Overdetermined System

Linear Algebra Ib:
Overdetermined Systems and
Least-Squares Approximation

Say B is $m \times n$ with $m>n$, and g is $m \times 1$:
can we find a z (n vector) such that

$$
{\underset{m}{n} \times n \times 1}^{=} g_{m \times 1} ?
$$

Consider $m=3, n=2$:

$$
\begin{gathered}
\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22} \\
B_{31} & B_{32}
\end{array}\right)\binom{z_{1}}{z_{2}} \stackrel{?}{=} \\
\left.\begin{array}{l}
3 \times 2
\end{array} \begin{array}{l}
g_{1} \\
g_{2} \\
g_{3}
\end{array}\right) \\
3 \times 1
\end{gathered}
$$

or

$$
\left.\begin{array}{l}
B_{11} z_{1}+B_{12} z_{2}=g_{1} \\
B_{21} z_{1}+B_{22} z_{2}=g_{2} \\
B_{31} z_{1}+B_{32} z_{2}=g_{3}
\end{array}\right\}
$$

$$
\begin{equation*}
m>n \tag{3}
\end{equation*}
$$

equate corresponding elements of vector $B z$, and vector g

3 equations
in
2 unknowns
(a) row perspective (example)
case I

$$
\begin{array}{rl}
\left(\begin{array}{cc}
1 & 2 \\
2 & 1 \\
2 & -3
\end{array}\right)\binom{z_{1}}{z_{2}} \stackrel{2}{=}\left(\begin{array}{c}
\frac{5}{2} \\
2 \\
-2
\end{array}\right) & \left(\begin{array}{ll}
1 & 2 \\
2 & 1 \\
2 & -3
\end{array}\right)\binom{z_{1}}{z_{2}} \stackrel{?}{=}\left(\begin{array}{c}
0 \\
2 \\
B \\
-4
\end{array}\right) \\
1 z_{1}+2 z_{2}=\frac{5}{2} & \left.B \quad \begin{array}{l}
= \\
I I I \\
2 z_{1}+1 z_{2}
\end{array}\right)=2 \\
2 z_{1}-3 z_{2}=-2 & 1 z_{1}+2 z_{2}=0 \\
2 z_{1}+1 z_{2}=2 \\
2 z_{1}-3 z_{2}=-4
\end{array}
$$

case I

$\binom{z_{1}}{z_{2}}=\binom{\frac{1}{2}}{1}$
Solution of all three equations
\Rightarrow solution of $B z=g$
(but "unstable")

Note: any 2 equations
suffice; $3^{\text {rd }}$ equation is
redundant, but not inconsistent

$$
\begin{aligned}
& \text { (b) column perspective (example) } \\
& \text { case I } \quad \text { case II } \\
& \left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right)\binom{z_{1}}{z_{2}}=\left(\begin{array}{l}
1 \\
3 / 2 \\
0
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right)\binom{z_{1}}{z_{2}}=\left(\begin{array}{c}
1 \\
3 / 2 \\
2
\end{array}\right) \\
& B=g_{I} \\
& \text { or } \left.\begin{array}{l}
\text { (b }
\end{array}\right)
\end{aligned}
$$

x_{1}
there is no point z which satisfies Note: thine equation is all three equations
\Rightarrow no solution to $B z=9$
inconsistent with
other two equations.

g_{I} can be expressed
$g_{\text {II }}$ can not be expressed
as linear combination (z) of columns of B

$$
\begin{gathered}
B z=g_{ \pm} \text {has a solution } \\
\text { (but "unstable") }
\end{gathered}
$$

as linear combination (z) of columns of B
$B z=g_{I I}$ has no solution
(c) "Fitting" Perspective (Line to Data)

$$
\begin{array}{ll}
\beta_{0}^{\text {the }}+\beta_{1}^{\text {true }} 0 & \text { first point on line } \\
\beta_{0}^{\text {the }}+\beta_{1}^{\text {the }} \cdot 1=1 & \text { second point on line }
\end{array}
$$

$$
\longrightarrow \beta_{0}^{\text {true }}=0, \beta_{1}^{\text {true }}=1
$$

AT Patera

$$
\begin{array}{ll}
\begin{array}{l}
\text { true } \\
\beta_{0}^{\text {the }}+\beta_{1}^{\text {the }} \cdot 0
\end{array}=0 & \text { first point on line? } \\
\beta_{0}^{\text {the }}+\beta_{1}^{\text {tue }} 1 & =1 \\
\text { second point on line? } \\
\beta_{0}^{\text {the }}+\beta_{1}^{\text {the }} 2 & =1.9
\end{array} \quad \begin{aligned}
& \text { third point on line? } \\
& \left(\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right)\binom{\beta_{0}^{\text {the }}}{\beta_{1}^{\text {the }}} \stackrel{?}{=}\left(\begin{array}{c}
0 \\
1 \\
1.9
\end{array}\right) \\
& X \quad \beta^{\text {tue }} \stackrel{?}{=} Y
\end{aligned} \quad \begin{aligned}
& \text { No sownon } \\
& \text { but somehow "close" }
\end{aligned}
$$

m data points least squares

Define residuals

$$
\begin{aligned}
& r_{1}(\beta)=Y_{1}-Y_{\text {model }}\left(x_{1} ; \beta\right)=Y_{1}-\left(\beta_{0}+\beta_{1} x_{1}\right) \\
& r_{2}(\beta) \equiv Y_{2}-Y_{\text {model }}\left(x_{2} ; \beta\right)=Y_{2}-\left(\beta_{0}+\beta_{1} x_{2}\right) \\
& \vdots \\
& \vdots \\
& r_{m}(p)=Y_{m}-Y_{\text {model }}\left(x_{m} ; \beta\right)=Y_{m}-\left(\beta_{0}+\beta_{1} x_{m}\right)
\end{aligned}
$$

and choose $\hat{\beta}$ to minimize (over all β) $\underbrace{O_{i=1} \sum_{i} r_{i}^{2}}$ all points lie on a line

AT Patera
2.086 Linear Algebra I Lecture 2

March 12, 2013
13

A General Linear Model (to which to fit data)
Let $\left(x_{(1)}, \ldots, x_{(p)}\right)$ be our independent variables (p in total).
Let y be our dependent variable predict in terms of
Let $h_{j}(x), 1 \leqslant j \leq n-1$, be prescribed functions.
Let $\beta_{j}, 0 \leq j \leq n-1$, be (umbuown) coefficients.
Then define $Y_{\text {model }}\left(x_{;} \beta\right)=\beta_{0}+\sum_{j=1}^{n-1} \beta_{j} h_{j}(\alpha)$,

$$
=\sum_{j=0}^{n-1} \beta_{j} h_{j}(x)
$$

(for $\left.h_{0}(x)=1\right)$.
matrix form
Given $\left(x_{i}, Y_{i}\right), 1 \leq i \leq m, \quad Y_{i}=Y_{\text {model }}\left(x_{i} ; \beta^{\text {true }}\right)+$ "no sse"

$$
Y=\left(\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{m}
\end{array}\right) ; \quad X=\left(\begin{array}{ccccc}
1 & h_{1}\left(x_{1}\right) & h_{2}\left(x_{1}\right) & \cdots & h_{n-1}\left(x_{1}\right) \\
1 & h_{1}\left(x_{2}\right) & h_{2}\left(x_{2}\right) & & h_{n-1}\left(x_{2}\right) \\
\vdots & \vdots & \vdots & & \vdots \\
& & & & \vdots \\
1 & h_{1}\left(x_{n}\right) & h_{2}\left(x_{m}\right) & \cdots & h_{n-2}\left(x_{m}\right)
\end{array}\right)
$$

$$
X_{i j}=h_{j-1}\left(x_{i}\right) \quad 1 \leq i \leq m, \quad 1 \leqslant j \leq n
$$

(Assume columns of X are independent.)

AT Patera
2.086 Linear Algebra I - Lecture 2

$$
\begin{aligned}
& p=0, x \equiv \text { null } \quad y \\
& x=1, h_{0}(1) \equiv 1, \beta \equiv \beta_{0} \\
& Y_{\text {model }}(; \beta)=\beta_{0} \\
& \text { FIT DATA to a COUSTANT }
\end{aligned}
$$

$$
Y=\left(\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{m}
\end{array}\right) \quad \underset{(m \times 1)}{ } \quad \underset{m \times n}{ }=\left(\begin{array}{l}
1 \\
1 \\
\vdots \\
1
\end{array}\right)
$$

Note

$$
\begin{aligned}
& r_{1}=Y_{1}-Y_{\text {model }}\left(x_{1} ; \beta\right) \\
&=Y_{1}-\left(\beta_{0}+\sum_{j=1}^{n-1} \beta_{j} h_{j}\left(x_{1}\right)\right)=Y_{1}-\overbrace{(X \beta)_{1}}^{m \times 1} \text { - first } \\
& r_{2}=Y_{2}-(X \beta)_{2} \\
& \text { or } \\
&\left.\quad \begin{array}{l}
m \times 1 \\
\\
\vdots \\
r_{m}
\end{array}\right)=\left(\begin{array}{c}
r_{1} \\
r_{2} \\
m \times 1 \\
m \times n \\
m \times 1 \\
m \times 1
\end{array}\right.
\end{aligned}
$$

AT Patera
2.086 Linear Algebra I - Lecture 2

$$
\begin{gathered}
\text { example: Simple } \begin{array}{c}
p=1, x_{(1)} \equiv x(\text { say }) \\
n=2, h_{0}(x) \equiv 1, h_{1}(x) \equiv x \\
\beta=\left(\beta_{0} \beta_{1}\right)^{\top}
\end{array} y \\
Y_{\text {model }}(x ; \beta) \equiv \beta_{0}+\beta_{1} x \\
\text { FIT DATA to a LINE } \\
Y=\left(\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{m}
\end{array}\right) \quad X=\left(\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{m}
\end{array}\right)
\end{gathered}
$$

Note: $\frac{d Y_{\text {mode }}}{d x}=\beta_{1}$; differentiation of noisy data
example: spring

$$
\begin{aligned}
& p=1, x_{(1)}=x \equiv \delta / \delta_{\text {max }} \\
& y \equiv F \\
& n=3, \quad h_{0}=1, \quad h_{1}(x)=x, \quad h_{2}(x)=x^{2} \\
& h_{1}\left(\delta / \delta_{\text {max }}\right) \equiv \delta / \delta_{\text {max }} \quad h_{2}\left(\delta / \delta_{\text {max }}\right)=\left(\delta / \delta_{\text {max }}\right)^{2} \\
& \begin{array}{ll}
F_{1} & \beta=\left(\beta_{0} \beta_{1} \beta_{2}\right)^{\top} \\
Y=\left(\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{m}
\end{array}\right) \quad X=\left(\begin{array}{ccc}
1 & x_{1} & x_{1}^{2} \\
1 & x_{2} & x_{2}^{2} \\
\vdots & \vdots & \\
1 & x_{m} & x_{m}^{2}
\end{array}\right)\left(\frac{\delta}{\gamma_{\text {max }}}\right)_{1}^{2}
\end{array}
\end{aligned}
$$

and hence

$$
Y=\left(\begin{array}{c}
\log N u_{1} \\
\log N u_{2} \\
\vdots \\
\log N u_{m}
\end{array}\right) \quad X=\left(\begin{array}{ccc}
1 & \log R e_{1} & \log P r_{1} \\
1 & \log R e_{2} & \log P r_{2} \\
\vdots & \vdots & \vdots \\
1 & \log R e_{m} & \log P r_{m}
\end{array}\right)
$$

such that (say)

$$
\begin{aligned}
& r_{1} \equiv Y_{1}-(X \beta)_{1}=\log N u_{1}-\beta_{0}-\beta_{1} \log R_{1}-\beta_{2} \log P r_{1} \\
& r_{2} \equiv \ldots
\end{aligned}
$$

or $r \equiv Y-X \beta$
matrix form
Note

$$
r(\beta) \equiv Y-X \beta \quad m \times 1
$$

and

$$
\sum_{i=1}^{m} r_{i}^{2}(\beta)=\underbrace{r^{\top}(\beta) r(\beta)}_{\|r(\beta)\|^{2}}=\left(\begin{array}{llll}
r_{1} & r_{2} & \cdots & r_{m}
\end{array}\right)\left(\begin{array}{c}
r_{1} \\
r_{2} \\
\vdots \\
r_{m}
\end{array}\right)
$$

Define

$$
J(\beta) \equiv r^{\top}(\beta) r(\beta) ; \quad \text { note } J \text { is a scalar }
$$

then $\hat{\beta}$ minimizes $J(\beta)$.

So

$$
\begin{aligned}
J(\beta) & =r^{\top}(\beta) r(\beta)=(Y-X \beta)^{\top}(Y-X \beta) \\
& =\left(Y^{\top}-(X \beta)^{\top}\right)(Y-X \beta) \\
& =\left(Y^{\top}-\beta^{\top} X^{\top}\right)(Y-X \beta) \\
& =Y^{\top}(Y-X \beta)-\beta^{\top} X^{\top}(Y-X \beta) \\
& =Y^{\top} Y-Y^{\top} X \beta-\beta^{\top} X^{\top} Y+\beta^{\top} X^{\top} X \beta
\end{aligned}
$$

pause
$1 \times m m \times 1$ 1 $1 \times m m \times n n \times 1,1 \times n n \times m m \times 1 \quad v n n \times m m \times n n \times 1$
note $Y^{\top} X \beta=\left(Y^{\top} X \beta\right)^{\top}$

$$
=\beta^{\top} x^{\top} Y
$$

$$
=Y^{\top} Y-2 \beta^{\top} X^{\top} Y+\beta^{\top} X^{\top} X \beta
$$

Denote

$$
\hat{Y}=x \hat{\beta}
$$

such that

$$
\begin{aligned}
\hat{Y}_{i}=(X \hat{\beta})_{i} & =Y_{\text {model }}\left(x_{i}, \hat{\beta}\right) \\
& =\text { model prediction for best-fit } \hat{\beta}
\end{aligned}
$$

Then

$$
\begin{aligned}
J(\hat{\beta}) & =(Y-X \hat{\beta})^{\top}(Y-X \hat{\beta}) \\
& =(Y-\hat{Y})^{T}(Y-\hat{Y}) \\
& =\|Y-\hat{Y}\|^{2} \leqslant\|Y-X \beta\|^{2} \text { for any } \beta \neq \hat{\beta} .
\end{aligned}
$$

tiff X has independent columns

$$
\begin{aligned}
& \text { example: Simple } \quad \begin{array}{l}
p=0, x=\text { null } \\
n=1, h_{0}=1 \\
\beta=\beta_{0}
\end{array} \quad \text { FIT to a CONSTANT } \\
& Y=\left(\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{m}
\end{array}\right) \quad X=\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right)
\end{aligned}
$$

First, from scratch

$$
\begin{aligned}
& r\left(\beta_{0}\right)=Y-X \beta_{0} \quad\left(r_{i}=Y_{i}-\beta_{0}\right) \\
& J(\beta)=Y^{\top} Y-2 \beta^{\top} X^{\top} Y+\beta^{\top} X^{\top} X \beta
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
Y^{\top} Y=\sum_{i=1}^{m} Y_{i}^{2}=c_{0} \\
X^{\top} Y=\left(\begin{array}{llll}
1 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{m}
\end{array}\right)=\sum_{i=1}^{m} Y_{i}=m \bar{Y} \quad \text { scalar } \\
X^{\top} X=\left(\begin{array}{llll}
1 & 1 & \ldots & 1
\end{array}\right)\left(\begin{array}{c}
1 \\
1 \\
\vdots
\end{array}\right)=m
\end{array} \quad \text { scalar } \quad \text { in } \quad l\right. \\
& 80 \\
& J(\beta)=c_{0}-2 \beta_{0} m \bar{Y}+\beta_{0}^{2} m \\
& \left.\begin{array}{l}
\frac{d J}{d \beta_{0}}\left(\beta_{0}\right)=-2 m \bar{Y}+2 \beta_{0} m ; \frac{d J}{d \beta_{0}}\left(\hat{\beta}_{0}\right)=0 \Rightarrow \hat{\beta}_{0}=\bar{Y} \\
\frac{d^{2} J}{d \beta_{0}^{2}}\left(\beta_{0}\right)=2 m>0 \quad\left(\Rightarrow \hat{\beta}_{0} \text { a minimizer }\right)
\end{array}\right\} \\
& \frac{d^{2} J}{d \beta_{0}^{2}}\left(\beta_{0}\right)=2 m>0 \quad\left(\Rightarrow \hat{\beta}_{0} \text { a minimizer }\right)
\end{aligned}
$$

Second, from the general formula,

$$
\left.\begin{array}{l}
X^{\top} X \hat{\beta}^{\prime}=X^{\top} Y \\
m \hat{\beta}_{0}=m \bar{Y} \\
\hat{\beta}_{0}=\bar{Y}
\end{array}\right\}
$$

MIT OpenCourseWare
http://ocw.mit.edu

2.086 Numerical Computation for Mechanical Engineers

Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

