J_{X,}, 1 \leqslant j<J_{Y}
\end{aligned}
$$

where

$$
\left\{\begin{array}{l}
0 \leqslant p_{i, j}^{x, y} \leqslant 1, \quad 1 \leqslant i \leqslant J_{X}, 1 \leqslant j \leqslant J_{Y} \\
J_{X, J_{Y}}^{J_{X, j}} p_{i, j}^{x, Y}=1
\end{array}\right.
$$

Marginal pmf's

$$
\begin{aligned}
f_{X}\left(x_{i}\right) & =P\left(X=x_{i}\right) \\
& =P\left(X=x_{i}, Y=y_{1} \text { OR } X=x_{i}, Y=y_{2} \text { OR } \cdots\right) \\
& =\sum_{j=1}^{J_{Y}} P\left(X=x_{i}, Y=y_{j}\right) \\
& =\sum_{j=1}^{J_{Y}} f_{X, Y}\left(x_{i}, y_{j}\right), \quad 1 \leq i \leq J_{X} \\
f_{Y}\left(y_{j}\right) & =\sum_{i=1}^{J_{X}} f_{X, Y}\left(x_{i}, y_{j}\right), \quad 1 \leq j \leq J_{Y}
\end{aligned}
$$

Conditional mf's

$$
\begin{aligned}
& f_{X \mid Y}\left(x_{\imath} \mid y_{j}\right)=\frac{f_{X, Y}\left(x_{i}, y_{j}\right)}{f_{Y}\left(y_{j}\right)} \quad 1 \leqslant 1 \leqslant J_{X} \\
& f_{Y \mid X}\left(y_{j} \mid x_{\imath}\right)=\frac{f_{X, Y}\left(x_{i}, y_{j}\right)}{f_{X}\left(x_{l}\right)}
\end{aligned}
$$

... Bayes' Theorem

Independence
X and Y are independent if

$$
\begin{aligned}
& f_{X, Y}\left(x_{i}, y_{j}\right)=f_{X}\left(x_{i}\right) f_{Y}\left(y_{j}\right) 1 \leqslant i \leq J_{X} \\
& \text { or } 1 \leq j \leq J_{Y} \\
& f_{X \mid Y}\left(x_{i} \mid y_{j}\right)=f_{X}\left(x_{i}\right) \\
& f_{Y \mid X}\left(y_{j} \mid x_{i}\right)=f_{Y}\left(y_{j}\right)
\end{aligned}
$$

Expectation of sums

$$
\begin{gathered}
X \sim f_{X}, Y \sim f+Y \\
\mathbb{E}_{X, Y}(g(X)+h(Y))=\sum_{i, j} p_{i, j}^{X, Y}\left(g\left(x_{i}\right)+h\left(y_{j}\right)\right) \\
=\sum_{i, j} p_{i, j}^{X, Y} g\left(x_{i}\right)+\sum_{i, j} p_{i, j}^{X, Y} h\left(y_{j}\right) \\
=\mathbb{E}_{X, Y}(g(x))+\mathbb{E}_{X, Y}(h(Y) \\
\left(=\mathbb{E}_{X}(g(X))+\mathbb{E}_{Y}(h(Y)) \quad \text { if } X, Y \text { independent }\right)
\end{gathered}
$$

Expectation of products
$X \sim f_{X}, Y \sim f_{Y}$ independent r.v.'s

$$
\begin{aligned}
\mathbb{L} g(X) \cdot h(Y)) & =\sum_{i \cdot j} p_{i, j}^{x, Y} g\left(x_{i}\right) h\left(y_{j}\right) \\
& =\sum_{i, j} p_{i}^{X} p_{j}^{Y} g\left(x_{i}\right) h\left(y_{j}\right) \\
& =\sum_{i} p_{i}^{X} g\left(x_{i}\right) \sum_{j} p_{j}^{Y} h\left(y_{j}\right) \\
& =\mathbb{E}_{X}(g(X)) \mathbb{E}_{Y}(g(Y))
\end{aligned}
$$

The Binomial Distribution
i.i.d. Bernoulli trials:
sample from Bernoulli
Let population for given θ

$$
X_{1} \sim f_{x}^{\text {Bernoulli }}, x_{2} \sim f_{x}^{\text {Bernoulli }}, \ldots, x_{n} \sim f_{x}^{\text {Bernoulli. }}
$$

be n independent identically distributed (i.i.d.) r.v.'s.
Define new random variables

$$
Z_{n}=\sum_{i=1}^{n} X_{n}\left(\# \text { of 1's) }, \bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{n}\right. \text { (fraction of 1's). }
$$ sample mean

Note each experiment draws

$$
\underline{n} \text { Bemoulli r.v.'s } \rightarrow z_{n}, \bar{x}_{n}
$$

(Pseudo) random variate generation: $\bar{x}_{n} \quad \theta=1 / 2$
$n=$? \% size of Bernoulli sample (r. vector)
num_exp $=? \%$ \# of redizations of \bar{x}_{n}
x bar_n_vec $=\operatorname{zeros}(1$, num_exp $)$
for $i_{-} \exp =1:$ num_exp
bern_r_vector $=\operatorname{randi}([0,1], 1, n)$
$x b a r_{-} n_{-} \operatorname{vec}\left(1 _\exp \right)=\operatorname{sum}($ bern_r-vector $) / n$
end

Birthmonth Revisited:

Hypothesis:

$$
\begin{aligned}
& \text { pothesis: } \\
& x= \begin{cases}0 & \text { if birthmonth is [Jan-June] } \\
1 & \text { if birthmouth is }[J u l y-D e c]\end{cases}
\end{aligned}
$$

is Bernoulli with parameter $\theta=\frac{1}{2}$,

$$
x \sim f_{X}^{\text {Bermoull }}\left(x ; \theta=\frac{1}{2}\right) \text {. }
$$

Data:
actual

$$
\bar{x}_{n}^{*}=\square
$$

one redization of \bar{x}_{n}

Simulation: assume hypothesis is true

distribution of $\bar{x}_{n}\left(\theta=\frac{1}{2}\right)$

If \bar{x}_{n}^{*} is extremely unlikely with respect to distribution (pms) of $\bar{X}_{n}\left(\theta=\frac{1}{2} \Omega\right.$ REJECT hypothesis; otherwise, ACCEPT.

properties of binomial distribution: parameter θ

$$
\begin{aligned}
& \text { pmf: } \text { or } Z_{n}=k \quad\binom{n}{k}=\frac{n!}{(n-k)!k!} \\
& P\left(\bar{x}_{n}=\frac{k}{n}\right)=\underbrace{\binom{n}{k} \theta^{k}(1-\theta)^{n-k}}_{\text {binomial }}, \quad k=0,1,2, \ldots n
\end{aligned}
$$

note

$$
\begin{aligned}
& P\left(\bar{X}_{n}=0\right)=1 \cdot \theta^{0}(1-\theta)^{n}=\left(\text { for } \theta=\frac{1}{2}\right)\left(\frac{1}{2}\right)^{n} \\
& L P\left(X_{1}=0 \text { AND } X_{2}=0 \text { AND } \ldots X_{n}=0\right)=\frac{1}{2} \cdot \frac{1}{2} \cdots \frac{1}{2}
\end{aligned}
$$

only one"waj to get $\bar{x}_{n}=0: 0,0,0, \ldots, 0$ but many ways to get $\bar{X}_{n} \approx \frac{1}{2} \Omega$

$$
0,1,0,1, \ldots \text { OR } 1,0,1,0, \ldots \text { OR } 1,0,0,1,1,0,0,1 \ldots \text { OR }
$$

mean:
hence \bar{X}_{n} is an estimator for θ
\bar{x}_{n} is an estimate for θ
variance, std lev: Appendix A

$$
\sigma_{\bar{x}_{n}}^{2}, \sigma_{\bar{x}_{n}}
$$

$$
\begin{aligned}
& \mathbb{E}\left(\left(\bar{X}_{n}-\theta\right)^{2}\right)=\frac{1}{n} \mathbb{E}\left((X-\theta)^{2}\right)=\frac{\theta(1-\theta)}{n} \\
& \quad \Rightarrow \sigma_{\bar{X}_{n}}^{2}=\frac{\theta(1-\theta)}{n}, \sigma_{\bar{X}_{n}}=\sqrt{\frac{\theta(1-\theta)}{n}}
\end{aligned}
$$

hence \bar{X}_{n} is a good estimator for θ for large n, since large deviations $\left|\bar{x}_{n}-\theta\right|$ are unlikely

Appendix A

$$
\begin{aligned}
& \sigma_{\bar{X}_{n}}^{2}=\mathbb{E}\left(\left(\bar{X}_{n}-\theta\right)^{2}\right)=\mathbb{E}\left(\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}-\theta\right)^{2}\right) \\
&=\mathbb{E}\left(\left(\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\theta\right)\right)\left(\frac{1}{n} \sum_{k=1}^{n}\left(X_{k}-\theta\right)\right)\right) \\
&=\frac{1}{n^{2}} \mathbb{E}\left(\sum_{i=1}^{n} \sum_{k=1}^{n}\left(X_{i}-\theta\right)\left(X_{k}-\theta\right)\right) \\
&=\frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{k=1}^{n} \mathbb{E}\left(\left(X_{i}-\theta\right)\left(X_{k}-\theta\right)\right)
\end{aligned}
$$

but if $i \neq k$,

$$
\mathbb{E}\left(\left(x_{i}-\theta\right)\left(x_{k}-\theta\right)\right)=\mathbb{E}_{x_{i}}\left(x_{i}-\theta\right) \cdot \mathbb{E}_{x_{k}}\left(x_{k}-\theta\right)=0
$$

and hence

$$
\begin{aligned}
& \sigma_{\bar{x}_{n}}^{2}=\frac{1}{n^{2}} \sum_{i=1}^{n} \mathbb{E}\left(\left(x_{i}-\theta\right)^{2}\right)=\frac{1}{n^{2}} \cdot n \cdot \theta(1-\theta) \\
&=\frac{\theta(1-\theta)}{n} \\
& \sigma_{\bar{x}_{n}}=\sqrt{\frac{\theta(1-\theta)}{n}}
\end{aligned}
$$

q quite tamous \sqrt{n}

MIT OpenCourseWare
http://ocw.mit.edu

2.086 Numerical Computation for Mechanical Engineers

Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

