

AT Patera

$$
f: x \rightarrow f(x)
$$

Introduction

Approximation.

What is Af?

Formulation interval $a \leqslant x \leqslant b$
a

over S_{i} :
 $\uparrow \quad h_{\text {how }}$ \bar{x}^{1}
over $a \leq x \leq b$:

DEMO

Error Analysis
f^{\prime} contimous

$$
\begin{aligned}
\mid f(x) & -(\tau f)(x)\left|=\left|f(x)-f\left(x_{i}\right)\right| \quad x \text { in } S_{i}\right. \\
& =\left|\int_{x_{i}}^{x} f^{\prime}(\xi) d \xi\right| \\
& \leqslant \int_{x_{i}}^{x}\left|f^{\prime}(\xi)\right| d \xi \quad S_{i} \\
& \leqslant \max _{x \operatorname{in} S_{i}}\left|f^{\prime}\right| \int_{x_{i}}^{x} d \xi \\
& \leqslant h \max _{x \text { in } S_{i}\left|f^{\prime}\right| \quad \text { any } x \text { in } S_{i}} \quad l
\end{aligned}
$$

$e_{\max } \leqslant C h$ for any h
シ
$e_{\max } \leqslant C h$ as $h \rightarrow 0$ "big Oh"

$$
e_{\max }=O(h)
$$

also (here)
$e_{\max } \sim C h \Leftrightarrow \frac{e_{\text {max }}}{C h} \rightarrow 1$ as $h \rightarrow 0$ asymptotic

$$
\begin{aligned}
& e_{i} \equiv \max _{x_{i \text { in }} s_{i}}|f(x)-(\mathcal{I f})(x)| \leqslant h \max _{x \text { in } s_{i}\left|f^{\prime}\right|} \\
& e_{\max } \equiv \max _{a \leq x_{i+1}}|f(x)-(\tau f)(x)| \leqslant h \max _{\text {all }}\left|f_{i}^{\prime}\right| \\
& a \leqslant b
\end{aligned}
$$

or

$$
e_{\max } \leqslant \int_{\text {independent of } h}^{C h} \quad C^{\prime}=\max _{\text {all }}\left|f^{\prime}\right|
$$

sooner or
later

$$
e_{\max } \leqslant C h^{p}: \quad(\text { as } h \rightarrow 0)
$$

$$
\text { convergence: } e_{\max } \rightarrow 0 \text { as } h \rightarrow 0
$$

convergence rate: order p
F $p=1$: first order
how $p=1$: first order
fast plecewise-constrant, left-endpoint)
$p=2$: second order

AT Patera

Operation Count
(storage)

$$
\mathrm{N}-1
$$ segments

$N_{\text {evil }}=N-1$ evaluation points

$$
h=(b-a) / \mathbb{N e v a l ~}
$$

Offline:

$$
\begin{aligned}
& \text { evaluate } \\
& \text { (and store) }
\end{aligned} \tilde{x}_{i} \xrightarrow{\longrightarrow} f\left(\tilde{x}_{i}\right), 1 \leq i \leq N_{\text {eval }}
$$

Online: given x
segment which contains x
(i) find $x_{i^{*}}: x_{i^{*}} \leqslant x \leqslant x_{i^{*}+1}$
$h: O(1)$ FLOPs $h_{i}: O\left(\log N_{\text {val }}\right), O\left(N_{\text {eva }}\right)$ FLOPs $i^{*}=\tilde{F}^{\operatorname{Fror}}(x / h)+1$ binary chop comparison
(ti) "look up" $f\left(\tilde{x}_{i^{*}}\right)$

Nomenclature:
FLOPs: Floating Point OPerations

$$
z=2+3 * 4 \quad 2 \text { FLOPs }
$$

$O(g(K)): \quad K: " s 1 z e "$ of problem $\quad N_{\text {val }}$
operation count $=O(g(K))$ FLOPs
介
operation count $\leqslant c g(k)$ FLOPs as $k \rightarrow \infty$

$$
\left[\operatorname{eg}: O\left(K^{2}+K\right)=O\left(K^{2}\right)\right]
$$

AT Patera

Method II poorly implemented
Piecewise -Linear
over S_{i} :

$$
\begin{aligned}
& \left.\begin{array}{l}
(\tau f)(x): \text { linear over } S_{i} \\
(\tau f)\left(x_{i}\right)=f\left(x_{i}\right) ;(\tau f)\left(x_{i+1}\right)=f\left(x_{i+1}\right)
\end{array}\right\} \\
& \Rightarrow(\tau f)(x)=f\left(x_{i}\right)+\frac{f\left(x_{i+1}\right)-f\left(x_{i}\right)}{x_{i+1}-x_{i}} \cdot\left(x-x_{i}\right)
\end{aligned}
$$

Error Analysis

$$
\begin{aligned}
e_{\max } & \equiv \max _{a \leqslant x \leqslant b}|f(x)-(\tau f)(x)| \\
& \leqslant C h^{2} \sim p: \text { order } \Rightarrow O\left(h^{2}\right) \\
& \text { for } C=\frac{1}{8} \max _{a \leqslant x \leqslant b}\left|f^{\prime \prime}(x)\right|
\end{aligned}
$$

\Rightarrow piecewise-linear is second order
DEMO $(b-a=1)$

Offline: $\begin{gathered}\text { evaluate } \\ \text { (and store) }\end{gathered} \tilde{x}_{i} \xrightarrow{\longrightarrow} f\left(\tilde{x}_{i}\right), 1 \leq i \leq N_{\text {evil }}$

Online: given x
segment which Contains x
(i) find $x_{i^{*}}: x_{i^{*}} \leqslant x \leqslant x_{i^{*}+1}$
$h: O(1)$ FLOPs $\quad h_{i}: O\left(\log N_{\text {eval }}\right), O\left(N_{\text {eval }}\right)$ FLOPs

$$
\begin{aligned}
& \text { (ii) "look up" } f\left(\tilde{x}_{i^{*}}\right) \rightarrow r, f\left(\tilde{x}_{i^{*}+1}\right) \rightarrow s \\
& (\tilde{I})(x)=r+\frac{s-r}{x_{i^{*}+1}-x_{i^{*}}} \cdot\left(x-x_{i^{*}}\right) \quad 4 \text { FLOPs }
\end{aligned}
$$

Operation Count
a

b N segments

$$
N_{\text {eval }}=N
$$ evaluation points

$$
h=(b-a) /\left(N_{\text {oval }}-1\right)
$$

What if

- $f(x)$ is not smooth?
f. $f^{\prime}, f^{\prime \prime}$.
- $f(x)$ undergoes rapid variation? $f^{\prime} f^{\prime \prime}, \ldots$
- we wish to consider higher-order interpolents, $(T f)(x)$: piecewise quadratic, - -cbc, ...?
- we wish to estimate the error

$$
x \rightarrow\left\{\begin{array}{l}
(\tau f)(x) \text {, and } \\
\Delta(x) \text { such that }|f(x)-(\tau f)(x)| \approx \Delta(x)
\end{array} ?\right.
$$

AT Patera

MIT OpenCourseWare
http://ocw.mit.edu

2.086 Numerical Computation for Mechanical Engineers

Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

