13.42 Homework \#1

Spring 2005

Out: Thursday, February 3, 2005
Due: Thursday, February 10, 2005

Problem 1: A neutrally buoyant circular cylinder is mounted underwater in a strong current. The vortices shed from the cylinder generate a force on the cylinder and excite oscillations. The system can be modeled simply as the spring-mass-dashpot system shown below:

a) Draw a simple force-body diagram for this system
b) Derive from Newton's second law the equation of motion given a forcing function $f(t)=f_{o} \cos (\omega t)$. Explain the significance of each term.
c) Express the natural frequency of the system in terms of the given variables.
d) Assuming that this is a Linear-Time-Invariant system, the output will be harmonic in nature with the same frequency as the forcing function: $x(t)=x_{o} \cos (\omega t+\psi)$, where ψ is simply a phase shift between the input and output. Write an expression for the amplitude of the response in terms of the amplitude of the forcing and other given variables.

Problem 2: Calculate the magnitude and phase of the following complex numbers. Show your work.
a) $1+i \sqrt{3}$
b) $\frac{1+i \sqrt{3}}{\sqrt{3}+i}$
c) $-5-5 i$
d) $i(1+i) e^{i \pi / 6}$

Problem 3: Let z_{o} be a complex number with polar coordinates $\left(r_{o}, \theta_{o}\right)$ and Cartesian coordinates $\left(x_{o}, y_{o}\right)$. Determine expressions for the Cartesian coordinates of the following complex numbers in terms of x_{o} and y_{o}.
a) $z=r_{o} e^{-i \theta_{o}}$
b) $z=r_{o} e^{i(\theta+\pi)}$
c) $z=r_{o} e^{-i(\theta-\pi)}$
d) $z=r_{o} e^{i(\theta+2 \pi)}$

Problem 4: Given a cylinder floating horizontally on the free surface and a sphere floating on the free surface. Both objects are in static equilibrium when submerged to half diameter depth. Show that for both objects the hydrostatic restoring coefficient in $\operatorname{HEAVE}\left(\mathrm{C}_{33}\right)$ is approximately equal to $C_{33} \approx \rho g A_{w p}$, where $A_{w p}$ is the area of the object at the water plane in static equilibrium.

Problem 5: Determine whether the following systems are Linear and/or Time-invariant. Show your work.
a. $y(t)=\int_{0}^{t+\alpha} u(s) d s$
b. $y(t)=\int_{t-\alpha}^{t+\alpha}[u(s)]^{2} d s$
c. $\quad y(t)=\alpha \frac{d u(t)}{d t}\left|\frac{d u(t)}{d t}\right|$
d. $\quad \alpha \ddot{y}(t)+\beta \dot{y}(t)+\gamma y(t)=u(t)$

