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2.57 Nano-to-Macro Transport Processes 
Fall 2004 
Lecture 1 

1. Overview for nano sciences 
1.1 Length scale 
1.2 Examples in microtechnology  
1.3 Examples in nanotechnology  
1.4 Nano for energy (phonon, phonon, electron; wavelength, mean free path) 
1.5 Nanoscale heat transfer in devices (e.g., CMOS) 
1.6 Nano and microfabrication 
1.7 Transport regimes 
1.8 Overview of the book chapters and chapters to be covered 

2. Classical Laws related to transport 
2.1 Heat transfer 
2.1.1 Conduction 

Fourier’s law: 
dT q = −  ∇k  T  or q = −k  in one dimension  
dx 

where: 
q [W/m2] is heat flux, 
k [W/m-K] is thermal conductivity. 

2.1.2 Convection 
Newton’s law of cooling: 

= (
q h T  − T )w a 

where: 
h [W/m2K] is heat transfer coefficient. 

Ta y 

x 
Tw 

Nonslip boundary condition is assumed at the wall, i.e., 
( (u y = 0) = uy ( y = 0) = 0 , T y = 0) = T .x w 

Note: this assumption is NOT accurate for small scales.  

2.1.3 Radiation 
 Planck’s law: 

c1=eb,λ λ5 (ec2 /λT −1) 
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where: 
c1 and c2 are constants, 
λ is wavelength, and the subscript b denotes black body. 

The curve for block-body radiation is drawn as following: 

ebλ 

λ 

λ T=2898 µ m⋅ K 

Integrating the Planck’s law leads to the Stefan-Boltzmann law: 
4eb =σ T

where: 
-8 2 4σ =5.67 × 10 W/m K . 

For real surface, we define “emissivity” as  

ε = 
e . 

eb


For the two planar walls shown below, the heat flux of radiation is evaluated as 
4q =σ (T − T2

4 ) .1 

T1 

ε 1=1 
T2 

ε 2=1 

2.2 Newton shear stress law 
      The shear stress for the sketched one-dimensional flow is:  

τ = µ ∂ u 
xy ∂ y 

where: 
µ [N-s/m2] is dynamic viscosity.  

τ xy 

y 

x 
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2.3 Fick’s diffusion law 
dmij = −ρDi dx 

m

where: 

D [m2/s] is mass diffusivity, 


i is the mass fraction for the ith species.  

2.4 Ohm’s law 

VR = 
I 

or 
1 dΦ dϕeJ =σε σ (− ) =  −σ= 
e dx  dx  

where: 
J [A/m2] is electric current density, 
Ω-1σ [ m-1] is electrical conductivity, 


ε [V/m] is electric field, 

Φ is potential energy, 

φ is electrostatic potential. 


2.5 Questions 
a) What are the similarities among above equations? 
b) Are these laws still valid at nanoscale? 

2.6 Note: 
All above are constitutive equations with two unknown variables. 
Another equation (e.g. mass, momentum conservation) is needed to solve problems. 

3. Scaling trend 
For a sphere, the volume-to-surface ratio is 

3V 4π r / 3 r 
= = .2S 4π r 3 

The volumetric effect decreases with the reducing length scale. Surface effect becomes 
dominant at smaller scales. 

For a spherical fluid drop, we have 
3 2 

γ = 
Gravitational force ρg (4π r / 3) 2ρgr  

= = . 
Surface force σ (2π r) 3σ 

3 2Substituting ρ = 10 kg / m , σ = 78mN / m  into this equation, we get 
r =1 m, γ = 8.4e4; r =1 mm, γ = 8.4e-2. 

mg 
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4. Microscopic pictures of energy carriers 
4.1 Heat 
4.1.1 Heat conduction 
Gases: hotter air molecules (with larger kinetic energy) randomly pass their excess 
energy to cooler molecules. Heat is transported to the cold side by such a process. Note 
the average velocity of a molecule can be as large as 500 m/s. 

Air molecules 

Th  Tc 

Dielectric solids: heat is conducted through the vibration of atoms. The atom cores are 
spaced by 2-5 Å in the lattice. Under the free electron approximation, the electrons are 
viewed as free electron gas.  

Free electron 

TcTh

Atom core 
Free electron model 

Consider two atoms with a parabolic interatomic potential. The interatomic force is 
F = −∇Φ  ≈  K x∆ 

where ∆x is the displacement from the minimum potential position (equilibrium 
position), K is constant. 

Interatomic 
potential Φ 

Repulsion 

x 

Attraction 
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A simplified picture of the interatomic interactions in crystals can be represented by the 
mass-spring system. The propagation of sound in a solid is due to long wavelength lattice 
waves. Quantum mechanics states that the energy of each lattice wave is discrete and 
must be multiples of hν. Based on argument we will discuss in chapter 5, the spring 
system can be further simplified as a box of phonon particles. 

Th  Tc 

Phonon gas 
ε = nhν 

Now, molecules, electrons, and phonons are all gases in a box.  You can see similarities 
and why I said we can describe them in parallel. 

2.57 Fall 2004 – Lecture 1 
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2.57 Nano-to-Macro Transport Processes 
Fall 2004 
Lecture 2 

5.1 Heat conduction 

Th  Tc 

      In last lecture, we describe electrons as free electron gas and lattice vibrations as 
phonon gas. Basically they are both gases in a box. 

5.2 Convection 
1) Typically electron velocities are 105-106 m/s, while phonon velocities are the 

sound velocity. 
G2)	 In heat conduction processes, the average velocity of heat carriers is v = 0 . In 

convection, a non-vanishing average velocity superimposed on their random 
Gvelocity, resulting in v ≠ 0 . 

3) When a liquid or gas molecule is moved from one place to another due to its 
nonzero velocity, it also carries its internal energy.   

5.3 Radiation 

8 

6 

1/ 
900 10 3 

c fλ 
× 

= = = 
×

 at 
frequency ν hν. 

E2 

E1 

∆E= nhν 

1) Wavelength comparison 
For radio/TV signals, we get 

3 10   (m), 

where we use 900 MHz as the frequency. This wavelength is still much larger than that of 
the thermal radiation (around 0.5 µm). 
2) Generation of thermal radiation  
      Thermal radiation typically refers to the electromagnetic waves that are generated by 
the oscillation charges in the atoms and crystals, while TV and radio signals are 
generated by artificial current oscillation in a circuit. An electromagnetic wave

 can only have energy that is multiple times of 

Emission 
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5.4 Pressure and shear stress 

x 

As is shown in the figure, the velocities of gas molecules distribute randomly in all 
directions. Pressure is caused by their momentum changes normal to the wall. For one 
molecule, we have GG G d mv  ) or F = 

m vx>0 − v ) m∆v( (
= x<0 = xF ma  = .xdt ∆t ∆t 

Denote n [m-3] as the number of particles per unit volume. We notice nvx [m-2s-1] has the 
physical meaning as the flux of particles on the wall. Assuming elastic collisions between 
the wall and molecules, we have ∆v = 2v > . Thusx x 0 

2P = 
1
2 

nvx>0 (m∆vx ) = mnvx 
2 
>0 = mnvx = mn  v2

,

3


2 2in which we use average v2 = v + vy 
2 + v = 3v 2 . From here, you can derive the ideal x z x 

gas law using the relationship between velocity and temperature that I will talk below. 
For assignment 1, similar processes can be followed to calculate the shear stress. 

y 

x 

5.5 Charge transport 
Similarly, we have G G G G G 

=F qε = −  eε ; J = σε , 
G G 

where ε is electrical field and J is electric current density. An expression of σ can be 
derived. 

. 
5.6 Mass diffusion 
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0 

6. To understand transport and energy conversion, we need to know: 
— How much energy/momentum can a particle have? 
— How many particles have the specified energy E? 
— How fast do they move? 
— How far can they travel? 
— How do they interact with each other? 

6.1 How much energy/momentum can a particle have?

 Classical mechanics Quantum mechanics 
Energy E = EKinetic+EPotential E is the eigenvalue of the 

Schrödinger equation 
EKinetic 2 

Translation = 
2 

mvE (for quantum case, I did not give answer but point out it 

is the solution for particle in a box) 
2 2 

Vibration = 
2 2 

mv Kx E + Vibration 
1 1( );
2 2 

KE h n 
m 

ν ν 
π 

= + = 

( =0,1,2 )n " 
2 

Rotation 
I = 
2 

E ω Rotation =  (  1)  (  =0,1  )E  hBl  l  l+ " 

Here the Planck constant h = 6.6 ×10 −34 J ⋅ s . The vibration energy of a standing wave 
inside the potential well is discrete in quantum mechanics. In the table, we give the 
allowed energy levels of a harmonic oscillator, which is a model for the vibrations of a 
diatomic molecule such as H2. The dispersion relation (E-k relation) for electrons, 
phonons, and photons are sketched in following figures, in which the wavevector k points 
to the direction of wave propagation (electron, photon, and phonon waves). 

k 

Energy 

k 

Energy 
Electrons Acoustic Phonons 

Wavevector 2π/λ 0 Wavevector 2π/λ 

k 

Energy 
Photons 

0 Wavevector 2π/λ 

For photons, the energy is just a linear function of the wavevector, i.e.,  

2.57 Fall 2004 – Lecture 2 3 
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Ghc 2π hc 
=E hc / λ = = | k | . 

2π λ  2π 
6.2 How many particles have the specified energy E? 

For a monoatomic ideal gas system, the only energy of each atom is their kinetic 
energy, 

2 2 2E = 
m (v + vy + vz ). 2 x 

Statistical thermodynamics gives the probability density f(E), defined as the probability 
of finding the carriers at energy E per energy interval surrounding E, that a particle in an 
equilibrium system at a temperature T as, 

f E  E/(κ T)B( ) = Ae− , 
where the Boltzmann constant kB=1.38e-23 J/K. 

6.3 How fast do they move?
    First we use normalization of f to calculate A. Since the probability of finding this 
particle having energy between 0 and infinity must be one, we have 

∞ ∞ ∞ 

dvx ∫ dvy ∫ f(v ,v ,v )dv =1.∫ x y z z


-∞ -∞ -∞


Using spherical coordinates can simplify the calculation as 
∞ 

∫ 24 v  f(v)dv  =1.π 
0 

Both of above equations yield 

A = ( m )3/ 2 . 
2π k TB 

Thus 
2 2 2 ⎤ 

( ) = ⎜
⎛ ⎞

⎟ 
3/2

exp 
⎡
⎢− 

v m x + vy + vz )m
f v ⎜
⎝ 2πκ BT ⎠

⎟ ⎢⎣

( 
2κ T 

⎥
⎥

, 

B ⎦ 

which is also called the Maxwell distribution. The average energy of the monoatomic gas 
is 

⎞
3/2 2 2 

2 2 m ( x 
∞ ∞ ∞ 

yE = ∫ dvx ∫ dvy ∫
m (vx + v + vz

2 )
⎝
⎜
⎛ 

2πκ T ⎠
⎟ exp  

⎡
⎢− 

m v  + v2 + vz ) ⎤
⎥ dv 


-∞ -∞ -∞ 2 y 
B ⎣⎢ 2κBT ⎦⎥ 

z


3 
= k T  

2 B 

At room temperature (300 K), this average energy is 39 meV, or 6.21e-21 J. For He gas, 
2 

m=6.4e-27 kg. Using mv 
= 

3 k T , we can calculate average v=1000 m/s, while it
2 B2 

becomes 500 m/s for air. It is good to remember that kBT at room temperature is 26 meV. 

( ) ⋅Note: The flux of quantity X (e.g. momentum, energy) is expressed as n X  X  v  , which 
is already used in 5.4. 
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6.4 How far can they travel? 
The effective diameter for two atoms to collide is 2D. .  If the number concentration is 

n [m-3], then the number of molecules that this particle will collide with is nπD2L. The 
2πaverage distance L between each collision satisfies n D L  =1. 

d 2d 

L 

Thus the mean free path is  
1

Λ =
n D2 .
π 

Noticing n = ρ / m , where m is molecular weight, ρ is density. For ideal gases, we have 
P = ρRT . Therefore, 

Λ =  
m 

= 
mRT R T  k T  

= u = B 

D2 2 2 2π  ρ  π  D P  π D PNA π D P  
, 


/ ⋅
where the universal gas constant R = N k  = 8.314 J  mol  K  .u A B

The ideal gas law can also be derived as following: 
2 2mv 

=In section 5.4, we derive P mn v . In section 6.3, we get = 
3 k T . Thus 

3 2 2 B 

2 N RuP = mn v 
= nk T = 

N k T = 
N NA k T = T , or PV = NR T , in which N  is 

3 B uV B N  V  B N  V  A A 

the mole number.  

    At room temperature, atmosphere pressure, the mean free path is 

k T  1.38e-23 ×300
Λ = B = = 0.14µm ,

2πD2 P 2π × (2.5e-10)2 ×1.01 5 e 
in which 2 comes when we consider relative velocity instead of assuming other 

−vparticles are stationary. The collision time (relaxation time) is τ = Λ / ~  10  10 s . 
For P=1 mTorr, we have Λ = 0.1m . The molecules seldom collide with each other.  

Note: This relaxation time is not very small for current technology. For short-pulse lasers, 
the shortest period is only a few fs. 

6.5 How do they interact with each other? 
The collisions between particles can be elastic or inelastic. In a solar cell, the photon 

excites electrons to generate an output voltage.  Energy conversion is closely associated 
with transport. 
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p n 

7. Simple kinetic theory
    In the figure, half of the carriers within vxτ can go across the interface before being 
scattered. Here vx is the x component of the random velocity of the heat carriers and τ is 
the relaxation time — the average time a heat carrier travels before it is scattered and 
changes its direction. So the net heat flux carried by heat carriers across the interface is 

.qx = 
1 (nEvx ) x − v x τ − 

1 (nEvx ) x + v x τ2 2 

qx 

x 

Hot Cold 

xvxτ 

Using a Taylor expansion, we can write the above relation as 
d nEv  )xq = -v τ 

( 
x x dx


2 d nE 

= -v τ 

( )  
x dx


2 du dT

= -v τ .x dT dx 

=Notice specific heat C du  / dT  , v 2 = v2 / 3  . The above equation changes intox 
2v  dT  q = - τC .x 3 dx 

2τCvCompared with the Fourier’s law, we know that thermal conductivity k = . The 
3 

capital C is specific heat per unit volume, C=ρc. 
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2.57 Nano-to-Macro Transport Processes 
Fall 2004 
Lecture 3 

8. Micro & Nanoscale Phenomena 
8.1 Classical size effects 
In section 7, the characteristic length of the box is much longer than the mean free path 
Λ . Therefore, the collisions between molecules and the wall are neglected in our 
derivation and thermal conductivity is regarded as the bulk property of the gas. However, 
there are many applications in which Λ becomes comparable or larger than the size of the 
system. The classical size effects occur in such situations.  

Example 1: Λ >  d for a disk drive 	 Example 2: Λ ~ d or Λ > d for 
thin films 

d=10~20 nm 

Λ=100 nm 
Thin film k 

Disk drive 

In example 2, we can further reduce the film thickness to enhance the size effects. With 
measured data for k and specific heat c, the mean free path in silicon can be estimated by  

cvΛk = 
3

, 

where v is sound velocity. The approximated mean free path Λ is around 40 nm, while 
the actual value is around 300 nm. The size effects occur for silicon films with thickness 
less than Λ . 

Note: in some thermal insulation applications, we also use porous materials whose pore 
sizes are comparable to or less than Λ . The thermal conductivity of the air trapped in the 
pores will be significantly reduced.  

8.2 Quantum size effects 
According to quantum mechanics, electrons and phonons are also material waves; the 
finite size of the system can influence the energy transport by altering the wave 
characteristics, such as forming standing waves and creating new modes that do not exist 
in bulk materials.  

For example, electrons in a thin film can be approximated as standing waves sitting 
inside a potential well of infinite height. The condition for the formation of such standing 
waves is that the wavelength, λ, satisfies the following relation 
D = λn / 2  (n=1,2,…), 
where D is the width of the potential well. According to the de Broglie relation, the 
wavelength is 

/λ = h p  , 

2.57 Fall 2004 – Lecture 3 
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where h is Planck constant (h=6.6x10-34 Js), p is momentum. The energy of the electron 
nis thus E=p2/2m or E = 

p2 

= 
h2 

( )2 . 
2m 8m D 

n=1 

n=2 

D 

1) For a free electron, D=1 mm, we have 
2


−34  2 
E = 
n (6.6 ×10 −34

)2 ~ 10  n <<  k  T  = 4.14  ×10  −21  J  at room temperature. 
× 10−3 B8×9.1 10 −31 

2) For D=1e-8 m, we calculate E k  T  . Further reducing D results in more observable E. > B 

8.3 Fast transport 
For many materials, we have τ =10−12 −10−11 s . Laser pulse can be as short as a few 
femtosecond, we cannot use diffusion theory when the time scale is shorter than the 
relaxation time. 

Chapter 2 Material Waves & Energy Quantization 
2.1 Basic wave characteristics 
2.1.1 Traveling wave 
First consider a harmonic wave (such as an electric or a magnetic field) represented by a 
sine function traveling along the positive x-direction, 
G 2π x
Φ =  Asin(2 π ft − ) ŷ 

λ 
= Asin(ω −t kx  ) , 
where ω = 2π f denote angular frequency, k = 2 /π λ denote wavevector magnitude, ŷ

is a unit vector in the y-coordinate direction. Here 2π ft is the time term, while 2π x  is
λ

the spatial term. 

For constant phase, i.e., ωt − kx = const , we have 
dx ω 

= = f λ = vp ,dt k 
where v  is phase velocity. It indicates how fast the wave phase is propagating.  p 

Note: for light we have a linear relationship ω = ck . 

2.57 Fall 2004 – Lecture 3 
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2.1.2 Complex representation 
It is convenient to use the complex representation of the sine and cosine functions, e.g. 

− 

⎣ −A e−i(ωt kx  ) = A ⎡cos (ωt-kx ) − i sin (ωt kx  )⎦⎤ . 

2.1.3 Standing wave 

x=0 x = π/k 

We can create a standing wave by superimposing two traveling waves along the positive 
and negative x-directions (assuming that the problem is linear such that the superposition 
principle applies), 

⎣ t kx  ) − sin (ωt + kx  )⎤ ŷ = −  2 A cos (ωt )sin (kx  ) ŷ ,Φ = A ⎡sin( ω − ⎦ 
which has fixed nodes in space such that Φ=0. These nodes are similar to the string ends 
of a guitar. 

2The energy of a wave is typically U ∝ Φ . 

2.2 Wave-particle duality 
2.2.1 Electromagnetic (EM) wave 
Quantum mechanics started with the explanation for blackbody radiation and the 
absorption spectra of gases. Isaac Newton (1642-1727) believed that radiation was 
particle-like in nature rather than wave-like, as we are more familiar with today. It was 
the discovery and explanation of interference and diffraction phenomena, from the work 
of Christian Huygens (1629-1695), Thomas Young (1773-1829), Augustin Jean Fresnel 
(1788-1827), and others, followed by Maxwell (1831-1879) and his celebrated equations 
that solidified the foundation of the wave nature of the electromagnetic field.    

The Maxwell equations, however, fail to explain the emission and absorption processes, 
such as the experimentally observed fine spectra of absorption in various gases, and the 
blackbody radiation. 

Emissive Power 
Radiation 434.2 nm

Continuum Theory 

Experiments 

Wavelength 

Blackbody 364.7 nm 486.3 nm 656.5 nm 
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To explain the blackbody radiation, Max Planck (1858-1948) introduced a radical 
hypothesis that the allowable energy of the electromagnetic field at a frequency ν is not 
continuous, but is a multiple of the following basic energy unit 
E = nhν , 
in which h is called the Planck constant and has a value h=6.6x10-34 J·s. 

According to the relativity theory, we have 
2E = mc . 


Thus the momentum is 

p = mc = E / c = hν / c = h / λ . 


After 1926, people used the term “photon” to name the quantum with E h= ν , p = h / λ . 

Einstein used the corpuscular characteristics of electromagnetic radiation to explain some 
puzzling results from the basic photoelectricity experiment in the following figure. Based 
on the photon particle concept, Einstein reasoned that one photon can excite an electron 
out of the metal surface only when the photon energy is higher than the work function A 
(=Ev-Ef), which is the energy difference between electrons at the vacuum level, Ev, and 
inside the metal, Ef, i.e., 
hν p ≥ Ev-Ef. 

Light 

Electrode 
s 

Energy Level of 

of Electrons in 
Metal 

Ev 

Ef 
Metal 

Electrons in Vacuum 

Fermi Level 
Work Function 

Current 

2.2.2 Material wave 
The wave-particle duality of light triggered de Broglie to postulate that a material particle 
also has wave properties. Based on an analogy to the Planck-Einstein relations, he 
proposed that the wavelength of any particle is 
λ =h/p, 
where p is the magnitude of the particle momentum.  

Incident electrons 

Nickel foil 

Diffraction pattern 
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An electron with a velocity 1 m/s and a mass of 9.1x10-31 kg yields 0.7 x10-3 m, a quite 
long wavelength. The first proof of the wave properties of particles came from the 
electron diffraction experiment, in which peak signals are observed in specified incident 
angles. 

Transmission Electron Microscope (TEM) 
A TEM uses thermal excitation or applying a high voltage to draw electrons from the tip 
end. The electrons are then accelerated by the strong electrical field to gain a large 
momentum p (small λ~1 Å). Since the resolution is normally comparable to wavelength λ, 
high resolution is obtained with electron energy as high as MeV magnitude. The electrons 
penetrate through the sample (less than 200 nm thick) and the diffraction/transmission is 
observed from the detector. 

Tip 

Sample 

Electron lens 

Detector 

Scanning Electron Microscope (SEM) 

Different from a TEM, a SEM only observes the surface and electrons do not penetrate 

the sample.  Electrons have lower energy in a SEM. 


2.2.3 Mathematical Description of Waves 
Two basic methods have been developed to describe the materials waves.  The first was 
the matrix method developed by Heisenberg (1925). Shortly after, Schrödinger developed 
the famous equation that bears his name. These two descriptions are equivalent among 
themselves, so we will focus on the Schrödinger equation (Schrödinger, 1926). The 
equation states that the wavefunction of any matter obeys the equation,  

2= 2 ∂Ψ t− + Ψ ∇ U = Ψ i= 
2m t t ∂ t

, 

where m is the mass,  t is the time, U is the potential energy (related to b.c), and Ψ t is 
called the wave function of the matter, = = h / 2π . If U=0, the Schrödinger equation 
becomes 

2= 2 ∂Ψ t− = Ψ ∇ i= 
2m t ∂ t

, 

∇ 2which is similar to heat conduction equation k T = ρ c ∂ T but the magic imaginary unit 
∂ t 

“i” really gives rise to wave behavior. 
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Schrödinger himself did not come up with a correct explanation for the meaning of 
wavefunction. The right explanation was given by Born, who suggested that Ψt itself is 
not an observable quantity, but ΨtΨt * is the probability density function to find the 
particle at location x, where “*” means complex conjugate. The normalization 
requirement for the probability function is then 

∫ *Ψ Ψ tdV =1. 
t 

The expectation value of any quantity (such as energy, momentum, location, etc.) can be 
calculated from 

* .< Ω >= ∫Ψ ΩΨ dVt t 

In quantum mechanics, quantities such as location, energy, and momentum of matter 
should be understood in terms of probability values. These quantities are expressed by 
operators, such as position operator: 

=Ω r 
time operator: 
Ω = t 
momentum operator: 
Ω = p ∇−= i= 

⎛ ∂ ∂ ∂ ⎞
−= i=⎜⎜ x̂ +

∂y 
ŷ + ẑ ⎟⎟ = p x̂ + py ŷ + p ẑz

⎝ ∂x ∂z ⎠ 
x 

and the energy operator 
2 

=Ω H = p • p 
+ U = 

p 
+ U 

m2 m2

2
 = 2 ⎛

⎜ ∂ 
+ 

∂ 
+

∂
⎟
⎟
⎞

+ U−= 
= 

∇2 + U −= 2m2 m2 ⎜
⎝ ∂x ∂y2 ∂z2 

⎠ 

*Note: in equation < Ω >= ∫ Ψ ΩΨ dV , you cannot switch Ψ t 
* and Ψ t if Ω contains the 

t t 

gradient operator ∇  and the Laplace operator ∇2 . 

Standard deviation: 
Similar to 

2 

1 

1 ( )
1 

n 

i 
x x x 

n = 

∆ =  − <  >
− ∑ , 

in quantum mechanics we have 
* 2( )t tq q q dV< ∆  >=  Ψ  − <  >  Ψ∫ . 

Heisenberg uncertainty principle states 
= = p x t< ∆  >< ∆  >≥  ; < ∆  >< ∆E >≥ . 
2 2 
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From the Schrödinger equation, we can derive 
|2 G|∂ Ψ t + ∇ ⋅  J = 0 ,

∂t 
where the first term means the changing rate of density, the second flux term is 
G i= * *J = (Ψ ∇Ψ − Ψ ∇Ψ ) . 

2m t t tt 

∂ρ GNote: please compare this to continuity equation + ∇ ⋅ ( )  = 0 .ρv 
∂t 

Separation of variables: 

Assuming Ψt(r,t)=Ψ(r)Y(t) and substituting into the Schrödinger equation, we get 

1 ⎡ = 2 2 ⎤ 1 dY

⎢− + Ψ ∇ UΨ⎥ = i= = E ,Ψ ⎢⎣ 2m ⎥ Y dt⎦ 
where E is a constant (eigenvalue) since Ψ depends on r only and Y depends on t only. 
Its meaning will be explained later ( H = E ). Solving for Y leads to 

⎡Y C1 exp −i E t ⎤⎥ = C1 exp [−iωt] . = ⎢⎣ = ⎦ 
And the governing equation for Ψ(r) is called the steady-state Schrödinger equation 

2
= 2
−  ∇  Ψ + (U E  )Ψ = 0 .− 
2m 

This is an eigen equation with the eigenvalue E and eigenfunction Ψ determined by the 
potential profile U and the boundary conditions.   
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2.57 Nano-to-Macro Transport Processes 

Fall 2004 

Lecture 4 


Quick review of Lecture 3 
Photon: E = hν , p = h / λ . 
Assuming Ψt(r,t)=Ψ(r)Y(t), we use separation of variables to solve the Schrödinger 
equation 
=2

2 ∂Ψt− ∇ Ψt +UΨt = i= .
2m ∂t 

The solutions are  
⎡ E ⎤ 

1 ⎢ i t⎥ C1 exp [−i t] ,Y C= exp − = ω 
⎣ = ⎦ 

and 
2= 2∇  Ψ +  (U E )Ψ =  0 ,− − 

2m 
where the eigen value E represents the total energy of the system. 

Heisenberg uncertainty principle states 
= = 

< ∆  >< ∆  >≥  p x ; t E >≥  < ∆  >< ∆  . 
2 2 

2.3 Example solutions: G GHere we determine ( ) by the boundary conditions and will not consider the u r tu r  ( , )
case. 

2.3.1 Free particles in 1D 
In this case, there are no constraints for the particles. The potential energy u=0 so that 
=2 d 2Ψ

− 2 −  Ψ =  E 0 .
2m dx 

This gives 
−ikx ikxψ = Ae + Be , 

where k = 2 E / = = p / =  (note = m ). The final solution is m E p2 / 2
(ωt kx ) −i(ωt kx )−i + −Ψ t ( , )  x t  = Ae + Be , 


in which the first term corresponds to negative-direction propagation, the second term is 

positive-direction wave. Please also recall problem 2.5 in assignment 2. 


2.3.2 Quantum well 
Consider the general case of a particle in a one-dimensional potential well, which can be, 
for example, an electron subject to an electric potential field as shown in the figure. This 
is actually the model for thin films. The steady-state Schrödinger equation for the particle 
in such a potential profile is 
=2 d 2Ψ

− 2 −  Ψ =  E 0 (0<x<D); Ψ = 0  (x<0 or x>D).
2m dx 
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Note: for u →∞  (x<0 or x>D), only Ψ = 0 can satisfy the Schrödinger equation. 
Potential 

U = ∞ 

Particle 

x 
U=0 D 

Same as the free particles, the solution for first equation is still  
−ikx ikx Ψ = Ae + Be  , 

where 2 

2 2mE mE pk = = = 
= = = 

. 

The general boundary conditions are the continuity of the wave functions and their first 
derivatives at the boundaries. The latter derives from the continuity of particle flux at the 
boundary. For the current problem, the continuity of the first derivatives is not required 
because the wavefunction at the boundaries are already known to be zero. With the 
continuity of the wave function at x=0 and x=D, we have 

x=0 A+B=0 

x=D Aexp[−ikD  ]+ B exp [ikD  ] = 0 
Above equations yield 

−ikD ikD A e( − e ) = 0 . 
Noticing A ≠ 0 , we obtain sin(kD)=0 . Thus  

n 1, ")k D=nπ (n=0, ± ± 2 
or 

mE2D 2 
n 

= 
1 ⎛ π=n ⎞

2 

= nπ , energy eigen value En = ⎜ ⎟ .2m ⎝ D ⎠ 

The material wave function inside the potential well is 
⎛ nπx ⎞Ψ = −2iAsin⎜ ⎟ ,n 
⎝ D ⎠ 

which is identical with the previous results of standing wave. 
Note: for n, obviously it is not zero. Since solutions of negative n values are equivalent to 
those of positive values, here we can just let n=1, 2" 

Normalization is still used to calculate A, i.e. 

∫ 0 
D Ψ* 

t 
( )Ψ t ( )x dx  .x =1 
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Finally we get A i= 
1 

2D 
. 

2.3.2 Particle in a 2D box 

y 

D 

U= U = ∞ 
0 

x 
DO 

We establish a coordinate system as shown in the schematic above.  Clearly, outside the 
potential well, we have Ψ = 0  because U = ∞ . We thus focus on the solution inside the 
potential well.  The Schrödinger equation inside the well (U=0) is 

2 2 2⎛ ⎞= ∂ Ψ ∂ Ψ⎜ ⎟− + − EΨ = 0⎜ 2 2 ⎟ .2m ⎝ ∂x ∂y ⎠ 
We still use the separation-of-variables technique. Assuming Ψ(x, y) = X (x)Y ( y) and 
substituting into the above equation leads to 

2 21 d X 1 d Y 2mE
+ + = 0 .2 2 2X dx Y dy = 

In the above equation, the first term depends on x and the second term on y.  The third 
term is a constant.  This leads to the requirement that both the first and the second term 
must each be a constant.  Since E is positive, we can prove neither of the first two terms 
can be positive. Errors will occur if we let one of them be positive. Thus, we write 

2 21 d X  1 d Y  
= −k 2 , = −k 2 .2 x 2 yX dx  Y dx  

The solution for X is 
(  )  = A  in  s (k x) +Bcos  (k x )X x  x x . 

To satisfy the boundary condition that Ψ =0 at x=0 and x=D, we must have X=0 at x=0 
and x=D. Applying these boundary conditions, we see that 

nπkx = (n =1,2,3  ") .
D
 

lπ
Similarly, ky = (l =1,2,3  ") .
D 

Thus 
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2 2 2 2(A + n )π = EAn = 2  ( A ,n=1,2,…) 
2mD 

and 
⎛ nπx ⎞ ⎛ Aπy ⎞Ψ = C sin sin .An An ⎜ ⎟ ⎜ ⎟ 
⎝ D ⎠ ⎝ D ⎠ 

We can further determine the constant C A n=2/D. 

For quantum numbers: n, l, … 
(1) n=1, l=2, E12, Ψ12 

(2) n=2, l=1, E21, Ψ21 

Note: E12= E21, but Ψ12  and Ψ21 are flipped in the x and y directions from 
⎛ nπx ⎞ ⎛ Aπy ⎞ΨAn = CAnsin⎜ ⎟sin⎜ ⎟ . These states that have different wavefunctions but the 
⎝ D ⎠ ⎝ D ⎠ 

same energy are said to be degenerate. The degeneracy of an energy state is the number 
of wavefunctions having the same energy.  

2.3.3 Electron spin & Pauli exclusion principle 
Each wavefunction obtained in the previous sections represents a possible quantum 
mechanical state at which a particle can exist under the given potential.  The solution of 
the Schrödinger equation, however, does not tell the whole story on the quantum state of 
a particle. For example it cannot distinguish the spin of particles. For electrons, 
corresponding to each wavefunction obtained from the Schördinger equation, there are 
two quantum states (or two relativistic wavefunctions), which are usually denoted by an 
additional quantum number s that can have the following values: 

1 1 s = or − ,
2 2 

where s=1/2 is called spin up and s=-1/2 is called spin down. 

The Pauli exclusion principle says that each quantum state can be occupied by at most 
one electron. 

2.3.4 Other potentials 
(1) Harmonic oscillator 

From F = −Kx  = −
du , we have u = 

1 Kx  2 (shown in the figure). The Schrödinger
dx 2 

equation becomes 
2 2 2= d Ψ Kx  

− + ( − E)Ψ =  0 ,
2m dx  2 2 

1which gives E = hν (n +1/  2);  ν = n 2π 
K 

m 
. 
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hνNote: the zero point (intrinsic) energy is required by the Heisenberg uncertainty 
2 

= principle ( t >≥  ). It shows that the oscillator has some energy even at the rest. < ∆  >< ∆E 
2 

u 

x 

Note: to calculate the intrinsic frequency for diatomic molecules with two atoms of mass 
m1 and m2, the reduced mass should be used,  

m m1 2m = . 
m + m1 2 

e 

-e 
u 

r 

Now consider the case that an electron moves around the nucleus, which is assumed to be 
stationary. The interaction between the nucleus and the orbiting electron is governed by 
the Coulomb force 

1 e2 du  F = −  2 = −  ,
4πεo r  dr  

where εo=1.124x10-10/4π [C2/(m2N)] is the electrical permittivity of the vacuum.  It yields 
2e u r( )  = −  . 

4πε0r 

Using separation of variables, we assume ΨnAm = RnA (r)YA 
m (θ ,ϕ) . The allowable 

energy levels of the electron-nucleus system are 
el Mc1

2 13.6 eVEn = −  2 2  = −  2  ( n ≥ 1, n ≥ A +1 and m ≤ A , A =0, 1, 2, …)
2= n n 

in which M is the electron mass. For quantum number n=1, we have 
n=1, l=0, m=0, Ψ100 , s  (two quantum states determined by spin), 1s orbital. 
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⎧l = 0 m = 0 2s orbital 
n=2---> ⎨ 

⎩l = 1 m = −1,0,1 2 p orbital 
Basically there are four wave functions for n=2 and totally eight quantum states. The 
energy levels of different orbitals are drawn in the following figure. The spherical s 
orbital and dumb-bell p orbitals are also presented here. The degeneracy is determined by 
g=2n2 . 

E 

3s 

2s 

1s 

2p 

3p 3d 

n=1 

n=2 

n=3 

(- 13.6 eV) 

(-3.4 eV) 

(-1.5 eV) 

s orbitals 

p orbitals 

Note: the energy gap between different n values is much larger than the thermal energy 
(kBT~26 meV) and it is almost impossible to thermally excite electrons to a higher n level. 
A stable element is obtained only if all the orbitals for the highest n are completely filled, 
such as He. 

Now one may wonder why the energy eigenvalue E has different relationships with n. 
Here we will give a simple argument, without solving the Schrodinger equation, to show 
that this is indeed the case. My argument is based on the requirement of forming 
standing waves in given potential. For harmonic oscillators, as shown in the following 
figure, the standing waves inside the potential, assuming at the boundaries, wavefunction 
is zero, give 

λn x = .
n 4
 
2 1 h 2 1 hn  2Kinetic energy is KE = p / 2m = ( ) = ( ) . 

2m λ 2m 4xn 

u u 

n=1 

r 
n=2 

x 
x1  x2 
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Equating the kinetic and potential energies (sort of equipartition of energy, but only a 
hand waving argument), we obtain 
K 2 1 hn  2xn = ( )

2 2m 4xn
 

or 
2 1 1/ 2  nh xn = ( ) . 

Km 4 
Thus 

2 nhE ∝ Kx  = n 4 
K 

m 
, 

which is a linear functions of n, similar to what we obtain from solving Schrodinger 
equation. Similarly, we can deal with electrons moving around the nucleus but changing 

e2 1the potential energy to u = . Finally we get E ∝ . 
4πε0 xn n2 

Rigid rotation G G
×In classic mechanics, the angular momentum is expressed as r p . However, because of 

the uncertainty principle, it is difficult to give such an expression in quantum mechanics.  

In classical mechanics, a quantity often used to describe the rotation is the moment of 
inertia.  For a two-mass system rotating relative to its mass center, the moment of inertia 
is 

2m m r1 2 oI = 
m + m1 2 

where ro is the effective separation between the two atoms.   

ω 

m1 m2 

The energy eigenvalues are 
2=El = A(A +1) = hBA(A +1)                  (for |m|≤ A , A =0,1,2, …).

2I 

Note: the discussion on harmonic oscillators and rigid rotors gives other useful 
information. For example, we can calculate the spring constant of an oscillator by 

1measured vibrational frequency, from ν = 
2π 

K 

m 
. 
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2.57 Nano-to-Macro Transport Processes 
Fall 2004 
Lecture 5 

Quick review of Lecture 4 

1. Free particles  
The energy can be any values determined by the wavelength.  

h 2 2


E p2 / 2m =
( /λ) 

= 
= k 2

; k = 2π /λ, = = h / 2π
= 
2m 2m 

2. Quantum well 

U 

ENERGY AND 

n=1 

n=2 

n=3	
∞ = 

WAVEFUNCTION 

x 
U=0 

Energy has discrete levels, and we have one quantum number n. 
2h n2 

E = 2 (n=1,2,…)
8m D  

For 2D constraints, we have two quantum numbers n and l. In the discussions, the 
conception of “degeneracy” is introduced. 

3.	 Spin 
1For electrons, we have talked about s = ± , where s=1/2 is called spin up and s=-1/2
2 

is called spin down. 

4.	 Harmonic oscillator 
1 K 

= ν (E  h n  +1/ 2);ν = n 2π m 
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hνNote: the zero point (intrinsic) energy is required by the Heisenberg uncertainty 
2 

= t< ∆  >< ∆  E >≥  principle ( 
2 

). 
u 

x 

5. Electrons moving around the nucleus 

e 

-e 
u 

r 

En
el = −  

Mc1
2 

= −
13.6 eV 

( n ≥ ,1 n ≥ A +1 and m ≤ A , A =0, 1, 2, …)2 22= n n2 

E 

3s 

2s 

1s 

2p 

3p 3d 

(- 13.6 eV) 

(-3.4 eV) 

(-1.5 eV

Ψ

Ψ Ψ Ψ Ψ

n=1 

n=2 

n=3 

100s 

200s 21(-1)s, 210s, 21(+1)s 
8 quantum states 

2 quantum states 

) 18 quantum states 

The corresponding Ψnlms are marked in the figure for some energy levels. The 
degeneracy follows g(n)=2n2. 

Note: As electrons number goes up, the orbit will split. The energy of 3d is lifted up 
above 4s because of the electron-electron interaction. For the element potassium (K), 
it has 19 electrons but the n=3 energy levels are not totally filled and one electron 
goes to the 4s orbit.  
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2.3.5 Energy Quantization observation 
Absorption or emission of photon happening only  

(E photon ) = hν p = E f − Ei 

Efhνp 

Ei 

E 

The allowable energy levels of the electron-nucleus system (hydrogen atom) are 
el = −

13.6
2 

eV 
.n n 

The emission occurring between n=1,2 is  
1 1hν = −13.6 eV  (
22 − ) ~ 10eV  .p 12 

The corresponding wavelength is 
λ = c /ν p .p 

Sometimes, we also use the wave number as 
1 
=
ν p [cm−1] .

λ cp 

These units are used interchangeably and you should be able to do the conversion 
yourself. One good number to remember is that 1eV is 1.24 µm. 

Now we are in a position to discuss the total energy of an atom or molecule.  The total 
energy can be approximated as the summation of translational, vibrational, rotational, and 
electronic energies: 

tot = EtransE + Eel + Evib + E rot . 

We talk about the translational energy as a particle in a box. To simplify, for hydrogen 

molecules we neglect other effects and only consider the vibrational and rotational 

energies. 

+ 
m1 m2 

ω 

If the emission and absorption occur between two energy levels of vibration, we have 
E = hν (n +1/ 2) .n

Thus 
1 khν p = hν (nf − ni );ν = ,2π m 

1where the reduced mass is m = 
m m2 = 

m1  ( m = m2 ), and the selection rule states 
m m2 2 1+1 

nf − = ±  1. Positive for absorption and negative for emission.  We can measure the ni 

vibrational frequency from which, to deduce the spring constant.  For hydrogen, the 
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vibraitional wavelength is 2.3 micron, corresponding to a k~500 N/m.  This is a large 
spring constant. 

Note: The large spring constant between atoms is one reason we can use atomic force 
microscopy to measure the topology of a surface without damaging the surface.  The 
cantilever of the AFM has a spring constant much smaller than that of the spring constant 
between atoms. When a sharp tip built on the cantilever scans over a solid surface, 
because the spring constant of the beam is much lower than that of the atomic vibration, 
the beam will deform instead of deforming the atoms on the surface. The beam 
deformation can be further measured by a laser and the topography-scanning resolution 
can reach nm level and even atomic resolution.  

A laser to detect the beam deflection 

AFM tip scanning a 
surface 

For rotational energy, we have 2 degrees of freedom. The energy eigenvalues are 
2= ( (El = A A +1) = hB A A +1)  (for |m|≤ A , A =0,1,2, …).
I 2


,
A A  f +  −  A  A  i +1)]hν = hB  [ (  1) (p f i 

where B=1.8e12 Hz. Similarly we have A f − A i = ±1, 0 . As an example, A f − =1A i
((absorption) gives ν p = 2B l  +1) . The normal wavelength for rotational energy is around i

100 µm (far infrared regime), which is much larger than the emission wavelength at the 
room temperature (10 µm). 

The energy bands are shown in the following figure, in which rotational energy accounts 
for small energy sub bands.  

B l  +1) .ν p =ν vibration ± 2 (  

Rotation 	 Vibration: 
n=2 

n=1 
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The degeneracy g(l)=2l+1. In the following figure, the density of bands increases with 
increasing l. 

For CO2  ( O C  O  ), three basic modes exist: symmetric stretching, asymmetric = =  
stretching, and bending. The absorption wavelength is around 10 µm, which is just the 
earth emission wavelength at the room temperature.  

Note: the green housing effects occur when solar emission (~0.5 µm) can pass CO2 and 
heat up the earth. Then the emission of the earth will be absorbed by CO2 and the heat is 
trapped on earth, leading to global warming. 

Chapter 3 Energy states in a solid 
3.1.1 A crystal is periodic arrangement of atoms 

u 

x 
a 

Consider a one-dimensional lattice. The potential energies of adjacent atoms overlap and 
( + (form a periodic potential field, i.e. u x  na) = u x) . Instead of the boundary conditions 

used for particles with constraints, now we will employ the periodicity to calculate the 
energy levels of electrons. 

3.1.2 Possible approaches 
First we will review the problems solved in Lecture 4. 

(1) Free electron E p2 / 2m= 

2(2) Quantum well E ∝ n 
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ENERGY AND 
WAVEFUNCTION 

U ∞ = 

n=1 

n=2 

n=3 

x

U=0 

(3) Electron-nucleus system (hydrogen atom) En
el = −

13.6 eV

2n 

waves. 
E>U0, Ψt 
E<U0, Ψt 

u 
r 

Energy barrier U0wave 

Reflection wave 

Reflection wave 

(4) Homework 2.5.  At a potential step, there are reflections and transmissions of 

transmission wave propagates. 
transmission wave decays from the interface. 

Later we will talk more about the interface influence. In the following figure, there will 
be interference effects of the reflection waves from different interfaces.  

Incoming 

Transmission wave 

Incoming wave 
Transmission wave 
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Now we will start solving the Schrödinger equation with periodic u: 
(1) First we will consider periodic quantum wells with finite depth, and electrons with 
energy larger than the barrier function as free electrons. Basically we approximate the 
potential field as rectangular wells. 

Compared with a free electron, there will be small energy gaps on the energy curve for 
1, kx=nπ/a ( n= ± ± 2" ). No electrons are allowed on the energy levels within the gaps. 

This is caused by the interference effect, which we will learn in details in chapter 5.  

E 

kxGap 

π/a 2π/a 

n=1 

n=2 

Free electrons 

NOT allowed by Pauli exclusion principle 

Now let us go back to the quantum wells. Due to the finite depth, the wave functions will 
not be zero at the boundary like standing waves. Instead, they will decay exponentially 
from the interface. However, this indicates two wavefunctions overlap in the middle of 
the barrier, which conflicts with the Pauli exclusion principle. The waves will split in this 
situation. We will talk more about this later. 
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(2) Kronig-Penney model 
U: Potential Energy 
a+b 

x 
x 

U0 

-b 0 a a+b 
(a) (b) 

Here we will solve the Schrödinger equation for one period  
= 2− + Ψ ∇ (U − E) = Ψ 0  (0<x<a+b). 

2m 
Recall homework 2.5. We have one positive-direction wave and one negative-direction 
wave in the same region. Two coefficients A and B need to be determined in 

−iKx iKx Ψ = Ae + Be  . 

For [0,a] and [a,a+b] regions, we have totally four unknown coefficients. The continuity 
boundary condition at x=a only gives two equations 
Ψ1(x = a) = Ψ  (x = a) , Ψ '(x = a) = Ψ  '(x = a) .2 1 2 

The other two equations come from the potential periodicity.  Because the potential is 
periodic, the wavefunctions between different periods are related through the Bloch 
theorem, i.e. 

(( )  ikn a +b)[x ) ]  = Ψ  x  e  ,Ψ + (a + b  n  
Therefore, we finally have four equations to determine the constants. Please note this k is 
different from K in the Ψ  expression. 

We now determine the value of the wavector k in the Bloch theorem, using the Born-von 
Karman periodic boundary condition. The Born-von Karman boundary condition deals 
with the end points of a crystal.  Ordinarily, we would think that the two end points are 
different from the internal points. For many applications, however, distinguishing the 
boundary points from the internal points is not necessary, because a crystal usually has a 
tremendous number of lattice points (this is not true for quantum wells, quantum wires, 
and quantum dots).  The Born-von Karman boundary condition requires that the wave 
functions at the two end points be equal to each other, i.e., the two end points are 
overlapped to form a lattice loop as shown in the figure. 

N Cells 

a+b 

L=N(a+b) 

1 N+1 
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1 
N+1 

First we have 
(Ψ [x + a N + b )] Ψ = (x ) . 


Using Bloch's theorem, it can be written as 

Ψ (x ) Ψ = (x ) exp[ikN (a + b )] , 
which yields 

n 2 2π nπk =
N(a + b) 

= 
L 

(n=0, ± 1, ± 2,...), 

where L is the length of the crystal.   

To get a better idea of the solution form, now we simply let b approach zero. The 
following figure shows that for each wavevector k, there are many possible values for the 
electron energy E. These values form quasi-continuous bands as a function of k (because 
k itself is quasi-continuous as to be discussed latter). Because both the wavefunctions and 
the eigen energy for the states correspond to the wavevectors k and [k+m(2π /a)] are 
identical, these are actually the same quantum state and should be counted only once. 
Thus, rather than plotting the energy eigenvalues for all the wavevectors, we can plot 
them in one period, as shown in the subsequent figure. This way of representation is 
called the reduced-zone representation. Often, only half of the band, [0,π /a], needs to be 
drawn because the band is symmetric for both positive and negative wavevector values. 
The relationship between the energy and the wave vector is the dispersion relation.   
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2.57 Nano-to-Macro Transport Processes 
Fall 2004 
Lecture 6 

Quick review of Lecture 5 

In the last lecture, we approximate the potential field as rectangular wells in the crystal. 
From periodicity, the Bloch theorem gives additional equations  

(( )  ikn a +b)[x ) ]  = Ψ  x  e  ,Ψ + (a + b  n  
Ψ = Ae−iKxwhich is used to determine the coefficients in + BeiKx . We have also 

determined the value of the wavector k in the Bloch theorem, using the Born-von 
Karman periodic boundary condition Ψ[x + a N + b)] = Ψ(x) . This yields allowed k( 
values as 

n 2 2πnπk =
N(a + b) 

= 
L 

(n=0, ± 1, ± 2,...), 

where L is the length of the crystal. 

For each kn, there are two quantum states denoted by Ψk s  (spin up, spin down). When n 
n , 

goes from 1 to N, kn varies from 0 to 2 /π a . Therefore, in the following E-k figure we 
totally have 2N quantum states Ψk s  . n , 

kNote: (1) For big crystals, N is very big (on the magnitude of 1023) and ∆ =
2π  is also 
L 

small. The following curve can be regarded as quasi-continuous. (2) The Born-von 
Karman periodic boundary condition is no longer valid when N becomes very small in 
nanomaterials. 
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3.1.3 Consequences of solid energy levels we just obtained: 
(1) Electrons wave function extends through the whole crystal, they belong to all atoms 
collectively. 

Recall the splitting of waves discussed in last lecture. According to Pauli’s exclusion 
principle, the wavefunctions of adjacent wells cannot overlap. A continuous wave 
extending through the whole structure will be formed in this situation. The wavefunction 
no longer corresponds to an individual atom.  

NOT allowed by Pauli exclusion principle 

Continuous wavefunction across the structure 

-13.6 eV 

-13.6 eV/n2 

. . . 
Similar argument also exists for atomic energy levels. When two atoms become closer, 
the overlap of electron wave functions will cause band split. 

(2) Filling of electrons 
As mentioned before, in E-k figure every band (k changes for 2 /π a ) can accommodate 
2N quantum states. At zero temperature, the filling rule for the electrons is that they 
always fill the lowest energy level first, as required by thermodynamics. If one atom only 
has one electron, the band is half filled since there are only N valence electrons in this 
case, as shown in the next figure. The topmost energy level that is filled with electrons at 
zero Kelvin is called the Fermi level. The electron energy and momentum can be 
changed (almost) continuously within the same band because the separation between 
successive energy levels is small. Thus, these electrons can flow freely, making the 
materials good electrical conductors, which is the case for metals. 
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If the valence electrons exactly fill one or more bands, leaving others empty, the crystal 
will be an insulator at zero temperature and can be an insulator or a semiconductor at 
other temperatures depending on the value of the energy gap. If a filled band is separated 
by a large energy gap (>3 eV) from the next higher band, one cannot change the energy 
and the momentum of an electron in the filled band easily, that is, these electrons cannot 
move freely and the materials are insulators.  A semiconductor is essentially similar to an 
insulator.  The difference between them is that the gap between the filled and the empty 
bands for a semiconductor are not so large (<3 eV), so that some electrons have enough 
thermal energy (at room temperature kBT = 0.026 eV) to jump across the gap to the 
empty band above (called conduction band), and these electrons can conduct electricity 
(these are called intrinsic semiconductors). The unoccupied states left behind also leave 
room for the electrons in the original band (called valence band) to move.  It turns out 
that the description of the motion of these electrons is equivalent to thinking that the 
vacant states move as positive electrons, or holes. The energy of these holes is a 
minimum at the peak in the valence band and increases as the electron energy becomes 
more negative.   
 
Note: (1) Here we only talk about 1D case, for 3D structure we have different band 
shapes in different direction and the wavefunction changes to ( , , )x y zk k kΨ . Later we will 
talk about the electron filling in a 3D structure. (2) The shape of bands can be affected by 
heavily doping. (3) The lowest band starts from a nonzero energy, which is the 
consequence of the uncertainty principle.    
 
Impurities are added to most semiconductors and these impurities have energy levels 
somewhere within the band gap, some are close to the bottom edge of the conduction 
band or top edge of the valence band (or band edge).  The electrons in the impurity levels 
can be thermally excited to the conduction band if their level is close to the bottom of the 
conduction band, creating more electrons in the semiconductor than holes. Such 
semiconductors are called n-type and the impurities are called donors. A typical example 
is P. Similarly, if the impurity energy level is close the valence band edge, electrons in 
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the valence band can be excited to the impurity levels, leaving more empty states or holes 
behind. Such semiconductors are called p-type and the impurities are called acceptors. 
For instance, a B atom has three outer core electrons; it will catch one more electron from 
Si atoms.    

E E 

n-type p-type Si 

impurity 
impurity 

B 

An Electron of Si 

In semiconductors, the moving charge carriers normally are near the minima or maxima 
∂ Eof a band, where = 0 . Taylor’s expansion gives
∂ k


∂ E
k  E(k ) +
∂ k

|km
(k k ) + 

1 ∂ 2 E (k k )2E( )  = − 2 |km 
−m m m2 ∂ k 

( )  + 
1 ∂ 2 E (k k  )2= E k  2 |km 

−m m2 ∂ k 

( )  + 
1 =2

(k k  )2 ,= E k  −m m2 m * 

2= where the effective mass is defined as m * = 
/ ∂ 2 . In differential geometry, the 

(∂ 2 E k ) |km 

term 1/ ∂ 2 E k is just the curvature. Thus, effective mass is proportional to local / ∂ 2 

curvature at band maxima or minima.  For electrons close to the minima of the 
conduction band, we have 

2 2= kE E =− c 2m *
, 

from which we can clearly see the meaning of effective mass by comparing with the 
energy of free electrons 

kE = =2 2 / 2m . 
In the above equation, =k represents the momentum of the free electron. The momentum 
of an electron in the crystal, however, should be calculated from the wavefunction using 
the momentum operator − i= Ψ ∇ . Such a calculation would show that =k is not the 
momentum of the electron. Nevertheless, in many ways =k for a periodic potential 
behaves as the momentum of a free electron and thus it is called the crystal momentum. 
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3.2 Different directions of a crystal, different E(k) relation 
In the real crystal, the band shapes normally differ a lot in different directions. In the 
following figure, the periods are a, 2a , and 3a  respectively in three directions.  

2a 

3a 

a 

Eg 

E 

k 

E 

k 

Eg 

Indirect Direct 

In above figures, we demonstrate the idea of direct and indirect band gaps. In a direct 
band structure, both the minimum in the conduction band and the maximum in the 
valence band occur at the same location of k (=0 for the example given). A good example 
for direct band gap is GaAs with Eg =1.42 eV, while Si is indirect gap semiconductor. 
Direct gap semiconductors are used in lasers, while Si is for microelectronics. 

3.3 Lattice vibration and phonons 
We have considered a harmonic oscillator for the H2 molecule. The energy is expressed 
as 

1 1 k 
= ν ( (n=0,1,2…)E  h n  + );ν =n 2 2π m 
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Now let us think about N atoms in a one-dimensional chain. First recall the following 
cases. In the first figure, the energy is quantized, while band gap appears in the second 
figure. 
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Similarly, we can anticipate the single energy level of a diatomic molecule will split into 
a band in a lattice chain of atoms. 
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ja (j-1)a (j+1)a 

We make the following assumptions for the analysis. First, we consider only the 
interaction force between the nearest neighbors. Second, the interaction force between 
atoms is a harmonic force (which obeys Hook's law).  This can be justified as we have 
done for harmonic oscillators. Now consider a typical atom j.  The displacement of atom 
j from its equilibrium position o

jx is 
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uj = x j − xo
j 

The force acting on atom j comes from two parts.  One is due to the relative displacement 
between atom (j-1) and atom j, and the other is due to the relative displacement between 
atom j and (j+1).  The net force is then 
Fj = K(uj+1 − uj ) − K(uj − uj−1) . 
Applying Newton's second law to atom j, we obtain 

m
d2uj = K(uj +1 − uj ) − K(uj − uj −1 ).
dt2 

The above equation is a special form of the differential wave equation 

m 
∂ 2u 

= Ka 2 ∂ 2u 
.

∂t 2 ∂x2 

which has a solution of the form u ∝ e−i(ωt − kx) . Since a is not very small, we cannot 
use this solution directly. But this leads us to guess a wave type of solution as 
uj = A exp[−i(ωt − kja)]. 
Substituting the guessed solution into the discrete equation, we get 
− mω 2 = K eika + e− ika − 2][ 
or 

K ka
ω = 2 sin . 

m 2 
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In the last lecture, we have talked about atoms in a one-dimensional chain. We find the 
solution as 
uj = A exp[−i(ωt − kja)], 

K ka
where the frequency is ω = 2 sin . 

m 2 

Na
 

(j-1)a ja (j+1)a 

Note: When k approaches zero for large wavelength, the frequency becomes a linear 
K ka  K  

= ka . We can calculate the soundfunction of the wavevector, i.e. ω ≈ 2 
m 2 m 

dωvelocity by v = .sound dk 

ω 

k 

π/a 
In last two lectures, we have derived the allowed k values as  

2π nk =  (n=0, ± 1, ± 2,...).
Na 

ATOM 

In the above figure, k= π/a corresponds to λ=2a. However, k> π/a is meaningless in 
physics because there is no atoms vibrating between one period. Thus the allowable 
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wavevector for a lattice vibration is naturally confined to the first Brillouin zone 
( |k|< /aπ ). Therefore, we totally have N allowable wavevectors (also wavelength) in 
between –π/a<k<π/a. Each of these wavevectors corresponds to one mode of the 
vibration of the lattice. This mode is called a normal mode. 

For a harmonic oscillator, quantum mechanics gives  
1E = hν (n +1/  2);  ν = n 2π 

K 

m 
, 

in which the frequency is consistent with classical mechanics. 

Similarly, quantum mechanics gives the energy levels for a chain with N atoms as 

En = hν(n + 
1 
2

) 

or 
1( )
2nE nω= +=   (n=0,1,2,3,…), 

in which ω = 2 
K 

m 
sin 

ka 

2 
. 

The basic vibrational energy quanta, hν, is called a phonon. Comparison between 
electrons, phonons, and photons: 

(1) Electrons obey the Pauli exclusion principle, which says that each quantum state 
can only have at most one electron. Photons and phonons are not limited by the 
Pauli exclusion principle. Each quantum state, which corresponds to one set of 
wavevectors, can have many phonons and photons. 

(2) Unlike electrons, phonons and photons at rest do not have mass though they have 
momentum and energy.  They are also called fictitious particles since they are the 
quantization of the normal mode of a field. 

3.3.3 Polyatomic lattice chain 
a 

mM 
a1, k1  a2, k2 
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Now let us consider a chain with two atoms per period, in which two types of motions 
exist. In the first case, the adjacent two atoms vibrate in phase, while in the second figure 
the two atoms are moving out of phase. Clearly, the out-of-phase modes require more 
energy. Lower frequency (energy) branch is called the acoustic branch and the higher 
frequency one is called the optical branch, because the high frequency phonons in the 
optical branch can interact with electromagnetic waves more easily.  In general, if there 
are m atoms in a basis and N lattice points in the chain, there are one acoustic branch 
with N acoustic modes, and (m-1) optical branches with (m-1) N optic modes. 

ω 

Optical 

Acoustic 

k 

π/a 
3.3.4 Phonons in 3D crystals 

a.	 Each direction is different 
b.	 Two transverse waves, one longitudinal wave 

Transverse 	Longitudinal 

c.	 For m atoms per basis, we have 3 acoustic waves and 3(m-1) optical waves. 
d.	 Each kx, ky, kz represents a normal mode. 
e.	 The energy dispersion (E-k relationship) can be totally different in different 

directions, such as a, 2a , and 3a . 
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Note: (1) For the out-of-phase movement, both longitudinal and transverse modes exist. 
(2) The transverse waves normally have lower frequencies because less energy is 
required for the wave propagation. (3) Normally sound (pressure waves) are longitudinal 
waves; electromagnetic (EM) waves are transverse waves; acoustic waves can be either 
type. (4) In some cases two transverse waves can overlap in the figure. (5) At k= π/a, all 
curves should be horizontal. 

f. Approximation 
(1) Debye approximation 
Although the E-k curves for acoustic phonons are nonlinear, very often, the Debye 
approximation is used, which assumes a linear and isotropic relation between the 
frequency and the wavevector. This approximation is valid at low frequencies but is 
not a good approximation at high frequencies. In the very low frequency region, the 
lattice vibration carries the sound wave. 
(2) Einstein approximation 

The optical phonons are simplified as constant frequency ωE. 


Debye 

ωE 

k 

ω Einstein 

π/a 

3.1 Crystal structures 

(1) Basic conceptions
 
To form an actual crystal, a basis consisting of one or several atoms (or a molecule) is 

attached to each lattice point, i.e. 

crystal = lattice + basis.
 

2.57 Fall 2004 – Lecture 7 
48



 
From a mathematical point of view, the location of each point can be described by a 
vector. Due to the periodic arrangement of lattice points, we can choose a basic set of 
vectors called the primitive lattice vectors to construct all other vectors in the lattice.  In 
a three-dimensional lattice, a1, a2, a3 are primitive lattice vectors if from any point, we 
could reach all other lattice points by a proper choice of integers through the following 
translation 
R=n1a1+n2a2+n3a3 (n1, n2, n3 cover all integers). 
The magnitudes of a1, a2, and a3 are called the lattice constants. The other set of vectors 
a1’ and a2’ are not primitive lattice vectors because we cannot use them to construct all 
other lattice points by a two-dimensional version of the above equation. For example we 
cannot reach point 1 through any linear integer combination of a1’ and a2’. 
 

A Wigner-Seitz 
Primitive Unit Cell 

A Primitive a1 a2Unit Cell 

a1 

a2 1 
a1’ A Conventional 

Unit Cell

a2’ 

 
 
A primitive unit cell is the parallelepiped defined by the primitive lattice vectors.  There 
is only one lattice point (equivalently speaking) per primitive unit cell.  For example, 
each of the four lattice points in the two parallelograms formed by the two sets of 
primitive lattice vectors in above figure is shared by four unit cells and thus the number 
of equivalent lattice point in each parallelogram is one. These are thus primitive unit cells.  
On the other hand, the shaded rectangle formed by a1’ and a2’ are not a primitive unit cell 
because there are two lattice points in such a rectangle---the center point plus the four 
corners, each of the latter is shared by four cells.  Because the choices of primitive lattice 
vectors are not unique, there can be different ways to draw a primitive unit cell, as the 
two examples in the figure. One method to construct a unit cell uniquely is the Wigner-
Seitz cell, which is constructed by connecting all the neighboring points surrounding an 
arbitrary lattice point and drawing the bisecting plane perpendicular to each connection 
line. The smallest space formed by all the bisecting planes is a Wigner-Seitz cell, as 
indicated in the figure. 
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Sometimes, it is more convenient to describe a lattice by the conventional unit cell. For 
example, in the figure, the rectangle formed by a1’ and a2’ is more convenient than the 
parallelogram formed by the primitive lattice vectors. This unit cell has two lattice points 
and is called a conventional unit cell. The crystal can also be constructed by repeating 
such a conventional unit cell. 

(2) Three important systems 
There are totally 14 types of Bravais lattices and can be further grouped into 7 types of 
point symmetry operations (seven crystal systems). Here we will focus on the cubic 
system.  

simple cubic (sc) body centered cubic face-centered cubic (fcc) 

(g) Cubic system 321 aaa == o90=== γβα 

A simple cubic (sc) lattice totally encloses one atom point inside because the eight atoms 
at the corner are also shared by adjacent lattices. The body centered cubic (bcc) lattice 
has two atoms inside, while the face-centered cubic (fcc) lattice has four enclosed atoms. 

Note: We can estimate the atom number for a cubic micrometer volume as 
1e − 6 3( ) = e8  9  ,
5e −10  

which indicates the material should be similar to bulk crystal. 

(3) Miller index 
The Miller indices of crystal planes (hkl) are obtained in accordance with the following 
steps: 
(a) Find the intercepts of the crystal plane with the axes formed by the lattice vectors a1, 
a2, a3 in terms of the lattice constants. The origin of the lattice vectors can be at any 
lattice point. One can choose any crystal plane that is convenient to use. For example, in 
the following figure, we have two crystallographically identical planes, one intercepts the 
axis at 0.8a1, 0.4a2, 0.6a3 and the other at 4a1, 2a2, 3a3. 
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(b) Take the reciprocal of these numbers and reduce the numbers to the three smallest 
integers that have the same ratio as the original set.  The result is enclosed in parenthesis 
(hkl) and this set of numbers is called the Miller indices of the plane. The above example 
yields 
(1/0.8, 1/0.4, 5/3) (for inner plane) or (1/4,1/2,1/3) (for outer plane) → (364). 

a1 

a2 

a3 

4a1 

2a2 

3a3 

0.8a1 
0.4a2 

0.6a3 

Note: Taking the reciprocal is necessary because a plane parallel to an axis will intersect 
it at infinity. This manipulation avoids infinity in the expression. For instance, the shaded 
plane in the following figure is denoted by (100). A parallel plane intersecting at x = -1 is 

_ 
denoted by (100) . We can use the sign {100} to denote all the equivalent planes. 

x 

y 

z 
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3.1.3 Bonding potential 
Interatomic 
potential Φ 

x 

Repulsion 

Attraction 
Recall the previous discussion about the interatomic forces. Here we will learn them in 
more details.  

The force interaction between atoms consists of a long-range attractive force and a short-
range repulsive force. The short-range repulsive force is effective when the inner-shell 
electrons or the nuclei begin to overlap, due to the Pauli exclusion principle.  Two often-
used empirical expressions for the repulsive potential between the atoms separated by a 
distance r are 

UR (r) = B
12 (Lennard-Jones) 

r 
and 

−r / ζUR (r) = Uoe (Born-Mayer) 
where B, ζ, and Uo are empirical constants determined from experimental data, such as 
the interatomic spacing and the binding energy.  

Note: The repulsive forces are normally very strong and the curve is sharp when the 
distance approaches zero. 

Molecular crystals are characterized by the dipole-dipole interaction between atoms. An 
isolated atom is not polarized, but when another atom is close by, the electrical field of 
electrons from the neighboring atom distorts the positions of the electrons and the 
nucleus of the current atom, creating an induced dipole. The attractive potential between 
the induced dipoles of two atoms is given by 

AU A = − 6 . 
r 

Combining this attractive potential (van der Waals potential) with the Lennard-Jones 
potential for the repulsive force, we obtain the Lennard-Jones interaction potential 
between a pair of atoms i and j in a crystal as 

B AU = − .ij 12 6r rij ij 
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What makes a crystal structure a favorable structure is that the total potential energy of 
the system 

12 6⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎜ ⎟1 B A 1 ⎜ σ ⎟ ⎜ σ ⎟⎜ ⎟U = ∑ − = ∑ 4ε ⎜ − ⎟ 
2 ⎜ 12 6 ⎟ 2 ⎜⎜ ⎟⎟ ⎜⎜ ⎟⎟i≠ j rij rij i≠ j ⎜⎜ r r ⎟⎟⎝ ⎠ ⎝ ij ⎠ ⎝ ij ⎠⎝ ⎠ 

reaches a minimum, as required by the second law of thermodynamics for a stable system. 
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In the last lecture, we have talked about the primitive unit cell. There is only one lattice 
point (equivalently speaking) per primitive unit cell. The smallest space formed by all the 
bisecting planes is a Wigner-Seitz cell, as indicated in the figure.    
 

A Wigner-Seitz 
Primitive Unit Cell 

A Primitive a1 a2Unit Cell 

a1 

a2 1 
a1’ A Conventional 

Unit Cell
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For the bonding potential, two often-used empirical expressions for the repulsive 
potential between the atoms separated by a distance r are 

U (r) = B
12 (Lennard-Jones) R 

r 
and 

−r / ζ 
R (r) = U e (Born-Mayer) U o  

where B, ζ, and Uo are empirical constants determined from experimental data, such as 
the interatomic spacing and the binding energy.  
 
 Interatomic 
 potential Φ Repulsion 
 
 
 x 
 
 

Attraction 
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Combining this attractive potential (van der Waals potential) with the Lennard-Jones 
potential for the repulsive force, we obtain the Lennard-Jones interaction potential 
between a pair of atoms i and j in a crystal as 

B AU = − .ij 12 6r rij ij 

What makes a crystal structure a favorable structure is that the total potential energy of 
the system reaches a minimum, as required by the second law of thermodynamics for a 
stable system. 

In ionic crystals, such as NaCl, the single valence electron in the sodium atom moves to 
the chlorine atom such that both Na+ and Cl- have closed electron-shells but meanwhile, 
become charged. The Coulomb potential among the ions becomes the major attractive 
force. The potential energy of any ion i in the presence of other ions j is then, 

± q2 αq2 
U = ∑ = −i,A 

i≠ j 4πεorij 4πεoro 

where q is the charge per ion, εo the dielectric constant, and ro the nearest-neighbor 
separation. The parameter α is called the Madelung constant and is related to the crystal 
structure. This attractive potential, combined with an appropriate repulsive potential, 
gives a description of the potentials for ionic crystals. 

Covalent bonds are formed when electrons from neighboring atoms share common 
orbits, rather than being attached to individual ions as in ionic crystals. Diamond, silicon, 
and germanium are all covalent crystals. Each atom has four electrons in the outer shell 
and forms a tetrahedral system of covalent bonds with four neighboring atoms, as 
indicated in the figure. 

1 1 1Note: For instance, in silicon the ( ,  , )  atom is shared by neighboring atoms. 
4 4 4

2.57 Fall 2004 – Lecture 8 
55



In certain crystals, such as GaAs, both the covalent and ionic bonding are important.  
Fundamentally, the covalent bonding force is still due to charge interaction. Unlike the 
van der Waals force in molecular crystals or the electrostatic force in ionic crystals, 
however, it is more difficult to write down simple expressions for the covalent crystals. 
 
In covalent bonds, electrons are preferentially concentrated in regions connecting the 
nucleus, leaving some regions in the crystal with low charge concentration. Metals and 
their associated metallic bonds can be considered as an extreme case of the covalent 
bonds, when the covalent bonds begin to overlap and all regions of the crystal get filled 
up with charges. In the case of total filling of the empty space, it becomes impossible to 
tell which electron belongs to which atom. This can be shown by the distribution of

G G * Gwavefunction ( )  , in which the probability Ψ Ψ ( )Ψ r ( )  is more uniform in a metal.r r
 
3.1.4 Reciprocal lattice 
If a time function f ( ) is periodic with a period of T (i.e. ( + ) = f ( )tt f t T  ), its can be 
expanded into a Fourier series as, 

∞ ⎛ ⎛ 2πn ⎞ ⎛ 2πn ⎞⎞f (t) = ∑ ⎜⎜a n sin⎜ 
T

t⎟ + bn cos⎜ 
T

t⎟⎟⎟ 
n =−∞ ⎝ ⎝ ⎠ ⎝ ⎠⎠  

∞ inωt −inωt= ∑ ( )' b ea n e + n ' 
n =−∞ 

Here the angular frequency ω=2π/T is the Fourier conjugate of the time periodicity such 
that eiωT=1, which ensures that f(t) is periodic. 
 
A spatial function, f(x), with a periodicity a, ( ) = ( + )f x f x a , can be similarly expanded 
into a Fourier series, 

∞ ink x x −ink x x= ∑ ( )+ b 'ef (x) a 'en n 
n =−∞ 

where the wavevector, kx=2π/a, is the Fourier conjugate to spatial periodicity a. 
 
 … 

a L 
 
 

15151515 
 
 
 
 
 

hhEEoo ==10101010 
22 

2288mama 

5555 
 
 
 0000
 

-4-4-4 -3-3-3 -2-2-2 -1-1-1 0 10 10 10 1  2222  3333  4444 
   

2.57 Fall 2004 – Lecture 8 

E 
/ E

0
,  

E
0

= 
h2 /(8

m
a2 ) 

k / (π/a)Normalized Wavevector

56



 

 

 
 

 

   

   

 
  

 

 

 

 

 
 

 

 

In the above figure, the electron energy dispersion shows a period of 2π/a because of the 
periodic potential field ( + ) = u x  ( ) u x  a   (recall the Bloch theorem). 

Note: (1) The discussed function f(x) can represent not only the charge density but also 
other periodically distributed properties. (2) The Born-von Karman boundary condition 
requires that the wave functions at the two end points be equal to each other. This results 

2π 2π 2πin k = , not kx . (3) For personal interests, you may want to compare the ∆ =  = 
L Na a 

process with digital signal processing (DSP), where a is in analog to the sampling period, 
k corresponds to the detected frequency. The highest measurable frequency is inversely 
proportional to a. 

Now we will extend our discussion to three-dimensional cases. With a translation lattice G G G Gvector T n= 1 1  + n a  2 + 3 , we can reach any crystal point from the origin. a  n a  2 3 

For a function u(r)= u(r+T), we will first give the following answer and then show that 
the given Fourier expansion indeed satisfies the required periodicity, 

∑ r Gu( )  = G 
i •r u e

G 

where G and the inverse transformation are given by 
G=m1b1+m2b2+m3b3 
and (b1,b2,b3) are conjugated to the primitive lattice vectors (a1,a2,a3) through 
b1 = 2π (a2 × a3 ) /V , b2 = 2π (a3 × a1) /V , b 3 = 2π (a1 × a 2 ) /V 

where V = a1 • (a2 × a3 ) is the volume of the primitive unit cell in real space. For the 
one-dimensional case, we have G =2πn/a, r =x. 

With the above definitions, we can show that u(r) is indeed invariant with any 
translational lattice vector in the real space, T(=n1a1+n2a2+n3a3), where n1, n2 n3 integers, 

i(r T+ •) G ir G  iT G  u( + ) = u e  = u e  • +  •  r T  ∑ G ∑ G 
G G 

• +i2 ( 1 1  + 2 2 +n m  3 r Gir G  π n m  n m  3 ) i •= u eG = ∑u e  = u( )∑ G r 
G G 

Thus, we see that the new set of vectors introduced, (b1,b2,b3), which has a unit of m-1, 
are the corresponding Fourier conjugate to the real space lattice vector (a1,a2,a3). We can 
use (b1,b2,b3) to construct a new lattice called the reciprocal lattice. Previous definitions 
on real space lattices, such as unit cells and the Wigner-Seitz primitive unit cell, are 
equally applicable to such a reciprocal lattice. This reciprocal space is the Fourier 
conjugate of the real space. 

Although a very abstract concept, the reciprocal lattice can actually be easily mapped out 
with diffraction experiments. When electron waves or X-rays (electromagnetic waves) 
with proper energy are shone onto a crystal, the reflection or transmission occurs only 
along specific directions, as shown in the following figure. 

2.57 Fall 2004 – Lecture 8 
57



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

 

Consider an incident wave from the source along direction k. The incident wave is 
ik i • −( s )proportional to e r r  , where r is any point in the sample and rs is the location of the 

source relative to the origin of coordinates. The wave scattered into the detector is then 
(r r  )ik • −proportional to ( )r f d , where kf is the propagation direction of the scatter a wave, n e  

n(r) is the nuclei density, and rd is the position of the detector. Because each of the atoms 
may scatter wave, the total amplitude at the detector is 

• −r r ) i • −  (r r  ) i(k  r k r  ) ( i − f )•rik ( k • − •  i k k
i s f d f d i sAe n( )e dV = Ae n( )r r e dV∫ ∫ 

whole whole 
crystal crystal 

(k r k r  G k k  •r∑ i • − •  ) ∫ G 
i( + −  )f d i s i f= A e  n e  dV  

G whole 
crystal 

x 

Crystal Specimen 

dV 

Source Detector 

z 

r 

rs 
rd 

( )k  r r  i sie • −  

( )(r) k r rf di n e • −
y 

(G k  k  )•rBecause the exponential function ei + i − f is a rapidly varying function in the crystal 
with both negatives and positives, the above integral will be close to zero except when 
the exponent vanishes, i.e., when 
G k  k  = 0+ − f .i

This is called the Bragg condition for diffraction. Because the wavevectors kf and ki are 
determined by the relative positions of the source, the sample, and the detector. The 
reciprocal lattice vectors G, and thus the crystal structure, can be determined from 
diffraction experiments. 

θ 

a 

2.57 Fall 2004 – Lecture 8 
58



 
 
 
 

 

 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Consider the special set of crystal planes separated by a distance a as shown in the 
following figure and an incident wave (photon or electron) of wavelength λ at an angle θ. 
Constructive interference between waves reflected from crystal planes occurs when the 
phase difference of the waves scattered between two consecutive planes is 2πn. From the 
figure, we see that the path difference is 2asinθ. Thus diffraction peaks will be observed 
when the path difference is multiples of the wavelength, i.e.,  
2a sin θ = nλ . 

In the following lecture, we will continue the discussion of energy dispersion for 
electrons and phonons. For phonons, in the acoustic waves a linear energy dispersion 
function is used as the approximation. For electrons, two parabolic curves are connected 
to approximate the energy dispersion. 

ω EEinstein 

ωE 

Debye 

dE/dk=0 kk 

π/a 
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2.57 Nano-to-Macro Transport Processes 
Fall 2004 
Lecture 9 

3.4 Density of states 
(1) Electron in a quantum well 

∞=U 

U=0 
x 

ENERGY AND 

n= 
1 

n= 
2 

n= 
3 

WAVEFUNCTION 

For electrons in a quantum well, the energy has discrete levels as  
2h n2 

E =  (n=1,2,…)
8m D2 

For wavefunction Ψ , we have degeneracy g(n)=2 due to the spin.,n s  

(2) Harmonic oscillator 
The energy is 

1 KE = hν (n +1/ 2);ν =  (n=0,1,2…)n 2π m 
The wavefunction is Ψ , and the degeneracy is g(n)=1.n 

(3) Rigid rotation 
The energy eigenvalues are 

2= ( (El = A A +1) = hB A A +1)  (for |m|≤ A , A =0,1,2, …).
I 2 

For wavefunction Ψnlm , the degeneracy is g(l)=2l+1. 
(4) Hydrogen atom

En
el = −  

Mc1
2 

= −
13.6 eV 

( n ≥ ,1 n ≥ A +1 and m ≤ A , A =0, 1, 2, …)2 22= n n2 

The wavefunction Ψnlms corresponds to degeneracy g(n)=2n2. 

Now let us consider electrons in a solid. The parabolic approximation at the band edge 
gives 

2 2 )= 2 2  = 2 (k + ky 
2 + kk x zE E  = =− c 2m * 2m *

, 
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2π na 
x , ,  k = ±  . In different directions, n values can be different. For where k ky z L 

wavefunction Ψ( ,k ky , k ) , we have three quantum numbers. x z 
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In the Debye approximation, we have energy dispersion as 

ω = vk = v 2 2 2 
x y zk k k+ + ; E
n = hν (n +


1


2

)
, 


where v is sound velocity. 


Density of (quantum mechanical) states (DOS): 

(a) Electron

Volume of 

L 
π20 

L 
π4 

L 
π6 

L 
π2 
L 
π4 

dk 
k+dk 

One 

kx 

ky 

k 

kx 

ky 

kzUnit Cell 
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3In above figure, we can find the volume of one state is V = (2π / L) . In the above sphere,1 

the number of states within k and k+dk is  
24π k k  Vk  k  ∆ 2∆N∆ =  =  

V1 2π 2 , 

in which V=L3 is the crystal volume.  

The density of states is defined as the number of quantum states per unit interval of 
energy and per unit volume 

k 2 k 21 ∆N ∆k dkD E( )  = = = 
V E  2π ∆E 2π 2 dE

. 
∆ 2 

At the band edges, the electrons have energy 
2 2 )=2 2  =2 (k + ky 

2 + k
E E  += c c2m

k 
* = E + x 

2m * 
z , 

thus 
* 

2 

2 ( )c 
mk = − 
= 

.E  E  

Considering spin, the density of states is 
2 

D E  2 = ( )3/ 2 (E  E  ) .( )  = 2 k dk  1 2m * 

− 1/ 2 
2 2 c2π dE 2π = 

EEFEc 

E
lectron D

ensity of States 

(b) Phonon 
According to the Debye model that assumes three modes (two transverse, one 
longitudinal) are identical, we have 

2.57 Fall 2004 – Lecture 9 
62



2 

D( )  = 3 ∆N 3 k 2 dk 3ωω = 2 = 2 3 ;ω = vk .
V ∆ω 2π dω 2π v 

(c) Photon 
For electromagnetic waves, we only have two transverse modes. The density of states is  

2ωD( )  =ω 2 3 .

π c


We may also want to use D λ  in radiation problems. ( )  

The density of states is a purely mathematical convenience but is central to correct 
counting of the number of electrons and the energy (or charge and momentum) that they 
carry. As a simple example of how the density of states is needed, let’s evaluate the 
energy of the topmost level at T=0, i.e., the Fermi level, Ef. At zero Kelvin, the filling of 
the electron quantum states starts from the lowest energy level and moves up from one 
energy level to the next until all electrons are placed into distinct quantum states.  The 
number of electrons per unit volume at T=0 is 

Ef 3 / 2n = ∫ Ed E D = 
1 ⎛

⎜ m 2 * 
⎟
⎞

3 / 2 

(E − Ec ) ,( )  
3π2 ⎜

⎝ = 
2 ⎟

⎠ 
f 

Ec 

in which the electron density n=N/V. 

For nonzero temperatures, Ef is replaced by the chemical potential.  

Nanostructures: 

z 

D 

For a thin film with thickness d, we have the energy as  

( 
2 = 2π2 

k E x k , y n , ) = 
= k xy

2 
+ n 2 (n=1,2,…)*m 2 * d m 2 2 

*And we define En = n2= 2π2 d m 2 /( 2 ) for convenience. In the k space, k ky = ±
2π ja ,,x L 

while the z direction is quantized by number n. For a given energy E, we have solutions 
for kx, ky when En<E. A constant energy surface is drawn in the following figure. Here we 
can nondimensionalize the coordinates to maintain the surface as a sphere. The solutions 
lie on the sketched circle determined by E-En, i.e. 

y ,| kxy |= E k  k  n  ) − E 2m * .( x , n = 
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If En>E, no solutions are available on this sphere. A large sphere corresponding to a 

higher E is required to find solutions for kx, ky. 


The calculated density of states is presented in the following figure, which is staircase for 

one-dimensional constraint. For two-dimensional constraint (quantum wire in HW, n, l as 

the quantum numbers), we have D E  − nl
( )  ∝ (E  E  )−1/ 2 . If all three dimensions are under 

constraint (quantum dot, n, l, k as the quantum numbers), the density of states is just like 

jumps at different Enl k . 


kz (n) 

ky 

kx 

E 

D(E 
) 

quantum well (2D) 

bulk (3D) 

n=1 

n=2 

n=3 

Chapter 4 Statistical thermal & energy storage 
In Lecture 2, we have mentioned that matter tends to occupy the lowest energy levels. 
For an energy level Ei, we have given the Boltzmann factor for its occupying probability 
as 
P E ) = Aexp( −E  k T  ) ,( /i i B 

in which the constant A can be determined by normalization over all quantum states 
( )  =1.∑ P Ei 

All QS 

For monatomic atom, we have 
2E = 

m (v 2 + vy + v 2 ) .x z2 
Normalization gives 

2 2∞ ∞  ∞  ⎡ m  v  ( x + v + v2 ) ⎤ 
y z exp ⎢− ⎥ dv dv dv  =1A ∫ ∫ ∫  ⎥ 

x y z 
−∞ −∞ −∞ ⎢⎣ 

2κBT ⎦ 

A = ( m )3/ 2 . 
2π k TB 

The average number of particles is 
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2 2( x + v + v2 ) ⎤ 
y zf =< n >= n( m )3/ 2 exp  ⎢

⎡
− 

m v  
⎥ . 

2π k T  ⎢ 2κBT ⎥⎦B ⎣ 
where n is the particle number density.  The Boltzmann factor can only be applied to 
closed systems, while for an open system exchanging energy with the outside, the 
probability becomes 
P E  Ni ) = Aexp[ −(E − µN ) / k T  ] ,( i , i i B 

where Ni is the particle number, chemical potential µ is the criteria for the equilibrium 
state of mass exchanging process with the outside, just as pressure for mechanical 
equilibrium and temperature for thermal equilibrium. 

Now consider electrons at energy Ei. Ignoring the spin, we have two possibilities: 

Electron number Ni Energy Ei 
0 0 0 
1 1 Ei 

Normalization gives 
(P(0, 0) + P E  ,1) = 1i 

or 
A Aexp[ −(E − µ) / k T  ] = 1.+ i B 

Therefore 
1A = 

1+ e−( Ei −µ ) / k T  . 
B 

The average number of occupancy of this quantum state is thus 
(f =< n >= 0 × P(0,  0)  + 1× P E  ,1)i 

B= −( E 
1 

i −µ ) / k T e−( Ei −µ ) / k T  
B1+ e


1
= 
1+ e( Ei −µ ) / k T  . 

B 

This is called the Fermi-Dirac distribution.  

1/2

f 

1 

Ei 

µ 
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For phonons, the energy is expressed as 
1ν (E = h  n  + )    (n=0,1,2…) n 2 

Thus 
∞ ν (∑ Aexp[− h n +1/ 2)] = 1 

n=0 k TB 
∞ νhνexp(− )∑ Aexp( − h  n  ) = 1 

2k T  n=0 k TB B 

hν 1exp(− ) A =1.hν
B2k T  1− exp( − )

k TB 

hν hνA = exp( )(1 − exp( − )) . 
2k T  k TB B 

And 
nhν hν(P E) = exp( − )[1 − exp( − )] . 
k T  k TB B 

Then the average number of the phonons, or the occupancy of the quantum state is 
∞ 

n ( ) ,< >= ∑nP E  n

n=0


∞
hν[1 
k T  

= − exp( − )]∑n exp(−nhν / k T  ) 
n=0 

B 
B 

∞hν ⎡ d[1= − exp(− )] ⎢− ∑exp(−nx)⎤ (x=hν/kBT)
k T  ⎣ dx n=0 ⎦

⎥ 
B 

1 
= h k  T  e ν / B −1 
which is the Bose-Einstein distribution.  

Note: The differentiation is a mathematical trick that leads to the same results as the 
original summation.  
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2.57 Nano-to-Macro Transport Processes 

Fall 2004 


Lecture 10
 

Review on previous lectures 

k 

kx 

ky 

kz 

In above figure, we can find the volume of one state is V1 = (2π / L)3 . In the sphere, the 
number of states within k and k+dk is  

π 2 2∆4 k k∆ Vk  k  
∆ =N = 2 ,

V1 (2 ) π 
in which V=L3 is the crystal volume.  

The density of states is defined as the number of quantum states per unit interval of 
energy and per unit volume 

1 ∆N k 2 ∆k k 2 dkD E( )  = = = .
V E 2π 2 ∆E 2π 2 dE∆ 

A factor that considers polarization of waves may be added (electron, spin up and down, 
thus a factor of 2, photon, two polarizations, phonons, 3 polarizations) 

For an energy level Ei, the Boltzmann factor for its occupying probability is  
( ) = Aexp( − /P E  E k T  ) ,i i B 

in which the constant A can be determined by normalization over all quantum states 
( )  =1∑ P Ei . 

All QS 

For an open system exchanging energy with the outside, the probability becomes 
( , ) = Aexp[ ( E µN ) / k T  ] ,P E  N  − −  i i i i B 

where Ni is the particle number, chemical potential µ is the criteria for the equilibrium 
state of mass exchanging process with the outside, just as pressure for mechanical 
equilibrium and temperature for thermal equilibrium. 
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For electrons at a quantum state with energy E, the Fermi-Dirac distribution gives the 
average number of electrons as 

1 n = f E  ( )  = .( Ei ) /  Be −µ k T  1+ 

For phonons, the Pauli exclusion principle is no longer applicable. And the occupancy of 
the quantum state is changed into 

n = f ( )  h k T  ν /

1ν = 
B

, 
e −1 

which is called Bose-Einstein distribution. 

For molecules, similar results exist 
1 n = f E  ( )  = ,(E −µ ) /  k T  i Be −1 

where µ is again the chemical potential of the boson gas. 

The Bose-Einstein distribution changes the “plus one” in the denominator of the Femi-
Dirac distribution into minus one. When E − µ � k T  , we can ignore the ±1 term in the B 

denominator. Both distributions reduce to the Boltzmann distribution function, 
⎛ E − µ ⎞ ⎛ E ⎞

f (E,T,µ) = exp⎜⎜− ⎟⎟ or f E,T ) = exp  ⎜ − .( ⎟κ T κ T⎝ B ⎠ ⎝ B ⎠ 
For high temperatures, the energy separation is so small that we should still use the 
“classic” Boltzmann distribution function. 

In the following figure, the Fermi-Dirac distribution is drawn. At T=0 K, we have 
EF = µ . From the right figure, we can see that electrons close to the Fermi level can be 
affected by the increased temperature. Only these electrons contribute to the electricity 
conduction. 

Empty levels 
f 

1 
1/2 

EF Filled 
levels 

Ei 

µ 

For electrons in a box (with constraints in three dimensions), the quantized energy levels 
are 
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2= 2 2 2(k + k + k ); , ,  = π /E = k k k  2 n L  .x y z x y z2m 
The Bose-Einstein distribution is presented in the following figure according to the 
temperature. For constrained electrons, we can find that the ground state (quantum 
numbers n l i 1= = = ) has much larger occupancy than any other energy level. This is 
more apparent at lower temperatures. Therefore, most molecules will go to the ground 
state when the temperature approaches 0 K. The phenomenon is called the Bose-Einstein 
condensation. The experimental work in dilute gases of alkali atoms earned Professor 
Ketterle a Nobel Prize in 2001. 

0  0.1  0.2  0.3  0.4  0.5  

FREQUENCY (X1014 Hz) 

Consider particles in an isolated system. For statistics, we normally calculate the time 
average value 

T 
x 
_ 

= x t d( )  t . 1 
∫0T 

However, this is impractical when the particle number is very big. To simplify, we focus 
on the probability of a system to be at a specific accessible quantum state.  
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Suppose we have Ω quantum states. We can treat each accessible quantum state as a 
system. The collection of these Ω systems is called an ensemble. Three ensembles are 
analyzed in the table. 

x1, P1 

Quantum 
State 1 

x2, P2 

Quantum 
State 2 …...
 

x3, P3 

Quantum 
State Ω 

Microcanonical ensemble Canonical ensemble Grand canonical 
U, V, N fixed 
Isolated systems 

Principle of equal 
probability: 1/ iP = Ω  

Boltzmann principle gives 
ln ( , , )BS k  S U V  N  = Ω = 

The entropy S is additive. 

dU = TdS - pdV + µdN 

, 

, 

, 

V N  

U N  

U V  

SdS dU
U 

S dV 
V 

S dN
N 

∂⎛  ⎞  = ⎜  ⎟∂⎝  ⎠  

∂⎛  ⎞  + ⎜  ⎟∂⎝  ⎠  

∂⎛  ⎞  + ⎜  ⎟∂⎝  ⎠  

If we know the function 
S(U,V,N) [or U(S,V,N)], 
we can determine all other 
thermodynamic state 
variables. The function 
S(U,V,N) is called a 
thermodynamic potential. 

V, N, T fixed 
In contact with a thermal 
reservoir; isothermal. 

Since the reservoir also has 
many quantum states, a 
quantum state of one system 
can correspond to different 
number of real quantum 
states. The principle of 
equal probability is no 
longer valid. The 
probability becomes 

/ 

/ 

( )  
i B 

i B 

E k T  

i 

E k T  

i 

eP E  
Z 

Z e 

− 

− 

= 

= ∑ 

The Helmholz free energy 
-

( ,  ,  )  
- ln  B 

F U  TS  

F T V  N  

k T  Z  

= 

= 

= 

becomes the thermal 
potential in this case. 

V, µ, T fixed 
Open, isothermal system. 
Exchanging both energy 
and particles with the 
reservoir.  

(  )  /  

( ,  )  
i i BE  N  k T  

i i 
eP E  N  

Z 

µ−  −  

= 

The numerator is the Gibbs 
factor and 

(  )  /  i i B 

i i 

E  N  k T  

E N 

Z e µ−  −  = ∑∑ . 

The grand canonical 
potential is 

( ,  ,  )  

lnB 

G T V  

U TS  N  

k T  Z  

µ 

µ= −  −  

= −  

Note: G is not Gibbs 
energy. 

Denote P as the probability of a quantum state. A fundamental assumption made in 
statistical mechanics is that the ensemble average of an observed quantity is equal to the 
time average of the same quantity, i.e. 
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_ Ω 

x = x = ∑ Pi ix , 
i=1 

which is called the ergodic hypothesis. 

Internal energy and specific heat 
For a constrained particle, its energy is expressed as  

=2 
2 2 2E = (kx + ky + kz ) ,

2m 
where k = ±2 / ,  = ±2π / , = ± π n L  /π i L k  j L k  2  (n, j, l=1,2…). The internal energy is x y z 

u1 = E1 

⎛ E − µ ⎞ 
= E k k  k  ( , ,  )×exp  ⎜ − 

k T∑∑∑  x y z ⎟ 
k k k ⎝ B ⎠x y z 

⎛ E ⎞ 
, ,  exp  E k k  k  ∑∑∑  ( x y z ) ⎜ − ⎟
 

x ky z ⎝ B ⎠
k k k T  
= ,

⎛ E ⎞
∑∑∑exp ⎜ − ⎟
 
x y z ⎝ B ⎠
k k k k T  

If the energy separation is very small (quasi-continuous), we can evaluate Z by 
integration instead of discrete summation, i.e.   

⎛ E ⎞
Z = ∑∑∑exp ⎜ − ⎟ 

x ky z ⎝ B ⎠k k k T  

E k T  B= ∫
∞ 

e− / D E d( )  E 
0 

∞ − / B
V ⎛ 2m ⎞

3/ 2 

= e E k T  EdE∫ 2 ⎜ 2 ⎟0 4π ⎝ = ⎠ 
V 

= ,
λ3 

where the thermal de Broglie wavelength is λ = 
2 

2 Bmk T π 
= . 

1Let y = . The energy expression can be rewritten as 
k TB 

1 ∂Z d 3E = = − ln Z = k T  ,
1 Z y  dy  2 B
∂ 
which is just the familiar energy expression. It is also a special case of the equipartition 
theorem, which states that at high temperature every degree of freedom with a quadratic 
energy term contributes κBT/2 to the average energy of the system.   

The internal energy is 
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3 3 u = k N T  = R T  ,B A u2 2 
in which Ru  is the universal gas constant. The specific heat is  

∂u 3CV = = Ru . 
∂T 2 

In the following figure we draw the specific heat of hydrogen gas. At low temperatures, 
only the translational energy levels are fully excited and the specific heat is 3Ru/2. As the 
temperature increases, the rotational energy levels start to be excited and contribute to the 
specific heat to a maximum of R such that the total specific heat reaches 5Ru/2. At even 
higher temperatures, the vibrational energy levels start contributing to the specific heat 
that approaches a final value of 7Ru/2. 

101 102 103 104 

TEMPERATURE (K) 

For photons, we have 
1 n = f ( )ω = . =ω / k TBe −1 

The internal energy is 

u = ∑∑∑=ω f ( )ω = ∫0 

∞ 
=ω f ( )ω D( )ω dω , 

k k kx y z 

where the density of states (two transverse electromagnetic waves) is 
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2 24π k dk  ωD( ) 2  3 = 2 3 ;ω = k for light.ω = ×  c
⎛ 2π ⎞ π c

dω⎜ ⎟
⎝ L ⎠
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Lecture 11
 

4.1.1 Photons (continue) 
First let us continue the discussion of photons. We have 

1 n = f ( , )  ω T = . =ω / k TBe −1 
The internal energy is 

u =∑∑∑  ω f ( , )  T =
∞ 
=ω f ( , )= ω ω T D  ( )  ω dω ,∫0

k k kx y z 

where the density of states (two transverse electromagnetic waves) is 
2 24π k dk  ωD( ) 2  3 = 2 3 ;ω = ck  for light.ω = × 
  

⎛ 2π ⎞ π c

dω⎜ ⎟

⎝ L ⎠
Thus 

ω2 1 u =
∞ 
= ω dω = 

∞
u dω ,∫0 2 3  ⎡exp = − ⎤ ∫0 ωπ c ω/κBT 1⎣ ( ) ⎦ 

in which we define 
= ω3 

uω = f (ω,T)= ( )  2 3ωD ω =
 
π c ω/κBT 1 
⎡exp (= ) − ⎤⎣ ⎦ . 

Recall the Planck’s law as 
c e = 1 ,b,λ c / λTλ5 (e 2 −1) 
  

∆ω
which has λ5 but in uω  we have ω3 . Noticing uλ = uω and ω = ck = 2 c /π λ , we
∆λ
 

dω
 2πc uω = 2 uω , which accounts for the power difference in above twoobtain uλ = 
dλ λ 

expressions. Therefore, we have obtained the exact Planck’s blackbody radiation law. 
The radiation intensity, defined as energy flux per unit solid angle and normal area, is 
calculated as  

λIλ = 
cu ,
4π 

where 4π  is the full solid angle (for sphere Ω = Area / R2 = 4π ), c is light speed.  

4σ 4With u =
∞ 

u( )d = T , the blackbody emissive power is expressedω ω  as∫0 c
 
4 −8 2 4
eb = π I =σT , where σ = 5.67×10 W m/ ⋅K . 

4.1.2 Phonons 
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πIn the Debye model, we assume ω = v k . The maximum frequency is thus ωD = vD ,D a 
which is different from original ωmax. For phonons, we have three polarizations (two 
transverse, one longitudinal waves). Similar to photons, we have  

2 
( ) = 

dN 
= 3• ωD ω 

2 3 .Vdω 2π vD 

Debye 

k 

ω 

π/a 

ωmax 

ωD 

The internal energy is 

U =∑∑∑= ω f (T,ω)
 

k k kx y z 

ωD 

= = ω f T,ω D ω dω∫ (  ) ( )  
0 

3 ωD = ω3dω
 
2 3 ∫
 exp  (= ) − 

= 
2 π v ω/κ T 1

. 
D 0 B 

Note: For one monoatomic chain with N atoms, we have N quantum states. Similarly, for 
N atoms in a crystal, we have 3N quantum states (three acoustic branches) for phonons. 
This yields 

1 ω ω 3ω 2 ω 3 

3 /  = 1 = 
D D  d  ω ω  

D D ,N V  ( )  = dω =∑∑∑ ∫ ∫ 2 3 2 30 0V kx ky kz 
2π vD 2π vD 

πfrom which we can estimate ωD  and the effective lattice constant a vD .= 
ωD 

Define Debye temperature θD = =ω / kB . The specific heat is expressed as 
3 θD/T 4 xN ⎛ T ⎞ x  e  dx  CV = 9kB ⎜ ⎟ ∫ x 2

,
V ⎝ θD ⎠ 0 (e 1− ) 
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=ωin which x = .
k TB 

At low temperatures, the upper limit of above integration θD /T →∞  and thus CV ∝T 3 , 
Nwhile in the high-temperature limit we have constant CV = 3 kB .V 

Kx2 

Note: At high temperatures, in each direction both the harmonic component and 
2 

2mvkinetic component contribute k T  / 2 to the internal energy. Vibrations of one ion 
2 B

Nin three directions totally contribute k T  , which is consistent with C = 3 k . ThisB V V B 

result is similar to the ideal gas case. A common Cv-T curve is drawn as following. 

Temperature  

CV 

CV → const
Cv ~T3 

In many sources, people use the specific heat per unit mass instead of per unit volume. 
This normally causes a factor difference. In general, we have Cv ~ 10  6 J / K ⋅m3 . 

4.1.3 Electrons 
In this case, the internal energy per unit volume is  

∞ 

( )  ∑∑∑  (E T ) ∫ (E T ,µ  ) ( )  D E dE ,U T = 2 Ef ,  ,µ  = Ef , 
kx ky kz Ec 

1where the Fermi-Dirac distribution is f = , the coefficient 2 for spins is (E−µ) / k T  Be +1 
2= 2 2 2included in D(E), the energy dispersion E −E = (k + k + k ).c * x y z

2m 
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E E cDOE − 

=2 
2 2 2E = * (k + ky + k )2m x z 

cE E
2 2= k 

=− 2m * 

k 
E 

Ec 

We can use the same idea as phonons to solve µ , 
N 
= 

2 ∑∑∑  ( , ,Tf E  µ )
V V k k kx y z 

2 ⎛ dkx ⎞⎛ dky ⎞⎛ dkz ⎞ = f E( ,  µ,T ) ⎜∫∫∫ ⎜ ⎟ ⎟⎜ ⎟V V ⎝ 2 /π L ⎠⎝ 2 /π L ⎠⎝ 2 /π L ⎠ 

= ∫
∞ 

( , ,  ( )  ,f E )µ T  D E dE  
0 

where N is the total number of electrons, and we use density of state to rewrite the 
summation in an integral form. The chemical potential µ  is solved if N/V is given. 

The specific heat is derived as 
∂u 1 N TC = = π 2 k ,e ∂T 2 V B Tf 

in which the Fermi temperature is defined as Tf = 
E f .
kB 

Note: (1) When we calculate ∑∑∑  f (E, µ,T ) , the energy values within the energy 
k k kx y z 

gap should be excluded and we should not count the corresponding wavevectors. (2) In a 
semiconductor, the phonons contribute much more to the specific heat than electrons. 
Electron contribution can only exceed that of the phonon at very low temperatures in the 

CvΛfollowing figure. In the equation k = , there are different specific heat C and 
3 

velocity v for electrons and phonons. We should also have different mean free paths. (3) 
For nanostructures, the energy is quantized and the summation should be conducted over 
the quantum numbers instead of wavevectors, such as quantum dots. (4) All current 
discussions are based on equilibrium state. We will talk about nonequilibrium problems 
later.  

2.57 Fall 2004 – Lecture 11 
77



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 

 

 

 

 

10-2 

10-3
 

1 10 100 1,000
 
TEMPERATURE (K)
 

10-1 

PHONON 

ELECTRON 

Chapter 5 Energy transport by waves 
Consider energy transported between two points. The net energy transfer rate is 

q → − q = ∫τ1 2  ( , ) ( )  1q = v E f T E  D E  dE ,12  1 2 2→1 → x 1 1 1 

in which τ →  is the transmissivity, ( ,  )  ( q  has the E f T E  D E ) has the unit J/m3, and1 2  1 1 1 12

unit W/m2. 

Q1->2 

1 2 
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K)

 

x 
Q2->1 

Now the question is how to calculate the transmissivity τ and velocity v. For 
nanostructures, the interface characteristic length is comparable to wavelength so that the 
interface is important even in the classic viewpoint.  

5.1 Plane waves & their interface reflection 

Transmission wave 

Reflection wave 


Energy barrier u
Incoming 
wave 

x 
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Recall the above homework problem. Generally we have the wavefunction of the 
transmitted wave as 

E
−i t  (ω − )−i t k x  = xΨ t ( ,  )  = e Ψ( )  t x  x = e , 

in which kx = 2 

2 (  )m E  u  − 

= 
. 

Based on the Schrödinger equation  

− 
= 2∇ Ψ + (U − E)Ψ = 0 ,

2m 
we have 

( − 1xi t k  )Ψ = Ae− ω   (incoming wave), i 

i t k  1 )( + x 2mE
Ψ = Be− ω   (reflected wave),  k = r 1 2= 

( − 2 )i t k x  Ψ = Ce− ω   (transmitted wave), k = t 2 2 

2 (  )m E  u  − 

= 
. 

The boundary conditions are applied 
(Ψ +Ψ ) = Ψ | , (Ψ +' Ψ ') = Ψ ' | ,i r x=0− t x=0+ i r x=0− t x=0+ 

which yields 
+ =  ; (  − )A B  C k A B  = k C  1 2 

B k k− C 2k1 2 1or = ; = .
A k k A k k  + +1 2 1 2 

The flux term is (note A and k1 can be complex) 
⎛ i= * ⎞J = Re Ψ∇Ψ⎜ ⎟
⎝ m ⎠ 

i −i t k x) * (ω − * ) ⎞⎛ = (ω − * i t k x  1 1Re⎜ Ae A i ) ⎟= (− k e 1 |x=0
⎝ m ⎠ 

A 
*= 2 i k k  x * ( 1 − 1 )= Re (k e  | )1 x=0m 

= 2 = A k1 , 
m 

where we use the fact that k1 is a real number in the last step. 
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5.1 Plane waves & their interface reflection (continue) 

Transmission wave 
Reflection wave 

Energy barrier u
Incoming 
wave 

x 

For the above problem, we have obtained  
( − 1xi t k  )Ψ = Ae− ω   (incoming wave), i 

( + 1x 2mEi t k  )Ψ = Be− ω  (reflected wave), k = r 1 2= 

( − 2i t k x  )Ψ = Ce− ω   (transmitted wave), k = t 2 

The boundary conditions are applied 

(Ψ + Ψ ) − = Ψ | + , (Ψ +' Ψ ') − = Ψ ' | + ,
i r t i r tx=0 x=0 x=0 x=0 

which yields 
+ =  ; (  − )A B  C k A B  = k C  1 2 

B k k− C 2k1 2 1or = ; = .
A k k A k k  + +1 2 1 2 

The incoming flux term is (note A and k1 can be complex) 
⎛ i= * ⎞J = Re Ψ ∇Ψi ⎜ i i ⎟
⎝ m ⎠ 

(ω − i t k x  ⎛ i= −i t k x) * * (ω − * ) ⎞1 1= Re Ae (− k e |⎜ A i 1 ) x=0 ⎟
⎝ m ⎠ 

A 
*= 2 i k  k  1 − 1 ) x* (= Re (k e  | )1 x=0m 

= k1
* = A 2 Re ( )m 

= 2 = A k1 , 
m 

where we use the fact that k1 is a real number in the last step. Similarly, we have 

2 

2 (  )m E  u  − 

= 
. 
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Jr = −  
= 2B k1  (negative sign indicating the direction of reflection), 
m 
= 2 *Jt = C Re ( )  k .2m 

The reflectivity is 
2 k kB 1 − 2R = −  r / iJ J  = = 

A k1 + k2 

and transmittivity is 

2 *Re k2( )C 
= t /T J J  i = .

A k1 

2 

= 

2 
E − E u  − ,
E + E u  − 

For E>u, the equation gives reflectivity R ≠ 0 in both cases shown below, which is 
inconsistent with classical mechanics.  

x x 

When E<u, the equations yield R=1, T=0, which is reasonable from classical viewpoint. 
2m u  E  ( − )

−i tω − x 
=However, the wavefunction is Ψ = Ce 2 

t ≠ 0 in this case. The wave will decay 
rapidly from the barrier and is thus called “evanescent wave.” 

Electromagnetic (EM) waves 
In this chapter, we will see that the wave reflection, interference, and tunneling 
phenomena can occur for all the three types of carriers (phonons, electrons, photons) and 
the descriptions of these phenomena are also similar. 

JG 
An electromagnetic wave in vacuum is characterized by an electric field vector, E , andJJG 
a magnetic field vector, H . Consider a pair of charged particles placed in an electrical 
field. The field will attract the positively charged particle in one direction and repel the 
other particle in the same direction. Consequently, the particles are distorted and form an 
electrical dipole, whose moment is p = e d (d is the separation distance).⋅

JG JG 
E E 

e e 
e e 

d 
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A measure of the capability of the material responding to incoming electric field is the 

electric polarization per unit volume, or the dipole moment per unit volume, P [C m-2],
 
which is related to the electric field through the electric susceptibility, χ, 

P=εoχE, 

where εo is the vacuum electric permittivity, εo=8.85x10

-12
 [C

2
 N-1m-2], and the electric
 

susceptibility is nondimensional. The electric susceptibility χ describes the extent to
 
which positive and negative charges are displaced in a dielectric material under an 

applied electric field. 


The total field inside the medium is measured by the electric displacement, D [Cm-2],
 
which is a superposition of the contributions from the external electric field and the 

electric polarization, 

D=εoE+P=εo(1+χ)E=εE
 
where ε is called the electrical permittivity of the medium.   


The electron and ion motion in a medium also induces a magnetic field, which is 

superimposed onto the external magnetic field. A measure of the total magnetic field 

inside the medium is called magnetic induction, B (N.s m-1.C-1), 

B=µH
 
where µ is the magnetic permeability. 


The propagation of an electromagnetic wave is governed by the following Maxwell
 
equations: 


∂B
(1) ∇ ×E = − 

∂t 
This is the Farady law, which states that a changing magnetic field induces an electric 
field.   

∂D
(2) ∇ × H = + Je∂t
 

∂
Without the D term, the above equation is the Ampere law, which says an electric 
∂t
 

∂ D
current induces a magnetic field. The term is the current due to the electron 
∂ t 

oscillation around the ion even though they are not free to move. It is also called displace 
current. This term is Maxwell’s contribution.  The current density term on the RHS is 
determined by Je = σ E , in which σ  is electrical conductivity. 
(3) ∇ •D = ρe 

Here ρe  is the net charge per unit volume (C m-3). 
(4) ∇ • B = 0
 
It states that there is no magnetic analog of an electric charge as in (3). 
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2 ∂2E ∂E
∇ E=µε + µσ where the termRearranging the Maxwell equations yields 2 ,∂t ∂t 

∂2E ∂E ∂Eµε 2  denotes displacement, while µσ denotes the current. Without µσ , the 
∂t ∂t ∂t 

∂2E ∂Eequation ∇2E=µε is just a regular wave function. The additional term µσ
∂t2 ∂t 

corresponds to damping and is also called dissipation term. 

By solving equations (1)-(5), we obtain the following results for EM waves 
E(r,t) = Eoexp[-i(ωt- k • r)], 
k• k = µω2[εο(1+χ)+iσe/ω] = µεω2, 
where the first equation has the same form as the foregoing transmitted wave. In vacuum 
σe=χ =0, the second equation yields 
k 2 = ε µ ω2 ,0 0  

or 
k

ω = 
ε µ  

0 = c k , 
0 0  

in which c0 is the light speed in vacuum. This is familiar energy dispersion relationship 
for photons. Compared with photons, Maxwell concluded that EM waves were the same 
kind of wave as light. Here we also define the complex reflective index N as 

c0 εµ εN = = ≈ = ε r = n + ik  , 
c ε µ  ε0 0  0  

where εr = ε/εo is called the dielectric constant or dielectric function, the real part of N, n, 
is the usual refractive index of materials. The imaginary part of N, k, is called the 
extinction coefficient, measures the damping of the electromagnetic field, which not 
only arises from the free electrons absorption, but also from the dipole oscillation of 
bounded electrons and other mechanisms.  

Note: The ε r  value depends on the wave frequency and is not a constant. 

2Based on N, k 2 = εµω  can be rewritten as 
2 2 2 2 

2 ω ω c0 ω 2k = = = N ,2 2 2 2c c c c0 0 

or 
Nωk = . 
co 

One can prove that the electromagnetic wave is a transverse wave, and that the electrical 
and magnetic fields are perpendicular to each other, i.e.,  
E⊥H⊥k 
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In the special case that a plane wave is traveling along the x-direction with the electric 
and magnetic fields pointing to the y- and z-direction, respectively. 

We also define the Poynting vector S (W/m2) as 

S=E×H, 

which represents the instantaneous energy flux. It oscillates at twice frequency of the 
electromagnetic field. No electronic devices can measure such a fast signal. What can be 
measured is the time-averaged Poynting vector that is further expressed as 

1 *S = Re(E ×H )
2 c c 

. 

Note: Normally we have µ, ε>0, and thus n>0 and the vector S is parallel to the 
wavevector k, which indicates the energy flows in the propagation direction of the wave. 
When µ, ε<0, the refractive index n should take a negative value.  Such media do not 
exist in nature but has recently been demonstrated in laboratories, are called negative 
index materials or left handed materials.  In these materials, the energy propagation direct 
is opposite to the phase propagation direction. 

Here we will consider the more general case of oblique incidence of an electromagnetic 
wave onto an interface. As shown in the following figure, a plane electromagnetic wave 
propagates along direction ki (wave vector direction) and meets an interface with norm n̂ . 
The reflected wave and refracted wave propagates along the kr and kt directions, 
respectively. We call the plane formed by ki and n̂ as the plane of incidence, and the 
angle formed between n̂  and ki as the angle of incidence. 

k 
i 

Ei 

Hi 
kr 

Et 

kt 

θi θr 

θt 

n1 

n2 

Er 

z 

x 

x 

When an electric field is parallel to the plane of incidence, its conjugated magnetic field 
component, in this case pointing out of the paper, is perpendicular to the plane of 
incidence and is thus always parallel to the interface (refer to the figure).  
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In the plane wave expression obtained earlier in this lecture, we have 
⋅ =  ⋅ x y z  ) ( sin k r  (k sinθ ,0, k cos θ ) (  , , = k x  θ + z cos θ ) ,i i i i 

Nω 2πk = = N . 
c0 λ0 

Thus the incident, reflected, and transmitted electric fields can be expressed as,  

⎡ ⎛ x sinθi + z cos θi ⎞⎤ 
E// i exp ⎢−i ⎜ωt − n12π ⎟⎥ 

⎢⎣ ⎝ λ0 ⎠⎥⎦ , 

⎡ ⎛ xsinθr − z cos θr ⎞⎤ 
E// r exp ⎢−i ⎜ωt − n12π ⎟⎥ 

⎢ λ ⎥⎣ ⎝ o ⎠⎦ , 
⎡ ⎛ xsinθt + z cos θt ⎞⎤ 

E// t exp ⎢−i ⎜ωt − n2 2π ⎟⎥ ,
⎢ ⎝ λo ⎠⎥⎣ ⎦

where in the second equation the negative sign before z cos θr  indicates different 
propagation direction (upward in the z direction) from the incoming and refraction 
waves. The subscript “//” means that the electric field is polarized parallel to the plane of 
incidence for the sketched TM transverse wave.  

Note: For EM waves, two transverse vibrating directions exist. In general, the resultant 
electric field vector will moves around in an ellipse instead of pointing in the same 
direction all the time. The path of the E vector is like a spiral in this situation.  

z 
E 

Assuming there is no net surface charge or current on the interface (z=0), we can apply 
the continuity boundary condition to the vertical and tangential electric fields, 
respectively. In the x-direction, the tangential fields give 

⎡ ⎛ n x sinθ ⎞⎤ ⎡ ⎛ n x sinθ ⎞⎤
1 i 1 r rcosθi E// i exp ⎢−iω ⎜ t − ⎟⎥ + cos θr E// r exp ⎢−iω ⎜ t − ⎟⎥ 

⎢ c ⎥ ⎢ c ⎥⎣ ⎝ o ⎠⎦ ⎣ ⎝ o ⎠⎦ 

⎡ ⎛ n x sinθ ⎞⎤ 
= cosθt E// t exp ⎢−iω ⎜ t − 2 t ⎟⎥ 

⎢ ⎝ co ⎠⎥⎣ ⎦ 
where the above equation is valid only when the exponents are equal because x can take 
any value. Thus we have 
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n sinθ = n sinθ = n sinθ1 i 1 r 2 t 
which leads to the Snell law for reflection and refraction 
θi=θr  and n1sinθi=n2sinθt, 
which yield 
cosθ E + cosθ E = cosθ Ei // i r // r t // t . 

The magnitude of the magnetic field, which is pointing out of the paper, is related to the 
electric field by 

H y =
µ 

n
c 

E// . 
o 

We can write the continuity of the tangential component of the magnetic field as 
n E − n E = n E1 // i 1 // r 2 // t . 

Based on the equations for electric and magnetic fields, we obtain the reflection 
coefficient, r//, and transmission coefficient, t//, for a TM wave as 

E − n cos θ + n cos θ sin 2θ − sin 2θ// r 2 i 1 t t tr = = =// E n cos θ + n cos θ sin 2θ + sin 2θ// i 2 i 1 t t t , 
E 2n cos θ// t 1 it = =// E n cos θ + n cos θ// i 2 i 1 t . 

Note: (1) For an incident light shown as below (e.g. from air to water), in this case the 
refraction light will be bended and the object in the second media will looks higher if the 
observer is in the first media. (2) If n2<0, n1>0, the refraction light will be bended as the 
right figure. However, in nature no negative-n materials exist.   

n1<n2 

n2 

n1 

n2 
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2.57 Nano-to-Macro Transport Processes 
Fall 2004 

Lecture 13 

Review of previous lectures 
1. Energy transport between two points 

Q1->2 

1 2 

Q2->1 

x 

2. Plane waves & their interface reflection 
We are interested in the wave energy at points 1 and 2 on two sides of the interface. 

Transmission wave 

Reflection wave 


Energy barrier uwave 
1 

2
Incoming 

x 

3. Oblique incidence of an electromagnetic wave onto an interface 

k 
i 

Ei 

Hi 
kr 

Et 

kt 

θi θr 

θt 

n1 

n2 

Er 

z 

x 

x 

Assuming flat interface, we have θ = θ . In last lecture, we have derived i r 
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E // r − n2 cosθ i + n1 cosθ E // t 2n1 cosθ i= = ,r// E // i n2 cosθ + n1 cosθ 
t 

, 
t // = 

E // i 

= 
n2 cosθ + n1 cosθi t i t 

which are known as the Fresnel coefficients of reflection and transmission. For normal 
incidence ( θ i = 0 ), similarity exists between case 2 and case 3 (see the following table).  

Electron propagation across a barrier Normal incidence onto an interface 
Ψ

= 
k1 − k2 E // r − n2 + n1rr − = = =r//Ψi k1 + k2 E // i n2 + n1 

2k1 2n1=t = t // n2 + n1k1 + k2 
22 2Sr z  SrB k k2−1 = , = =R// r//R = −J / J = = r i Si z  Si,A k1 + k2 

* 
= , ⎛ n2 cos θ ⎞ 2tJt 

Re (k2 ) 2 T// 

St z  = Re ⎜ ⎟ t//T = = t Si z  ⎝ n1 cos θi ⎠,Ji Re ( )k1
* 

Discussions 
1) Critical & total internal reflection 
A) n1<n2 

The Snell law is applied, n1 sin θ = n2 sin θ .i t 

n1<n2 

n2 

x 

Note: The Snell law indicates the momentum conservation, or wavevector kx1 = kx2 on 
the interface. 

B) n1>n2 

Because the maximum angle of the refracted wave is θt=90o, there exists an angle of 
incidence above which no real solution for θt exists. This critical angle happens when, 
according to the Snell law, 

n1 sinθ = n2 90 sin o or sinθ = 
n2 

c c n1 

Above this angle, the reflectivity equals one, i.e., all the incident energy is reflected (T=0, 
R=1). 

2.57 Fall 2004 – Lecture 13 
88



For an electromagnetic wave incident above the critical angle, the Snell law gives, 

sinθ = 
n1 sinθ i > 1,t
 n2


and thus, 

2cosθt = 1− sin θt = i ⎜
⎛ n1 sin θi ⎟

⎞
2 

−1 = ai . 
⎝ n2 ⎠ 

In the wave function of the transmitted wave, the imaginary cos θt  leads to an 

exponential decay wave 

E// t exp ⎢
⎡
−iω⎜

⎛ 
t − 

n x sinθ + n z cos θt ⎞⎤2 t 2 ⎟⎥ 
⎢ ⎝ co ⎠⎥⎦⎣ 

ω⎡ ⎛ 2 n z  a  ⎤ E= // t exp ⎢−iω⎜ t − 
n x sinθt ⎟

⎞
− 2 ⎥ 

⎢⎣ ⎝ co ⎠ co ⎥⎦ , 

which is similar to the encountered evanescent wave. 

Two applications: 
a) Optical fiber 
An optical fiber has a core region and a cladding layer. The refractive index in the core 
region is higher than in the cladding layer. If light is launched into the fiber at an angle 
larger than the critical angle, the light will be bounced inside the core only without 
leakage, thus traveling a long distance along the fiber if the absorption coefficient of the 
core is small. However, the light can still escape the fiber core if we bend it. 

b) Semiconductor laser 

Leakage by bending 

In a semiconductor laser, light is emitted through electron-hole recombination inside the 
quantum well.  The emitted light spreads over the core region and is confined by cladding 
layers that have a low refractive index than the core. 
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2) Brewster angle 
πWhen θ θi+ =  , we have the electric wave r// = 0 , but the magnetic wave r⊥ ≠ 0 . Thist 2 

incident angle θ  is called the Brewster angle. The corresponding reflectivity is drawnB

in the following figure.  

R 

θB

R// 

R⊥ 

3) Complex refractive index 
αx= + κ , the intensity of the wave decay as I e∝ − ,For a complex refractive index N n  i

where 
0 

4πκα 
λ 

= . 

x 

αxI e−∝ 

For real n1 and complex N2, from n1 sinθ = N2 sin θ , we obtain complex θ andi t t

2i a bi  tsinθ = 
n2 sinθ

=  +  , cosθ = 1− sin θt =  +  c di  .t n1 

Thus the transmission wave is 
⎡ ⎛ n xsin θ + (n + iκ )(c + di  z  ⎞⎤2 t 2 2 )

E// t exp ⎢−iω⎜ t − ⎟⎥ 
⎢⎣ ⎝ co ⎠⎦⎥ . 

Let c d i  = (n + iκ )(c + di  ) . Similar to the evanescent wave, the imaginary component + 1 2 2 
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of the product leads to a decaying amplitude, while the real part contributes to the phase 
factor. The energy flow is still

JK JJK *1S = Re (E×H ). 2 

contours 

Incident wave 

Refraction wave 

Amplitude 

4) Acoustic waves 
n�

Recall the Newton’s lawJK K 
F ma  ,= 

JK K dv 
K 

�= ⋅where the force is F n  σ , acceleration is a = . Denote u as the displacement, i.e., 
dtK K K  

u x= − x0 . We have K KK d x  du  v = = .
dt dt 

In mechanics, we define the strain as 

Sij = 
1
2 ⎜
⎜
⎛ 

∂
∂ 

x
ui

j 

+ 
∂

∂ 

u
xi

j 

⎟
⎞
⎟ , 

⎝ ⎠ 
and the stress is 

σ c S  .= ⋅  

Note: c  is a fourth-order tensor and has 81 components. 

For phonons, we have two transverse waves and one longitudinal wave. The poynting 
vector for acoustic waves is 
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JK 1 K * 
p = −  Re (v ⋅σ ) . 

2 

When the media is isotropic and the incident wave is a transverse wave with 
displacement polarized in the direction perpendicular to the plane of incidence (called a 
shear wave or SH wave), only one SH reflected and one SH transmitted wave are excited. 
At normal incidence, the acoustic reflectivity for a SH wave is 

2
Z1 − Z2Rs = ,
Z1 + Z2 

in which the acoustic impedance Z (similar to refractive index in optics) is defined as 
Z=ρv . 

SH wave 

When the incident wave is polarized in the direction parallel to the plane of incidence, 
one longitudinal wave and one transverse wave are excited for both reflection and 
transmission waves. If the materials are anisotropic, one more transverse is excited for 
both reflection and transmission waves. 

Polarization 
Incident wave 

Reflection 

Transmission 

Note: The thermal resistance on the interface is very important for nanomaterials. 
Acoustic waves (or heat propagation) can be cut off by the interface, just as using a foil to 
cut off the radiation between two surfaces. 

5.3 Wave propagation in thin films 
First let us consider the following structure. Many reflections and transmissions exist in 
this case. Summation is required to calculate the total reflection and transmission. 
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Reflection 

… 

n1 

n2 

n3 

Transmission 

To avoid the summation of infinite series, two other methods are utilized: 
1) Resultant wave method 
In this method, the multiple reflection or transmission waves are combined into one in 
every material. In the following figure, we have four unknowns and four interfacial 
boundary conditions. The reflectivity and transmissivity can be determined on each 
interface. 

2) Transfer matrix method  
The transfer matrix method combines all the waves (both forward and backward ones) in 
each medium into one wave, and uses a matrix to relate the electric and the magnetic 
fields between two different points inside a medium. Because the tangential components 
of the electric and the magnetic fields are continuous across the interface when there is no 
interface charge and interface current, the transfer matrix method can be easily extended 
to multilayers. 

zIn the following figure, the x-component of the electric field E ( ) and y-component ofx 
zthe magnetic field H y 

( ) on the interface are related by 2×2 matrix A, 2×2 matrix M1, 2 
×1 matrix B. And we obtain 

−1⎛ Ei 
⎟
⎞ 
= A M BEt .⎜ 

⎝ Er ⎠ 
1 
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(0) ⎞ ⎛ Ei ⎞⎛ E 
⎜ x 

(0)⎜ H ⎠
⎟⎟ = A⎜ E ⎟ x

⎝ y ⎝ r ⎠ 

(0) ⎞ (d ) ⎞⎛ E ⎛ E 
⎜ x x 

⎜ H (0) ⎟⎟ = M1 
⎝
⎜⎜ H y 

(d ) ⎟⎟
⎝ y ⎠ ⎠ 

BEt 

For multilayers, M is determined by the chain rule as  
M = M M 2 " M ,1 n 

where n is the number of layers.  

⎛ Ei ⎞ −1For a single layer of film, ⎜ ⎟ = A M BEt yields
⎝ Er ⎠

1 

E r12 + r23 exp 2 iϕ ][ 2r = r = 
Ei 1+ r  r  exp  2  iϕ ] ,12 23 [ 2 

2πn d cos  θ22ϕ = .
λ0 

Thus for a nonabsorbing film, we obtain 
2 2 

23 12 2 cos ϕ22 r12 + r23 + 2 r r 
R = r = 2 21 + 2 r r 1223 12 2 cos ϕ2 + r r 23 , 
in which the cosine function indicates periodicity of R. This is just the interference effect.   

Discussions: 
(1) Periodic variation in R 

R 

φ 

Note: In microfabrication, the color of a thin film will change periodically according to 
the thickness, which is used to estimate the film thickness by eyes.  
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(2) Tunneling 
Back to the case in which θ i >θ . We have  cr  

2 
2 icosθ t = 1− sin θ t = i 

⎛
⎜ 

n1 sin θ ⎞ 
− 1 = ai  ,⎟


⎝ n2 ⎠

which causes decay in the second medium. If the second medium is very thin, a third 
medium attached to the second medium will have tunneling effects. The wave will be 
partly transmitted into the third medium before decaying off and the reflectivity R 1≠  in 
this case.  

Note: From n1 sin θ = n2 sin θ = n3 sinθ , in this case θ i ,θ are real numbers, while θ  isi 2 3 3 

imaginary number.  

n1 n2 n3 

d Uo 

d 
Ut0 

Ψ t(E) 
Ψ i(E) 

Similar phenomena happen to the electron propagation across a barrier. In the right 
figure, we can see tunneling happens when the barrier is thin. The transmissivity is 

( U E 4 o − E)
= τ 

( 2 ( )U E 4 o − E)+ U sinh 2 [ U m 2 o − d E / =]o 
or 

( ( ) U E 16 o − E) − k 2 2( 
e d≈ τ 

U E 16 o − E) 
exp[− 2 U m 2 o − d E / =]= 2 .2Uo Uo 
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2.57 Nano-to-Macro Transport Processes 

Fall 2004 


Lecture 14
 

Review of last lecture 

n1 n2 n3 

d 

φ 

R 

In lecture 13, we talked about tunneling through a thin film, which can also happen to 
general EM waves and acoustic waves. If the second medium is very thin, a third medium 
attached to the second medium will have tunneling effects. The wave will be partly 
transmitted into the third medium before decaying off and the reflectivity R 1 in this ≠
case. 

Define ϕ = 2π nd cos θ / λ0 . For a thin film, the reflectivity is a periodic function of φ, as 
shown in the right figure. In the widely used coating technique, the color of a thin film 
will change periodically according to the thickness, which is used to estimate the film 
thickness by naked eyes. 

We also talked about the tunneling through an energy barrier presented in the following 
figure. The barrier region can be vacuum in this case.  The transmissivity is approximated 
as 

16E(U − E) 16E(U − E) −2 k 2 do oτ ≈ exp[− 2 2m(U − E)d / =]= eo2Uo Uo
2 

Uo 

d 
Ut0 

Ψt(E)
Ψi(E) 

Now let us estimate the d value for a 1eV energy barrier. The k2 value is 
2m u  − E e 31 1.6 k = 

( ) 2×9.1 − × e −19 ~  ~ 4  9  e m-1, 
=2 1e − 68  
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and the characteristic length for d is 1/k~1 Å. 

Applications of tunneling 
1) Scanning tunneling electron microscope (STM)  

TIP 

SAMPLE 

VOLTAGE 

PIEZOELECTRIC 
TRANSLATION 

STAGE 

TUNNELING
 
GAP 


CURRENT 

FEEDBACK 


The tunneling phenomena are the basis of several inventions that led to several Nobel 
prizes including the tunneling diode by Esaki (1958) and the scanning tunneling electron 
microscope (STM) (Binnig and Rhorer, 1982).  As shown in the above figure, in a STM a 
sharp tip is brought in close proximity with a conducting surface but not contacting the 
surface. The piezoelectric stage can adjust the distance between the tip and sample with 
subatomic accuracy. Under an applied voltage, electrons tunnel through the vacuum gap 
and create a current in the loop. The current is extremely sensitive (sub-angstrom) to the 
separation between the tip and the contact because k2 is on the order of ~1 Å-1 and the 
transmissivity changes exponentially according to d. As the tip is scanned over the 
sample, different region has different potential barrier or different heights. By using the 
current as a feedback signal, one can map the electronic wavefunction surrounding 
individual atoms or the surface roughness.   

2) Other microscopes 
A) Photon scanning tunneling microscope 
In such a microscope, the incident angle on the scanned surface is larger than the critical 
angle and thus it will be totally reflected in normal cases. However, when a scanning 
probe approaches the other side of the surface, there will be tunneling between the 
surface and the probe and the topography is obtained as in a STM.  
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B) Atomic force microscope (AFM)  

A STM cannot be used to scan a dielectric surface because the surface needs to be 

conductive to provide tunneling electrons. To deal with a nonconductive surface, an AFM 

is invented in Stanford University.  


A STM to detect deflection of the beam A laser to detect the beam deflection 

AFM tip scanning a AFM tip scanning a
surface surface 

The origin idea of an AFM is shown in the left figure. A diamond is attached to an Al-
film to form a scanning probe. A STM is mounted on top of the Al film to detect its 
deflection. Since the spring constant between atoms is much larger than that of the beam 
(Al film), in scanning the beam will bend according to the surface topography but the 
atoms will not be affected. In this way the surface image is obtained. In the current AFM, 
the STM is replaced by a laser beam, as shown in the right figure.  

By mounting a thermocouple onto the top of the tip, a scanning thermal microscope 
(SThM) is created. In thermal imaging, the probe must contact the surface all the time. It 
should be noted that the thermal imaging are not as precise as topography imaging. In the 
following figure, the effective contact area between the tip and surface is not constant and 
will affect the image quality. Additionally, thermal imaging normally requires high 
vacuum to avoid air conduction and convection effects.  

Large effective contact 
area 

5.4 Bragg reflector 
In practice, the reflectivity and transmissivity of multilayers can be controlled quite 
accurately with various thin-film deposition techniques and the possibility in controlling 
spectral and directional properties is large. In the following left figure, we present a 
Bragg reflector that is made from two alternating layers of thin films. Each layer has a 
thickness equal to the one-quarter of the light wavelength inside the film. Although at one 
interface, the reflectivity between the two materials may be small, the coherent 
superposition of the reflected fields can create a reflectivity that is close to 100%.  Such 
Bragg reflectors are used in coatings for highly reflectivity mirrors at specific required 
wavelength, such as for lasers and X-rays. The right figure gives an example of the 
reflectivity of a quarter wavelength mirror, similar to these used in a special 
semiconductor laser structures called the vertical-cavity surface-emitting lasers (Koyama 
et al., 1989; Walker et al.,1993). The reflectivity in certain spectrum regions can reach 
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100% reflectivity, meaning no electromagnetic fields of corresponding wavelength exist 
inside the reflector. These spectral regions, called stop bands, occur when the round-trip 
phase difference through one period (two layers) equal 2 A π. 
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It is interesting to compare the stop band with electron band gap in semiconductors. In 
the latter case, no electrons exist in the forbidden energy levels, while in the reflector no 
photons exist in the stop band. The idea of forbidden energy in semiconductors is also 
utilized to filter electrons in superlattice, whose inventor, Esaki won a Nobel Prize for his 
work on double-barrier tunneling effect. 

15 

10 

5 
An electron propagating 
through a superlattice 

0 
-1 0 1 

k / (π/a) 
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Note: The research in 3D semiconductors triggered the work on 1D superlattice, and now 
the research go back to 3D cases in 3D Bragg reflector, also called photonic crystals. 
Photonic band is formed within such a crystal and filter out radiation with unwanted 
wavelengths. 

5.5 Landauer formalism 
Q1->2 

2 

Q2->1 

z 

Now let us go back to the energy exchange between two points, which is expressed as 
3m ⎡ ∞ ∞ ∞ ⎤ 

q → =∑⎢ v E τ f (E ,T  1 )⎥ ,1 2  
1 ∑  ∑ ∑  z1  1 12  1  e
 

p=1 ⎣⎢V1 kx1 =−∞  ky1 =−∞  kz1 =0 ⎦⎥
 
where Te1 represents the temperature of the phonons coming towards the interface and 
f(Ε1,Te1) is the Bose-Einstein distribution for phonons at Te1, and τ12 is the phonon 
transmissivity from medium 1 into medium 2. The unit of energy flux q is W/m2, so we 
divide vz1 E1  (J m/s) by the volume on the right side.   

Similar to solving µ  in lecture 11, here we can change the summation into integral form.  
3m ⎡ ⎛ dk dk dk ⎞⎤ 

x1 y1 z1 1 q → =∑⎢∫ v E τ f ( E ,T  1 )⎜ ⎟⎥ ,1 2  z1  1 12  1  e 3
 
p ⎣V ⎝

⎜ ( π ) V ⎠
⎟
⎦
=1 ⎢ 2 /  L 1 ⎥ 

in which 
2 2
 

x1 y1 z1
dk dk dk 1 4π k dk  4π k  dk  
= = dE = ( )D E dE .3 3 3 1(2 /  L) V1 8π 8π dE  π 

φ 

θ 

R=ksinθkz 

ky 

kx 

ksinθd φ 

kdθ 
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However, we also notice that velocity vz1 depends on k  and transmissivity τ  dependx1 12 

on (k k  , k ), . To deal with this, first we note x1 y1 z1
 

2 2 2 dk
dk dk dk = k sin θ  θ ϕ  = k dkd Ω = kdkd d dEdΩ ,x1 y1 z1 dE 
k 2 sin d dθ θ ϕ  where the solid angle Ω =  2 = sin d d  d  θ θ ϕ in the spherical coordinates. Thus

k 
3m 2⎡ 2π π / 2  k dk  ⎤dϕ sin d v Eτ f (E ,T )q1 2→ =∑⎢∫0 ∫0 

θ θ  z1  1 12  1  e1 3 dE 
dE  ⎥ . 

p=1 ⎣ 8π ⎦ 
k dk  ( )For isotropic materials, 

2 

= 
D E  

= D E'( ) because the solid angle of whole 
8π 3 dE 4π
 

( ) 
sphere is 4π (or 
D E

d dE  = ( )Ω D  E  dE  ).
4π 

The total energy flux is defined as 
q12  = q → − q → = q1 2  Te1 − q 1 T = q1 2  (Te ) − q1 T ,1 2  2 1  → ( )  2→ ( e2 ) → 1 →2 ( e2 ) 
where we use q T = q T in the last step. This is obtained by considering the → ( e2 ) 1 ( )  1 2  2→ e2 

equilibrium status q12 =0 and Te2 =Te1 . In nonequilibrium situations, this relationship still 
holds true because we have the same expression for q → (T ) . This idea is comparable to 2 1  e2 

the Kirchoff's Law in radiation, in which we consider the energy exchange with a 
blackbody surface to derive ε ( ,  )  λ θ = ( ,α λ θ  ) . 

From above equations, we finally obtain the Landauer formalism 
3m ⎡ D E  ⎤ 

q1 2→ =∑⎢∫ ∫dΩ vz1  E1  12  τ ⎣⎡f (E1,T  e1 )  (  − f E1,T  e2 )⎦⎤ 
( 1 ) dE  ⎥ , 

1 4πp= ⎣ S ⎦ 
where the solid angle is integrated over the hemisphere.  

Examples: 

1) Interfacial thermal conductance 


1 2 

2.57 Fall 2004 – Lecture 14 
101



 

 

    

 

  

  
 

      
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Consider the heat conduction through the interface. When T ≈ T , Taylor expansione1 e2 

f ( E ,T  ) − f ( E ,T  ) = 
∂f (T − T )1 e1 1 e2 e1 e2∂T 

applies in the Landauer formalism and we obtain 
T −Te1 e2( −T ) = ,q = K T  12 e1 e2
 R12
 

where K is the contact thermal conductance (W/m2 K), R12 is the contact thermal 
resistance (m2 K/W).  

∂fNote: (1) The value of τ12 ranges from 0 to 1. In the Landauer formalism, E1 ( )D  E  dE  
∂T 

has the physical meaning of volumetric specific heat C. For normal materials, the 
magnitude of C is 106 (mass-based specific heat can differ a lot) and v is on the order of 
103. Thus K~vz1C~1e3 × 1e6=1e9 W/m2 K. (2) Based on one-dimensional heat 

Lconduction, R = leads to the equivalent thickness of the interface is 0.1 µm if k is on 
kA 

the magnitude of 102. (3) For electron flow, the chemical potential µ  will drop across the 
interface instead of the temperature. If the contact resistance if large, electrons will be 
reflected back. (4) The interfacial thermal conductance is dominant for nanostructures 
such as superlattice. In applications, the contact resistance between a heat sink and CPU 
chip is a big problem for heat release. 

2) Radiation tunneling 

T1  T2 

q12 

Surface gap dInterference 

Tunneling ~ n2 

For two blackbody surfaces separated by a gap d, tunneling will occur when d is small. 
4 4Beyond that region the energy flux follows the fourth-power law, q =σ (T − T ) . Due12 1 2 

to tunneling, the maximum heat flux can exceed the blackbody radiation in vacuum. If 
the refractive index is n, we have D(E)~n3 and v~1/n (Snell’s law). Thus the heat flux is 
proportional to n2. 
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When a surface wave (decays exponentially on both sides of the surface) exists, the 
maximum heat flux can be higher than n2 due to tunneling, because the density of states 
of the surface wave is much higher. 

3) Quantum conductance (Universal conductance) 
In the following figure, electrons flow between two points 1 and 2. Under the assumption 
of τ12 =1 in the Landauer formalism, each quantum state corresponds to one “channel” of 

2e2 

energy carrier transport. For electrons, the conductance quantum is Ke = (h is the
h 

π 2k TPlanck’s constant), while for phonons Kp = B . It should be noted the conductance is 
3h 

independent of materials. The conductance looks like stairs in this case.  

1 2 

Discussion: What is temperature? 
The Landauer formalism is not applicable to special cases where two media are identical 
and have perfect contact (i.e. merging into a whole bulk material). In these situations, the 

T −Te1 e2relationship q = ( −T ) =  indicates that T ≠ TK T  for any nonzero heat flux.12 e1 e2 e1 e2 R12 

Obviously this violates the continuity of temperatures in a crystal. The paradox is 
explained by checking the temperature definition carefully. The local temperature Te1 is 
not equal to the temperature T1 (measured beyond one mean free path) calculated from 
the local internal energy u(T1) in the small region around point 1.      

Note: The relationship q = ( −TK T  )  is consistent with the Fourier’s law.  12 1 2 

R12f(Te1) 

R21f(Te2) 

τ12f(Te1) 

f(Te1) 

u1(T1) u2f(T2) 
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2.57 Nano-to-Macro Transport Processes 

Fall 2004 - Lecture 15 

Guest lecture by Prof. Dresselhaus 

1. Outline 
-Overview 
-Synthesis 
-Structures and Symmetry 
-Electronic Properties 
-Transport Properties 
-Phonon Properties 
-Resonant Raman Effect 
-Applications 

2. Unique Structure and Properties of Single Wall Carbon Nanotubes (SWNTs) 
A SWNT can be viewed as a cylinder formed by rolling up a graphene sheet.  

Image removed for copyright reasons. 

A SWNT is an ideal model of 1D systems for nanoscience. It has the following 
interesting characteristics: 

(1) Size 
SWNTs are nanostructures with dimensions of ~1 nm diameter (~20 atoms around 
the cylinder). The smallest SWNT has a diameter of only 0.4 nm. 
(2) Electronic Properties 
They can be either metallic or semiconducting depending on the diameter or 
orientation of the hexagons. 
(3) Mechanical 
SWNTs have very high strength, Young’s modulus, and good properties on 
compression and extension. 

SWCNs can be used to make heat pipes and electromagnetic antennas. Its structure can 
be determined by single nanotube (as one molecule) spectroscopy. Due to the unique 
properties, currently many applications are being attempted worldwide for CNs.  
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3. Synthesis 
Three methods are utilized to grow CNs: 
(1) Arc Discharge 
In the following figure, two graphite rods (5-20 mm in diameter) are used as the cathode 
and anode, between which arcing occurs when 50-120A DC is supplied. By electron 
collision into the anodic rod, carbon clusters from the anodic graphite rod are condensed 
on the surface of the cathodic graphite rod and carbon nanotubes are formed along with 
other products. 

Image removed for copyright reasons. 

Y. Saito et al, Phys. Rev. 48 1907 (1993) 

(2) Laser Ablation 
The experimental setup is shown as following, where Nd-Yb-Al-garmet Laser is 
utilized at 1200 ℃. 

Image removed for copyright reasons. 

A. Thess et al. Science 273 483 (1996) 
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(3) Chemical Vapor Deposition (CVD) method 
For the laser ablation method, we always get many twisted “wires”, which are bundles of 
SWCNs and thus difficult to use. Isolated single wall carbon nanotubes can be by grown 
by the Chemical Vapor Deposition (CVD) method. By depositing catalyst on the 
specified positions, we can control the location of grown CNs. This brings tremendous 
convenience to the research. Some work has also been conducted to control the average 
diameter and diameter distribution by changing the catalysts and furnace temperature (H. 
Kataura et al., 2000). 

Image removed for copyright reasons. 

N. Wang et al. Nature 408, 50 (2000) 

The above figure shows the smallest SWNT with a diameter 0.42 nm. It is a (5,0) zigzag 
nanotube and has metallic electronic structure. Under 15 K it becomes a superconductor. 

Image removed for copyright reasons. 

Peapod Empty SWNT 

H. Kataura et al, unpublished (2001)
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A new material, fullerene-peapods can also be made based on SWCNs. Baking fullerenes 
with CNs in a quartz ampoule at 650 ºC for 2 ~ 6 h, the fullerenes can fit into CNs and 
form this new structure. From the above figure, we can see its electronic structure is 
similar to empty SWNTs especially near the Fermi level. By Heating at higher 
termperatures, C60 fullerenes inside the nanotubes can merge and form double wall 
carbon nanotubes (DWNTs). 

4. Structures and Symmetry 

,Ch = na1 + ma2 ≡ ( m n ) 
a , a vectors lattice primitive : 1 2 

T = a t 1 + a t 2 ≡ (t , t )1 2 1 2 

d 

Image removed for copyright reasons. (2m + n) (2n + m)t1 = , t − = 
R 

2 dR 

dR = 2 gcd( n + m 2 , m + n) 

2L a n + nm + m2 

Chiral Vectors : (n,m) 
dt = π

= 
π 

R. Saito et al., Phys. Rev. B46, 1804 (1992) L = Ch 

Although there can be other ways to define the primitive lattice vectors in a hexagon 
sheet, the method presented in the above figure is widely used in all current publications. 
The chiral vector (equator of nanotube) is the vector OA or Ch in the figure; the 
translational vector of 1D material is vector OB and marked as T. Here Ch denotes the 
perimeter of the SWCN, while the translational vector is along the axis direction of the 
rolled up SWCNs. For one Unit Cell OAB’B, Ch and T are always expressed with the 
lattice vectors a1 and a2. Three special CN structures are defined as 
• Symmorphic (mirror symmetry) 
–Armchair Nanotube (n,n), n=m 
–Zigzag Nanotube (n,0), m=0 
• Non-Symmorphic (axial chirality) 
–Chiral Nanotube (n,m), n≠m 

In the above figure, the chiral angle θ (0<θ<π/6) is defined as the included angle 
between Ch and a1. The diameter dt of SWNTs can be calculated from the length of Ch. 
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Image removed for copyright reasons. 

P. Kim et al., PRL 82, (1999) 1225. 
J. W. G. Wildoer et al, 
Nature, 391 (1998) 59 


Using a STM, the structure of a SWNT can be observed. In the right above figure, we can 
barely see the hexagons. SWNTs can be metallic or semiconductive. The transition 
happens when the conduction band and valence band touch each other at six K points in 
the k space. The energy contours are also drawn in the left above figure.   

5. Electronic Properties 
A unit cell and the corresponding Brillouin zone are drawn in the following two figures. 

The point K is at the corner of the hexagon, while M is the edge midpoint. 


Image removed for copyright reasons. 

P. R. Wallace, Phys. Rev, 71 622 (1947). 

Image removed for copyright reasons. 

R. Saito et al., Phys. Rev. B46, 1804 (1992) 
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In the above three cases, an energy gap appears in a (10,0) SWNT, indicating 
semiconductor. The density of states depends on the chirality of the SWNT. The general 
law to judge the electronic property (metallic, semiconductive) is summarized in the 
embedded equation of the following figure. 

Image removed for copyright reasons. 

3 p metal 
3 

R. Saito et al., Appl. Phys. Lett. 60, 2204 (1992) 

The width of DOS split depends on the chirality of the SWNT. In the following figures, 
we find the Zigzag SWNT exhibits splitting DOS compared with an Armchair SWNT. 

⎧
⎨
⎩ 

Image removed for copyright reasons. 

(a) Metal      (b) Semiconductor 
R. Saito et al, Phys. Rev. B61, 2981(2000) 

The wave vector k for one-dimensional carbon nanotubes is shown in the two-
dimensional Brillouin zone of graphite hexagon. In the direction of K1, discrete k values 
are obtained by periodic boundary conditions for the circumferential direction of the 
carbon nanotubes, while in the direction of the K2 vector, continuous k vectors are shown 
in the one-dimensional Brillouin zone. For metallic nanotubes, the bold line intersects a 

n m = 
±1 torsemiconduc p 
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K point (corner of the hexagon) at the Fermi energy of graphite. For the semiconductor 
nanotubes, the K point always appears one third of the distance between two bold lines 
and no DOS splitting occurs for any chirality. 

6. Transport Properties 
When two SWNTs with different atom numbers on the circumference meets, a pair of 
pentagon and heptagon will form at the junction and thus makes smooth transition 
between different geometries. Junctions such as a diode are measured in experiments.  

Image removed for copyright reasons. 

S. Iijima, NEC Symp.(1992) (a) Metal-metal (b) Metal-semiconductor 

The following figures are the first electrical measurement of carbon nanotube, where the 
gate voltage is used to change the electronic structure of a SWNT. 

Image removed for copyright reasons. 

S.J. Tans et al. Nature, 393, 49 (1998) 

Resonant tunneling transport is demonstrated in the left bottom figure. The energy levels 
in a SWNT can be compared with a particle in a box. By changing the applied gate 
voltage, the energy level can be shifted and tunneling will happen at discrete levels. In 
addition, quantized conductance is also observed in this experiment, which is a multiple 
of 

G0 = 
2e 2 

= ( k 9 . 12 Ω )−1 

h 
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Image removed for copyright reasons. 

W. Liang Harvard Univ.

Ballistic transport of electrons in a metallic carbon nanotube is also measured. For 
metallic SWNTs, the Fermi level just across the intersection point of two bands.  

Gate 

DrainSource 

Island 

e -

The above figure demonstrates the idea of CNT single electron transistor by AFM 
nicking. The nanotube is broken at two locations and electrons will transfer from source 
to drain under specified applied tip voltage.  

7. Phonons and Raman Spectroscopy 
The Raman Spectroscopy is the major characterization method for SWNTs. It is non
destructive, contactless measurement and can be conducted in air at ambient pressure. 
Additionally it is quick (1 min) and accurate in energy.  

The Raman Spectroscopy measures the wavelength and intensity of inelastically scattered 
light from molecules. When light is scattered, a small fraction of light is scattered at 
optical frequencies different from, and usually lower than, the frequency of the incident 
photons. This inelastic scattering can occur with a change in vibrational, rotational or 
electronic energy of a molecule. Since Resonant Raman Effect is diameter selective (also 
chirality dependent), it is used to determine the size of SWNTs. 

2 +
 2n2(m +
nm)N =


⎧
⎨
⎩ 

dR 

3d if
n−
m
=
 ⋅3 p d 
dR =


d otherwiseImage removed for copyright reasons. 

2N carbon atoms 
“Physical Properties of Carbon Nanotubes” R. Saito, G. 6N phonon modes (three
Dresselhaus, and M.S. Dresselhaus, Imperial College directions of vibrations) 
Press, (1998) 
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Image removed for copyright reasons. 

Phonon modes -- (10,10) Armchair 

R.Saito et al. Phys. Rev. B57 (1998) 4145 


In the following figures, the result for SWNTs is presented.  

Image removed for copyright reasons. 

A.M. Rao et al, Science 275 (1997) 187 

In the following figures, the PL absorption and emission spectra in S-SWNTs provides 
SE11

S, E22 , and additional information about the SWNT electronic structure. Compared 
to resonance Raman Spectroscopy, PL is a complementary technique to characterize a 
large number of semiconducting SWNTs in solution. 

Image removed for copyright reasons. 

M. O’Connell et. al. Science 297 593 (2002) 

8. Challenges for Carbon Nanotube Synthesis and Separation 
It is important to control synthesis process to produce tubes with the same diameter and 
chirality (n,m). Before the control of synthesis process is achieved, we need to develop 
effective separation methods to separate metallic SWNTs from semiconducting ones by 
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diameter and chirality. For applications, it is significant to develop method for large-scale, 
cheap synthesis, and improve nanotube characterization and manipulation.  

Separation processes reported till now include: 
(1) Precipitation of SWNTs non-covalently functionalized with ODA 
(2) Ion-exchange liquid chromatography of ssDNA wrapped SWNTs 
(3) Alternating current dielectrophoresis in an aqueous SWNT suspension 
(4) Selective functionalization with diazonium salts 
(5) Centrifugation after addition of diluted bromine 

It should be noted that many of these processes separate SWNTs by diameter in addition 
to metallicity. 

9. Applications 
The wide applications of SWNTs include: 
(1) STM/AFM tips (advanteous in scanning sharp-trench topography) 
(2) Direct Analysis of DNA 
(3) Semiconductor devices 
(4) Field Emitters 
(5) Filler for enhancing lifetime in Li ion batteries (to eliminate the electrode gap change 
in the charging and recharging processes) 
(6) Filler for enhancing conductivity of polymer composites 
(7) Ultimate strong fiber (space elevator made of SWNTs) 
(8) Hydrogen Storage for fuel cells (as in the following figure) 
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2.57 Nano-to-Macro Transport Processes 
Fall 2004 

Lecture 16 

Review of last lecture 

2Q1->2 1 

1 2 
1 2 

Q2->1 

z 
∑ v Efτ 1→ 2JJG 1

vx > 0


In Lecture 14, we have discussed the energy exchange between two points. We have 
spent time on calculating the transmissivity τ for cases in the right two figures. The 1 2→ 

velocity v1 is the group velocity, not the phase velocity determined by v = ω / k  (derived x 

t k  x  .)from constant phase Φ = ω − x 

Consider a plane traveling along x-direction 
Ae− i(ω t − kx) . 
The velocity v = ω / k is NOT the speed of signal or energy propagation. We see that the x 

plane wave represented by above equation extends from minus infinite to plus infinite in 
both time and space. There is no start or finish and it does not represent any meaningful 
signal. In practice, a signal has a starting point and an ending point in time. Let’s suppose 
that a harmonic signal at frequency ω o is generated during a time period [0,to], as shown 
in the following figure (a).   

∞→t− ∞→t 

ω o 

to 

ot 
2π

A
m

pl
itu

de
 

Frequency 

(a) (b) (c) 

Such a finite-time harmonic signal can be decomposed through Fourier series into the 
summation of truly plane waves with time extending from minus infinite to plus infinite, 
as shown in figure (b). The frequencies of these plane waves are centered around ω o and 
their amplitudes decay as frequency moves away from ω o, as illustrated in figure (c).   
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One can better understand these pictures by actually carrying out the Fourier expansion 

( ∑a sin 2π n t ). Because each of the plane waves in such a series expansion is at a n T 
frequency slight different from the central frequency ωo, it also has a corresponding 
wavevector that is different from ko, as determined by the dispersion relation between 
ω(k). The subsequent propagation of the signal can be obtained from tracing the spatial 
evolution of all these Fourier components as a function of time.   

For simplicity, let’s consider that the signal is an electromagnetic wave.  We pick up only 
two of the Fourier components and consider their superposition, one at frequency 
ωο−∆ω/2 and another at frequency ωο+∆ω/2  propagating along positive x-direction 
[figure (a)]. The superposition of these two waves gives the electric fields as 

y ( ,E x t  ) = a exp  {−i ⎡(ω −  ∆ω) t − ( ko −  ∆  k  x  ⎤} + a exp  {−i ⎡(ω +  ∆ω) t − (k −  ∆  k  x  ⎤}⎣ o ) ⎦ ⎣ o o ) ⎦ 

= 2 cos  (∆ω• t− ∆k x  ) exp  ⎡−i (ω t  k x  )⎤a • ⎣ o − o ⎦ 

ωo -∆ω 

ωo+∆ω 
(b) 

(a) (c) 
The electric field is schematically shown in above figures. There appears to be two waves, 
one is the carrier wave at central frequency ωο (term exp ⎡−i (ω t  k x  )⎦⎤ ), another is the⎣ o − o 

modulation of the carrier wave by a wave at frequency ∆ω (the amplitude term 
a t • y ( ,2 cos  (∆ω• −  ∆k x  ) in E x t  ) ). The latter one changes much slower compared with 

the former one.   

Note: (1) In the product Ψ∇Ψ * for flux J, the exponential term exp ⎡−i (ω t  k x  )⎦⎤ is⎣ o − o 

a •cancelled out. The time influence only exists in 2 cos  (∆ω• t− ∆k x  ) . (2) We need to 
1 JG JJG * 

×calculate the time-averaged Poynting vector Re ( E H ) to get the real energy flux. 
2 

This yields another wave propagating at the speed 
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∆ω dω v = = g x, ∆ k dk
, 

which means that the energy is propagating at the speed of vg,x rather than the phase 
velocity. We can also find this velocity from ∆ω• t− ∆k x  = 0 in E x t  ) . This vg is• y ( , 
called the group velocity. In the more general case of the existence of a spectrum of 
frequencies, the superposition of waves leads to a narrow wave packet as sketched in 
above figure (c). The group velocity can be calculated from 

v g ∇ = kω = 
∂ω k̂ 

x + 
∂ω k̂ 

x + 
∂
∂ 

k 
ω 

z
k̂ 

z . 
∂ kx ∂ k y 

Discussions 
(1) In the following left figure, electrons in the conduction band have different group 
velocities (gradient in all figures) at different wave vectors. This is also the case for 
phonons, as shown in the right figure. 

E ω= = 

k k 

ω 

π/a 

V

V=0 

max 

For photons, the group velocity is constant (the following left figure).  
ω 

k 

π/a 

vg=c0 

k 

n 

1 

(2) In most cases, the energy velocity is just the group velocity. However, for photons the 
group velocity can be larger than the speed of light in special cases. We can appreciate 
this from the calculation of Poynting vector, where we assumed that ∆ω is much smaller 
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than ωo. In the case of a very large variation in the dispersion relation, the group velocity 
no longer represents the energy velocity. Suppose we have a material with refractive 
index n( )ω changing rapidly with wavelength, also drawn as a function of k in the above 

right figure. The speed of light inside the material is c = 
c0 . In a region, the real part
( )n ω 

of the refractive index is less than 1 and the phase velocity is larger than the speed of 
light. The front of the wave packet also moves with a speed larger than c0. This paradox 
is explained by noticing the majority energy still lies in the part behind the wave front. 
Therefore, the real energy speed is smaller than the speed of light.   

Brillouin wrote his thesis on the group, signal velocities. For personal interests, you may 
want to read it for better understanding. 

(3) The group velocity of electrons is velocity at which the electron wave packets moves 
in free space and inside a crystal.  The energy dispersion of a free electron is 

=k 2( )E = 
2m 

and thus the phase and group velocity are, respectively, 

=k ∂(E / =) =k v = E / = 
= and vg = = 

k 2m ∂k m 

Clearly, the group velocity is consistent with the de Broglie relation p = =k  and our 
classical relation p=mvg, but not the phase velocity. 

5.6.2 Loss of coherence 
(1) Inelastic scattering 
The scattering of electrons can be elastic in which the electrons merely change directions 
but have the same energy before and after the scattering, or inelastic in which both 
direction and energy of electrons are changed. The scattering of electrons by impurities 
and at the boundaries is elastic. The elastic scattering itself does not destroy the phase but 
the random locations of the impurities and the surface roughness, may create enough 
randomness in the phase such that the particle approach is approximately valid, or in 
other cases, the randomness can also create localization of the electron waves. The 
inelastic scattering, such as electron-phonon scattering, however, randomizes the phases 
because the location and the phase of the electron-phonon scattering change all the time.   
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In our previous discussion of transmissivity, we did not include the inelastic scattering 
and treat it as particle transport instead of using phase of wave functions. 

l 

For the above wave packet, the coherence length is defined as 
Vl ~ 
∆

,
ν

where ∆ν is determined by 2∆ω in the foregoing discussion. For lasers, ∆ν  is small 
and l can be on the magnitude of kilometers.  

Now let us estimate the coherence length of blackbody radiation. The energy uncertainty 
of the individual radiation emitters (atoms, electrons, or molecules) is of the order of kB T 
due to the collision of the emitters with the reservoir, which also means that the effective 
bandwidth for thermal emission is ∆ν = k T  / h . Using this effective bandwidth, one canB

3 8*  6.6  E − 34  Eestimate that the coherence length ~ hc /(k T ) = = 3E − 5 , whichB 1.38E − 23*300 
corresponds to A cT = 2167.8 µm.K, very close to the Wien’s displacement law. 

For electrons, lc = 100-1000 Å, while it is 1-10 Å for phonons. 

2) Spatial & temporal coherence 

123 

Reflected 

Incident 

Transmitted 

(a) (b) (c) 

The coherence length as a measure of the wave packet size gives an indication whether 
the phase information needs to be considered for the transport processes or not. If the size 
of the transport domain is much larger than the wave packets or the coherence length, 
than the wave pockets can be treated as point-wise particles traveling through the domain, 
as shown in above figure (a).  When a wave packet meets a perfect interface, however, 
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the wave packet will be reflected and refracted. The refracted wave packet has a fixed 
phase relationship with the incoming one and can thus interfere with the incoming wave 
packet [figure (b)]. This is the reason why we always use Fresnel formula---the wave 
solution of the Maxwell equations, to calculate the interface reflectivity and 
transmissivity of a perfect interface. In the case of multilayers, there is still overlap 
between the incoming and reflected wave packet even if the layer is very thick [figure 
(c)]. If we alter the thickness of each layer randomly, the overlap still exists. The 
transmissivity is drawn in the following figure.  

distributed more 

Transmissivity 

Number of layers 

Thicknesses are 

randomly 

Periodic structures 

Note: Randomly distributed thickness will cause localization phenomena and reduce the 
transmissivity, which won Phillip Anderson a Nobel Prize in physics. 

Consider scattering in the following crystal. The wave is scattered at random points due 
to inelastic scattering such as by phonons. In this case, we can ignore the phase 
information and the particle picture is valid.  
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be still valid due to the boundary scattering.
The averaging 

Crystal 

Nanowire 

When size effects appear, the characteristic length is normally less than the inelastic 
mean free path. This can be the case for nanowires. However, the particle treatment may 

  Although boundary scattering is not random 
and most likely elastic, the roughness diffracts waves into all directions.  
of the diffracted waves usually leads to results more closely to particle treatment than 
these based ideal interfaces.  For phonons in a film with surface roughness, we can argue 
in the same way. 

Inelastic MFP 

Surface roughness 
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Chapter 6 Particle Description of Transport Process 
6.1 Liouville equation and Boltzmann equation 
In chapter 4, we studied systems at equilibrium	 and developed the equilibrium 

( ,distribution functions f E T  , µ)  (Fermi-Dirac, Bose-Einstein, and Boltzmann 
distributions). The distribution function for a quantum state at equilibrium is a function of 
the energy of the quantum state, the system temperature and chemical potential. When 
the system is not at equilibrium, these distribution functions are no longer applicable. In 
the statistical description, we use nonequilibrium distribution functions, which depend 
not only on the energy and temperature of the system, but also on positions and other 
variables. We will develop in this chapter the governing equations for the nonequilibrium 
distribution functions. 

In the following figure, we show an ensemble, i.e., a collection of quantum states of a N-
particle system. 

ri, 
Pi 

Quantum 
State 1 

ri, 
Pi 

Quantum 
State 2 

ri, 
Pi 

Quantum 
State Ω…... 

Now each particle can be described by the generalized coordinate r and momentum p. 
For example, the generalized coordinates of a diatomic molecule, r1, include the position 
(x1,y1,z1), the vibrational coordinate (the separation between the two atoms, ∆x1), the 
rotational coordinates (polar and azimuthal angles, θ1 and ϕ1), and the generalized 
momentum, p1, includes the translational (mvx1, mvy1, mvz1), vibrational momentum 
proportional to the relative velocity of the two atoms (m d∆x1/dt), and rotational 
momentum (two angular momentum of rotation).  We assume here that there are m-
degrees of freedom in space, i.e., m generalized spatial coordinates, and m-degrees of 
freedom in momentum for each particle. The number of the degree of freedom of the 
whole system is 2n = 2m × N . These 2n variables form a 2n-dimensional space. The 
system at any instant can be described as one point in such a space.  This space is called a 
phase space.  The time evolution of the system, i.e., the time history of all the particles in 
the system, traces one line in such as a 2n-dimensional phase space, which we will call 
the flow line as in fluid mechanics.   

The number of systems, is 
N (n) , p(n) (n) ∆p(n)Systems .No = f ( )( , t r )∆r 
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)∆p(n)in a small volume of the phase space, ∆r(n , where 
∆r(n) =∆r(1)∆r(2)…∆r(n) ) =∆p(1)∆p(2)…∆p(n)=∆r1∆r2…∆rN  and ∆p(n =∆p1∆p2…∆pN . 

) ),p(n)The time evolution of f(N (t,r(n ) in the phase space is governed by the Liouville 
equation, which can be derived based on the fact that the traces of systems in the 
ensemble do not intersect.  Consider a tube formed by the traces of a set of points (a 
subset of systems in the ensemble) as shown in the following figure. Since the flow lines 
do not intersect, the points in the phase space are conserved. We want to derive an 
equation for the distribution function f based on this conservation requirement. Recall 
that in fluid mechanics or heat transfer, we often use the control volume method rather 
than tracing the trajectory of individual fluid particles. We could do the same for the 
points in phase space and exam a small control volume in phase space as shown in the 
figure. The rate of points flow into the control volume should equal to the rate of change 
inside the control volume. This finally leads to  
∂f (N) (N) 

+ ∑ p� (i) 
∂f (N)n n 

+ ∑ r� (i) ×
∂f 

× = 0 
∂r (i) ∂p(i)∂t i =1 i =1 

which is called the Liouville equation. 

r(i 

) 

p(i 

) 

at t=0 

Flow-line 

control 
volum 
e 

r(i) r(i)+∆r(i) 

ensemble 

Note: The Boltzmann equation reduces variables from the Liouville equation, while the 
linear response theory focuses on small perturbation. They are both simplified form of the 
Louiville equation. 
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In last lecture, we discussed the N-particle distribution function. We have obtained 
( ) (n) (n) (n) (n)NNo. Systems = f (t,r ,p )∆r ∆p 

(n)∆ (n)in a small volume of the phase space, ∆r p , 
(n) (1)∆ (2) (n) (1)∆ (2) (n)where ∆r =∆r1∆r2…∆rN=∆r r …∆r(n)  and ∆p =∆p1∆p2…∆pN=∆p p …∆p . 

(i)p

(i) (i)+∆ (i)r r r

The time evolution of f(N)(t,r(n),p(n)) in the phase space is governed by the Liouville 
equation, 

(N) (N) (N)n n∂f (i) ∂f (i) ∂f
+ ∑ r� × + ∑ p� × = 0(i) (i)∂t i=1 ∂r i=1 ∂p 

which can be derived based on the fact that the traces of systems in the ensemble do not 
intersect.  

Note: The number of the degree of freedom in the phase space is normally very big. For 
3D cases, it is 6NA=6×6.02E23. 

The Liouville equation involves a huge number of variables, which makes its impractical 
in terms of the boundary and initial conditions, as well as analytical and numerical 
solutions. One way to simplify the Liouville equation is to consider one particle in a 
system. This is a representative particle having coordinate r1 and momentum p1, each of 
the vectors has m components, i.e., m-degrees of freedom.  We introduce a one-particle 
distribution function by averaging the N-particle distribution function over the rest (N
1) particles in the system, 
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f (1) (t,r ,p ) = 
N! 

• • • ∫ f (N) (t,r (n) ,p(n) )dr • • • dr dp • • • dp .1 1 ∫ 2 N 2 N(N −1)! 
For simplicity in notation, we will drop the subscript 1 and understand (r,p) as the 
coordinates and momenta of one particle. Since f(N)(t,r(n),p(n)) represents the number 
density of systems having generalized coordinates (r(n),p(n)) in the ensemble, the one 
particle distribution function represents number density of systems having (r,p), 
f(t,r,p)d3rd3p =number of systems in d3rd3p. 

With the introduction of the averaging method to obtain the one-particle distribution 
function, one can start from the Liouville equation and carry out the averaging over the 
space and momentum coordinates of the other (N-1) particles.  This procedure leads to 
∂f dr dp ⎛ ∂f ⎞+ • ∇ f + • ∇ f = ⎜ ⎟r p∂t dt dt ⎝ ∂t ⎠c 

where the subscripts (r and p) in the gradient operators represent the variables of the 
⎛ ∂f ⎞gradient. The scattering term will be discussed in details later in this lecture. The ⎜
⎝ ∂t ⎠⎟c 

above equation is the Boltzmann equation or Boltzmann transport equation. 

dr dpNote: The derivative  has the meaning of velocity, while denotes force.
dt dt 

k,E 

k’,E’ 

k1’,E1’ 

k1,E1 

Consider the collision process between two particles as shown in the above figure. After 
the collision, the energy and the velocity of each particle may change. Clearly, the 
collision is a time-dependent process. The rigorous way of dealing the collision process is 
to solve the corresponding time-dependent Schrödinger equation for the combined system 
made of both particles. This is, however, usually very complicated and not practical.  A 
simpler way to treat the collision is to use the perturbation method. This method 
considers the time-dependent interaction between the two particles as a small 
perturbation in energy, H’(r,t), from the original steady-state, non-interacting energy Ho 
of the two particles, such that the total system energy is 
H = H (r) + H ' (r, t) ,o 

where we have learned that the Hamitonian H0 is 
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l 2 2p 1 2 −= 2 
0 = +U = (−  ∇  ) +UH i= =  ∇ +  U 

2m 2m 2m 
in the Schrödinger equation H0Ψ = EΨ . 

By treating H’ as a small perturbation to unperturbed Hamiltonian Ho, the solution of the 
Schrödinger equation for the new H can be obtained through perturbation method and 
expressed in terms of the wave functions Ψ of the unperturbed two-particle system with a 
Hamiltonian Ho. Using the perturbation solution, one can calculate the probability for the 
system jumping from one quantum state Ψi to another quantum state Ψf, both are 
accessible quantum states of the original two-particle systems. This rate of this 
probability is the transition rate,  

f 2π * 3 
i ( , ',  1,k1') = ∫ Ψ f H 'Ψ id r⎤

2 
δ (E f i )W k k k  ⎡ − E⎣ ⎦= 

2π 
= Η 'i f 

2 
δ (E f − Ei )= 

2π 2= 
= 

M δ (E f − E )if i 

where d3r=dxdydz means integration over the whole volume of the system and  
M ≡ i H' f ≡ ∫ Ψf

*H'Ψid
3rif 

is called the scattering matrix.  The Kronecker delta function, δ (Ef − Ei ) , implies that 
the energy must be conserved in the process. This equation is one form of the often-
referred Fermi golden rule. 

The scattering term in the Boltzmann equation is the net gain of particles in one quantum 
state. This net gain consists of two components: one is the increase of the number of 
particles due to scattering from other quantum states into the quantum state under 
consideration. The other is the decrease of the number of particles due to scattering from 
the current quantum states to other quantum states. We again take two-particle scattering 
process as an example. The initial wave vector of the particle is k and it collides with a 
particle with a wavevector k1. The corresponding distribution functions for the two 
particles are f(t,r,k,t) and f(t,r1,k1). After scattering, the momentum of the two particles 
are k’ and k1’ and their distribution functions are f(r’,k’,t) and f(r1’,k1’,t), respectively. 
The scattering term for the particle at state k can be expressed as 
⎛ ∂f ⎞ 3 3 3∫ r k t f r k1 ) (  1 d⎜ ⎟ = − f ( , , ) (  , , t W k,k1 → k ' ,k ') k1d k 'd k1' 
⎝ ∂t ⎠c 

3 3 3+ ∫ f ( , ' , ) (  , 1' , t W k ' ,k1'→ k,k1 ) k1d k ' 1r k t f r k ) (  d d k ' , 
where the first term on the right hand side represents the rate of particles being scattered 
out of quantum states determined by k and k1, and the second term represents rate of 
particles scattered into the quantum state. 

When discussing the interfacial thermal conductance in Lecture 14, we have obtained 
q → ( e2 ) = q2 1 Te2 ) by considering the equilibrium status q12 =0 and Te2 =T . Based on1 2  T → ( e1 
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a similar argument, the above equation can be simplified by noticing in the equilibrium 
status 

, , = k k  ' k k  )W (k k1 → k ' k1 ') W ( ', 1 → , 1 . 
This leads to 
⎛ ∂f ⎞ V 3 

3 3W (k k  , → k ,k1 ') ( , , t ) (  , , t − ( , , t r k1 ' t )⎤ k d⎜ ⎟ = −  1 ' ⎡ f r k  f r k1 ) f r k  ' ) (  f , , d 1 k9 ∫ ⎣ ⎦⎝ ∂t ⎠c (2π ) 
V 3 

where the factor 9 appears in the conversion from summation over wavevector into 
(2π ) 

integration over the phase space. 

The integral-differential Boltzman equation is very difficult to solve in general. Most 

solutions rely on a drastic simplification of the scattering integral by the relaxation time
 
approximation, 

⎛ ∂f ⎞ f − fo (T , E, µ )

⎜ ⎟ = − ,
⎝ ∂t ⎠c τ (r,k) 
where τ(r,k) is the relaxation time, and fo represents the equilibrium distribution of the 
carriers, such as the Boltzmann, the Fermi-Dirac, and the Bose-Einstein distributions 
given in chapter 4. Under the relaxation time approximation, the Boltzmann equation 
becomes 
∂f F f − f 

+ v • ∇ f + • ∇ f = − o . 
∂t r m v τ 

Note: In fluid mechanics, we have a counterpart of the Boltzmann equation, which is 
called the Krook equation.  

E 

k 

k k’ 

Now let us consider the general rules of the phonon-phonon scattering. First we have 
energy balance as 
E = E ⇒ E k + E k = E k ' + E k' .( ) ( )  ( ) ( )f i 1 1 

Secondly we have momentum conservation 
G + k  1 + k = k  1 '+ k ' , 

'd 3k1 ' 
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where the vector G accounts for the momentum imbalance between the initial and final 
states when k1 + k > π /a . We have learned that k1 + k > π /a (out of the first Brillouin 
zone) is meaningless and must be flipped over into the first Brillouin zone. This 
momentum difference is compensated by G. We call this process umklapp process. In 
other case, G=0 and it is called a normal process. 

ENERGY ENERGY 

k 
Eg 

k 
Eg 

Phonon 
Emission or 
Absorption 

(a) (b) 

The absorption of photons by free electrons in metals and in semiconductors must be 
accompanied by emission or absorption of phonons because of momentum conservation. 
In the above figures, figure (a) shows that an electron absorbs a photon and is pumped to 
a different band (direct semiconductor). We still have 
Ei + =ω = Ef (energy conservation) 

hki + = k  (momentum conservation), 
λ f 

where h 

λ
is the photon momentum and can be proved to be negligible for optical lights 

( λ ~ 0.5  mµ ). Therefore, the arrow points upward almost vertically.  

Frequency 

Absorptivity Direct semiconductor 

Indirect semiconductor 
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For silicon (indirect semiconductor), we have the situation drawn in figure (b). In this 
case, the absorption of a photon cannot happen at the band edge without the absorption or 
emission of phonons because photon-electron interaction alone does not satisfy the wave 
vector conservation requirements. The participation of phonons in the process reduces the 
absorption or emission of photons, as shown in the above figure. 

Generally speaking, electrons will collide with electrons, phonons, and impurities in the 
crystals. For a normal process in which two phonons merge into one (shown in the figure 
below), both the energy and momentum are conserved and will not create any thermal 
resistance to the heat conduction. In fact, the finite thermal conductivity of a crystal 
results from the random umklapp process with compensating G. It has the relaxation time 

−1 −θ / bT 3 2τu = Be D T ω . 

k1 

k2 

k3 

For impurity scattering, we have the familiar Rayleigh law 
τ−1 4= Aω .I 
Note the scattering possibility is proportional to the reciprocal of relaxation time. This 
equation suggests that the scattering is enhanced for increased ω. 

Note: (1) Normally we assume the size of defects d � λ . (2) The blue sky is the result of 
impurity scattering that shields off the high frequency lights.  

The total relaxation time is obtained by combining the expressions for individual 
relaxation processes according to the Mathiessen rule 
1 

= ∑ 
1 ,

τ τ j 
f − fowhich is used in the expression of .

τ 

For phonon scattering, the two-particle collision is drawn as following.  

k1,ν1 

k2,ν2 

ν3 =ν1+ν2 

k3 

ν1,k1 

ν2,k2 

ν3,k3 

(a) 
(b) 
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1 

For the merging of two phonons into one, the energy conservation gives 
hν1 + hν2 = hν3 
and a similar equation can be written for the process that one phonon splits into two. The 
momentum conservation during the three-phonon interaction processes takes a special 
form.  For the phonon merging process, the momentum conservation can be written as 

k + k = k + G2 3 
where the reciprocal lattice vector G can be zero or a linear combination of the reciprocal 
lattice vectors. If (k1+k2) is smaller than the first Brillouin zone wavevector, G equals 0, 
otherwise, G≠ 0. This comes from the requirement that the phonon wavelength cannot be 
smaller than the lattice constant as we discussed in chapter 3.  The G=0 phonon scattering 
process is called the normal process and the G≠ 0 is the umklapp process, as mentioned 
before. 

E 

3 E3=E1+E2 

k 

k k’ 

1 

2 

Note: In the perturbation method, we consider the time-dependent interaction between the 
two particles as a small perturbation in energy, H’(r,t). When we use the harmonic 
oscillator approximation for the actual interatomic potentials, the higher order term 
O[(x’-xo)3] in 

2⎡ ⎤1 d U 2 3U(x') = U(x ) + ⎢ ⎥ (x'−x ) + Ο[(x'−x ) ]o o o22 ⎢dx' ⎥⎣ ⎦ x'=x o 

can be considered as the perturbation from the harmonic potential. In the umklapp 
process, the randomly distributed vector G plays a similar role as O[(x’-xo)3]. 

Energy 

Interatomic 
Distance 

Equilibrium Position 

Repulsion 

Attraction 

Harmonic Force 
Approximation 
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When the particles have a nonzero average velocity u, the following displaced Maxwell 
velocity distribution is often used for f0 

2⎛	 m ⎞
3/ 2 

−m⎢(v−u ) / 2  κB T⎣ ⎥⎦fo(v) = n⎜ ⎟ e 
⎡ ⎤ 

,
2πκ T⎝ B ⎠ 

where u can change at different location in the space.  

If the solution of the Boltzmann equation is known for a problem, we can calculate the 
volume-average of any microscopic property X of the particle from, 

( ) = 
1 ∑ X (r, ) ,X r k f
 
V k ,s
 

where the summation can be conducted over wave vector k or velocity v. 

Assumption of the Boltzmann equation 
(1) The Boltzmann equation is only applicable to diluted systems, such as phonons, 

electrons, molecules, and photons. It can never be used for liquids. 
(2) Consider the collision of two particles.	 Before and after the collision, the 

distribution functions of the one of the two particles are independent of the 
coordinates and momentum of the other particle. This is the so called the 
molecular chaos assumption. Additionally, the particles have no memory of its 
history and its final state is unaffected by its very beginning status.  

(3) The Boltzmann equation cannot include explicitly the wave effects such as 
interference and tunneling. We use the particle picture for all particles though 
photons have larger wavelength and is more like a wave. The wave theory is 
partially included for some problems. For example, we have solved the 
wavefunctions of electrons in deriving the band structure in crystals. The 
wavelength is far larger than the interatomic distance. 
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2.57 Nano-to-Macro Transport Processes 

Fall 2004 


Lecture 18
 

In last lecture, we deal with the Boltzmann transport equation 

∂f dr dp ⎛ ∂f ⎞+  •∇  f +  •∇  fr p = ⎜ ⎟∂t dt dt ⎝ ∂t ⎠s 

where the subscripts (r and p) in the gradient operators represent the variables of the 
⎛ ∂f f − fogradient. The scattering term 

t 
⎞
⎠s 

= −  
τ 

was discussed based on two particle ⎜
⎝ ∂ ⎟

interactions. Here  τ ω( ,k )  is the relaxation time. For equilibrium distribution f0, we have  

⎧ 
1⎪ 
=ω  Bose-Einstein distribution (phonon) ⎪ 
B⎪ek T  −1 

⎪⎪ 1f = ⎨ Fermi-Dirac distribution (electron) 0 E−µ
⎪ k TBe +1⎪ 

23/ 2 m -v u⎪ ⎛ −m ⎞ 2k TB⎪n⎜ ⎟ e Displaced Maxwell velocity distribution (molecules) 
2π B ⎠⎪ ⎝ k T⎩ 

Note: The relaxation time is due to combined factors and can be evaluated numerically 
by adding all possible influence together. This idea can be used in calculating the band 
structure by the Boltzmann transport equation. 

k2,ν2 

ν2,k2
ν3=ν1+ν2 

ν1,k1 

k3 ν3,k3 

k1,ν1 (a) 
(b) 

For two-particle interactions (above figure (a)), we have   
=ω + =ω = =ω (energy conservation),1 2 3 

G + k  3 = k  1 +k2  (momentum conservation), 

where zero G corresponds to normal process, otherwise it is umklapp scattering.  


Generally speaking, electrons will collide with electrons, phonons, and impurities in the 

crystals. The electron-phonon scattering causes the electrical resistance.  
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Note: At low temperatures, phonon has low energy and the electron-phonon scattering is 
negligible. Therefore, the impurity-electron scattering is the main cause of electrical 
resistance. 

For gas molecules, in Lecture 2 we have derived the collision obeys 
1

Λ =  , Λ = vτ . 

2n D2
π 

Note: (1) To simplify, most time we view τ ω( ,k ) as τ (ω) . (2) The time τ ω( ,k )  is only 
applicable to elastic scattering (see chapter 8), such as electron-electron scattering 
(energy conserved). It is not accurate for electron-phonon scattering. In this situation, we 

f f  −have ⎛⎜
∂f ⎞ = −  o + g T  T  ( e − p ) . (3) In semiconductor devices, Te can be thousands of 

⎝ ∂t ⎠⎟s τ 
degrees, while Tp is only hundreds degrees. The two temperatures differ a lot. 

We can understand the meaning of τ easily by neglecting the spatial non-uniformity of 
the distribution function. The Boltzmann transport equation becomes 
∂f f − f0= − 
∂t τ 

and thus 
−t /τf − fo = Ce 

So the relaxation time is a measure of how long it takes for a nonequilibrium system to 
relax back to an equilibrium distribution.   

Consider the Boltzmann equation under the relaxation time approximation. Let’s 
introduce a deviation function g, 
g=f-fo 
and write the Boltzmann equation as 
∂g ∂fo F F g

+ + v •∇  f + v •∇  g +  •∇  f +  •∇  g = −  r o r v o v∂t ∂t m m τ 

Note: ∇p f = 
1 
∇k f = 

1 
∇v f . We can also express f t( , ,r p) as f t( , ,r v) or f t( , ,r k )

= m 
for convenience. 

All the diffusion laws can be obtained under the following assumptions (1) the transient 
terms are negligible, (2) the gradient of g is much smaller than the gradient of fo, and 
similarly, g is much smaller than fo. Under these assumptions, the above equation 
becomes 

⎛ F ⎞ g = −τ ⎜v •∇r fo + •∇v fo ⎟ 
⎝ m ⎠ 

or 
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⎛ F ⎞f = f −τ ⎜ v •∇ f + •∇ f ⎟ .o r o v o
⎝ m ⎠ 

From the distribution function changing in long period compared with the relaxation time, 
we can calculate the flux of various quantities of interests (charge, momentum, and 
energy). 

Fourier Law 

T(x) 

vx x 

For simplicity, we consider a temperature gradient along the x-direction without loss of 
generality.  We can calculate the heat flux from 

⎡ ∞ ∞ ∞ ⎤ 
qx ( )  =∑ 

1 ∑ ∑ ∑  vx = ( ) f ⎥J x  ⎢ ω ω  
p ⎣⎢V kx1 =−∞ ky1 =−∞ kz1 =−∞ ⎦⎥ 

where p represents the summation over all polarizations.  It is interesting to compare this 
expression with what we used in deriving the Landauer formalism. In that equation, we 
are considering only the heat flux going from point 1 to point 2 and there also exists a 
reverse heat flux from point 2 to point 1. Here we are considering the net heat flux at any 
constant x-plane inside the domain.   

As in previous lectures, we can convert the summation into integral and further change 
into spherical coordinates 

( )  = 1/  V 
∞ ∞ ∞  

v =ω fdk  dk  dk  π / L 
3J x  / 2  qx ( )∑ ∫ ∫ ∫  x x y z ( )


p
 −∞ −∞ −∞ 

max πω ⎡ D ( )  ⎫ ⎤2π ⎧ ω 
= dω ⎢ ⎨ v cosθ ω f sin θ θ ⎬d ⎥= d ϕ∫ ∫ 0 ∫ 

0
0 ⎢⎣ ⎩ 4π ⎭ ⎥⎦ 

kx 

ky 

kz 

θ 

φ 

Note: Here θ varies from 0 to π because both positive and negative vx are considered. 
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⎛	 F ⎞With f = fo −τ ⎜ v •∇r fo + •∇v fo ⎟ , we obtain
⎝ m ⎠ 

max	 πω ⎡ 2π⎧ ⎡ dfo dT ⎤ D (ω) ⎫ ⎤ 
qx ( )  = ∫ dω ⎢∫ 0 ⎨∫ vcosθ ω fo −τ v cosθ sinθ θ⎬dϕ⎥J x  =	 d 

0 
⎢	 ⎥dT dx 4π0 ⎢⎣ ⎩ ⎣	 ⎦ ⎭ ⎥⎦ 

1 dT  ω	 ⎧ π 
2 2 dfo ⎫ max∫ 0 ⎨∫ θ ω ( )  dθ⎬= − 	  dω τv s inθcos ×= D ω 

02 dx 	  ⎩ dT  ⎭
 
⎧ d (=ωD (ω) f ) ⎫
1 dT  ωmax	 
⎪ π 

2 o ⎪= −  0	 dω⎨ τv dθ⎬∫ ∫3 dx 	  dT  ⎪⎩ 0	 ⎪⎭ 
1 dT  π 

max= −  ω	 dω τv2 C ω dθ 
3 dx  ∫ 0	 {∫ ( ) }

0 

and 
1 2k = ∫ τv Cdω  in the Fourier law. 
3 

Note: The equilibrium fo term drops out in the integral, which is consistent with our 
expectation. 

In the case that both τ and v (group velocity v dω / dk  = ) are independent of frequency, 
the above expression recover to the kinetic relation 

1k = CvΛ .
3 

The temperature-dependent thermal conductivity for a material is drawn in the following 
figure. For amorphous materials, two transition points exist. 

k 

Temperature 

Phonon-phonon scattering dominates 
k~1/T or 1/Tn (n=1-1.5) in practice 

Impurity scattering dominates at tens 
of Kelvins 

Boundary scattering dominates 
k~T3 

Amorphous 
material 

Newton’s Shear Stress Law 
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x 

In the following figure, a couette flow is shown. As an approximation, the following 
displaced Maxwell velocity distribution is often used for the probability of finding one 
particle having velocity v 

2⎡ 2 2 ⎤ 
⎛ m ⎞

3 / 2 −m⎢(v x −u) +v y +vz ⎥ / 2κB T 
⎣ ⎦P(v , v , v ) = ⎜ ⎟ e .y z ⎜ ⎟2πκ T⎝ B ⎠ 

where u is the average velocity along the x-direction (spatially changed). 
U 
o 

y vy 

u 
vx 

x 

Assuming that the number density of particles is n, the number density of particles having 
velocity v is 

2⎡ ⎤ 
⎛ ⎞

3 / 2 −m⎢(v x −u) +v2
y +v2

z ⎥ / 2κB Tmfo(vx,vy,vz)=nP(vz,vy,vz) = n⎜ ⎟ e ⎣ ⎦
⎜ ⎟2πκ T⎝ B ⎠ 

From f f τ (v •∇ f ) (F is zero because this is no external fields here and gravity is = −  o r o 

neglected), the distribution function is 
⎛ ∂ f ∂ f ∂ f ⎞ ∂ f ∂ f ∂ u� � � o � o � o � o of f  τ v i + v j  + v k  ⋅ i + j + k = −  τv = −  τv= −  f f .o ( x y z ) ⎜ ⎟ o y o y
⎝ ∂x ∂y ∂z ⎠ ∂ y u y∂ ∂ 

Compared with the law τ xy = µ ∂ u (x is the force direction, y is the normal direction), we 
∂ y 

have 
µ = n k Tτ B . 

Following a similar procedure, we can also calculate the energy flux due to molecular 
heat conduction and obtain the thermal conductivity for a gas as 

5 ⎛ k ⎞ 5 ⎛ k ⎞k = ⎜ B ⎟nτ kB T = ⎜ B ⎟µ . 
2 ⎝ m ⎠ 2 ⎝ m ⎠ 

Note: The thermal conductivity and dynamic viscosity have similar form here because 
they are based on the same mechanism. 
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In the following lecture, we will discuss the Ohm’s Law and Wiedmann-Franz’s Law. 

The force acting on the electron by the external field is  

F = −eε , 


where e is the unit charge, and the charge of an electron is (-e), ε is the electric field. And 

fo obeys the Fermi-Dirac distribution 


f (E, E ,T) = 
1 .o f ⎛ E − E ⎞ 

exp⎜ f ⎟⎟ +1⎜ κ T⎝ B ⎠ 
We will deal with µ, T and F simultaneously in this situation. 
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2.57 Nano-to-Macro Transport Processes 

Fall 2004 


Lecture 19
 

In last lecture, we talked about the Newton’s shear stress law.  
U 
o 

y vy 

u 
vx 

x 

Assuming that the number density of particles is n, the number density of particles having 
velocity v is 

⎡ ⎤3 / 2 −m (v −u)2 
+ v2 + v2 / 2κ T⎛ ⎢ x y z Bm ⎞ ⎥

fo(vx,vy,vz)=nP(vz,vy,vz) = n⎜ ⎟ e ⎣ ⎦
⎜ ⎟2πκ T⎝ B ⎠
 

⎛ F ⎞
From f = f −τ ⎜ v • ∇ f + • ∇ f ⎟ (F is zero here because this is no external fieldso r o v o
⎝ m ⎠ 

here and gravity is neglected), the distribution function is 
⎛ ∂ f ∂ f ∂ f ⎞ ∂ f ∂ f ∂ u� � � o � o � o � o of f  τ v i  v j  + v k  ⋅ i + j + k = f − τv = f − τv .= −  +o ( x y z ) ⎜ ⎟ o y o y
⎝ ∂x ∂y ∂z ⎠ ∂ y ∂u ∂ y 

∞ ∞ ∞Note: We can also prove u = v fdv dv dv .−∞ −∞ −∞ x x y z∫ ∫ ∫  

The shear stress along the x-direction, on a plane perpendicular y-axis can be calculated 
by considering the momentum exchange across the plane, 

∞ ∞ ∞τxy = ∫ −∞ ∫ −∞ ∫ −∞ vy [mvx ]fdvxdvydvz 

∂ u ∞ ∞ ∞ 2 ∂ fo ∂ u 
= − ∫ −∞ ∫ −∞ ∫ −∞ τvy mvx dvxdvydvz = µ

∂ y ∂u ∂ y 

The dynamic viscosity can be  
2 ∂ foµ = −  τv (mv  ) dv  dv  dv  y x x y z∫ ∫ ∫  ∂u 
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3/ 2 ∞ ∞ ∞ '2⎛ ⎞ 2 2 ' 22 − mv /(2κ T) 2 − mv /(2κ T) − mv /(2κ T) ' z B y B x x B= m nτ e dv v e dv e dv .⎜ 
m 

⎟ ∫ z ∫ y y ∫ 
v 

x2πκ T κ T⎝ B ⎠ −∞ −∞ −∞ B 

Note: Two integrations are used to calculate the above equation: 
2 2+∞ 2

2 +∞ 2 +∞ 2 +∞ − x + y +∞ 2− x − x − y ( ) −r(1) (∫−∞ 
e dx) = (∫−∞ 

e dx)(∫−∞ 
e dy) = ∫−∞ 

e dxdy = ∫0 
e 2π rdr yields 

+∞ 2− xe dx  =∫−∞ 

' 
+∞ 2 ⎛−ax π 2 −ax π ⎞

= − 
π −3/ 2leads to f '( ) = −a x e dx = a .(2) f a  = e dx =( )  

+∞ 2 

⎟⎟∫−∞ a ∫−∞ 
⎜⎜ a 2⎝ ⎠ 

Ohm’s Law 

x 

π . 

εx 

Now fo obeys the Fermi-Dirac distribution 

1f E E, ,T = ,

⎛ E − µ ⎞
o ( f ) 

exp⎜ ⎟ +1
κ T⎝ B ⎠ 

⎛ F ⎞and f = f −τ ⎜ v • ∇ f + • ∇ f ⎟ becomeso r o v o
⎝ m ⎠ 

⎛ df qε ∂f ∂E ⎞ o x of f= −  τ v + .o ⎜ x ⎟dx m E v∂ ∂⎝ x ⎠ 

E 

Ec 

Ev 

µ 
µ 

Filled 
levels 

Empty levels 
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For metals (left figure), the electrons fill part of the band, while the Fermi level normally 
lies within the band gap for semiconductors. In the latter situation, the parabolic 
approximation is used 

2 2 
1 = k 1 * 2 2 2
E Ec + = E + m v  ( x + v + vz )= * c y ,
2 m 2 

thus 
⎛ ∂fo qε x ∂fo ∂E ⎞ ⎛ ∂fo ∂fo ⎞f f  τ v + = f − τv + ε .= −  qo ⎜ x ⎟ o x ⎜ x ⎟∂x m ∂E ∂v ⎝ ∂x ∂E ⎠⎝ x ⎠ 

The current density (A/m2) is then 
1 1 ∞ ∞ ∞  ∞ ∞ ∞ 

v f = ∫ ∫ ∫  yJq = ∑ ∑ ∑ q x 3 qv fdk dk dk x x zV kz =−∞ ky =−∞ kz =−∞ (2  π) −∞ −∞ −∞ 

dk dk dk θ θ ϕChanging to spherical coordinate system ( x y z = k 2 sin d d  dk ) and rewrite the 
D E  yields 


2π π +∞ ( ) 
  

above equation with ( )
D E  d d  dEJ  = qv f  sin θ θ ϕq ∫ ∫ ∫  x π0 0 0 4 

. 
q ∞ 

2 D E ⎛ ∂fo ∂fo ⎞ E= −  ∫ τv ( )⎜ + qε x ⎟ d
3 0 ⎝ ∂x ∂E ⎠ 

Now we let Ec=0 be the reference energy level. And the distribution becomes 
1f E E T  = o ( , f , ) ,

⎛ Ek − (µ − Ec ) ⎞ 
exp ⎜ ⎟ +1

κ T⎝ B ⎠ 
where Ek denotes the kinetic energy.  

∂f E − µ ∂f ∂f ∂f0 k 0 0 0Noticing = −  , = −  , we have
∂T T ∂Ek ∂µ ∂Ek 

∂f ∂f ∂µ ∂f ∂T0 0 0= + 
∂x ∂µ ∂x ∂T x∂
 

∂f ∂µ E − µ ∂f ∂T
0 k 0= −  −  
∂Ek ∂x T ∂Ek ∂x 

E − µ 1Note: Defining y = k , f E E T  = , we can observe( , f , )
κBT o exp y( ) +1 

∂f0 Ek − µ ∂f0= −  
∂T T ∂Ek 

from 
∂f ∂f E  − µ ∂f ∂f 10 0 k 0 0= −  , = .
T ∂ B 

2 E ∂ B∂ y  k T  ∂ k y k T  
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The flux is thus 
q ∞ ⎛ ∂µ E − µ ∂T ⎞ ∂f2 k	 0Jq = −  ∫ τv ⎜ − − + ε x ⎟ ( k ) Ekq  D E d
3 0 ⎝ ∂x T ∂x ⎠ ∂Ek 

⎧	 ∞ ⎫ ⎧ ∞ ⎫⎪1 ∂f ⎪⎛ ∂µ ⎞ ⎪1 ⎛ E − µ ⎞ ∂f ⎪ ∂T2 0	 2 k 0= qτv D E  dE  − qε + qτv	 D E  dE⎨	 ∫ ( k ) k ⎬⎜ x ⎟ ⎨ ∫ ⎜ ⎟ ( k ) k ⎬
⎪3 ∂E ⎪⎝ ∂x ⎠ ⎪3 ⎝ T ⎠ ∂E ⎪ ∂x⎩	 0 k ⎭ ⎩ 0 k ⎭ 

Discussion 
1 ∞ 

2 ∂fTo simplify, let L11 = qτv 0 D E  dEk . 
3 0 ∂Ek 
∫ ( k ) 

1) / ∂ =  (isothermal), we have ∂T x  0
 
⎛ ∂µ ⎞ ∂φ
J	 = L − qε = L q  ,x 11 ⎜ x ⎟ 11 
⎝ ∂	x ⎠ ∂x
 

µ
where φ = + v  is the electrochemical potential.  
q 

∂µ ∂µ dV ∂ ⎛ µ ⎞
Note: − qε x = + q = ⎜ + v ⎟ .

∂ x q∂x x dx ∂ ⎝ ⎠ 

The flux is often written as 
∂nJ	 = qnµ ε  + Dqx  e x  ∂x 

where the first term corresponds to drift, the second term denotes diffusion; µe is called 
the mobility [m2V-1s-1] and D is the diffusivity [m2s-1], n is carrier concentration. In the 
following figures, we actually measure both terms in the above equation.  

V 

µ is continuous 

x 

E 

Note: Recall we use n  fD E dE  to determine µ in Lecture 11. Normally n is related 

to µ. In semiconductors, when we increase doping, n will increase while µ will drop due 
to scattering.  In metals, the large n is almost constant and J = qnµ ε = σε  . 

= ∫ ( )  

e  e x  x  
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In non-degenerate semiconductors, the Fermi-Dirac distribution can be approximated by 
the Boltzmann distribution and D k T  µ / q= B , called Einstein relationship. This name 
comes because it is derived following Einstein’s work on Brownian motions. 

x 02) ∂T / ∂ ≠  
Now the equation is written as 

⎛ dΦ ⎞ ⎛ dΤ⎞J = L q  + L .x 11 ⎜ ⎟ 21 ⎜ ⎟
⎝ dx ⎠ ⎝ dx ⎠ 

For open circuits (zero flux), we have 
⎛ dΦ ⎞ ⎛ dΤ⎞0 = L q  + L ,11 ⎜ ⎟ 21 ⎜ ⎟
⎝ dx ⎠ ⎝ dx ⎠

thus 
dΦ L dT dT 

= − 12 = −S ,
dx L dx dx11 

12where S= L  (VK-1) is called Seebeck coefficient. The Seebeck voltage is the steady
L11 

state voltage accumulated under the open circuit condition.  If the conductor is a uniform 
material such that S is a constant, the voltage difference does not dependent on the 
temperature profile.  This is the principle behind the thermocouple for temperature 
measurements.  A thermocouple (the following figure) employs two conductors for the 
easy of measuring the voltage difference.   

µ1=µ2 

1 2 

T drops at the 
junction. 

Π1 Π2 

For the heat flux, we have 
dE = dq + µdn , 

dφ dT  J = 2 E − µ v f  = L + L .q ∑∑∑ ( ) x 21 22dx dx 

The heat flux is also written as Jq = ΠJx , in which the Peltier factor Π = ST . 
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2.57 Nano-to-Macro Transport Processes 

Fall 2004 


Lecture 20
 

Guest lecture by Prof. Mildred S. Dresselhaus 

1. Outline 
-Overview of low dimensional thermoelectricity 
-New physics to yield enhanced performance in 1D nanowires 
-Quantum dot superlattice nanowires – model calculations 
-Newly emerging research directions 
-New methods for synthesis and assembly of nanowires 
● Self assembled composite nanostructures 
● New 3D crystalline materials with quantum dots 
● New thermoelectric tools 

2. Introduction to Thermoelectricity 

T2 T1 

–+ ∆V 
Physically, when one side of the conductor (or semiconductor) is hot, electrons have 
higher thermal energy and will diffuse to the cold side. The higher charge concentration 
in the cold side builds an internal electric field that resists the diffusion. The Seebeck 
voltage is the steady-state voltage accumulated under the open circuit condition. We can 
express this as 

∆VS = −  (V/K),
T T2 − 1 

where S > 0 for p-type semiconductors, and S < 0 for n-type materials. 

In the following figure, we demonstrate the idea of Peltier Effects. 

Heat Q Heat Q 

Qπ = 
I 

I
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In this case, heat is carried by carriers (absorbed at the left and rejected at the right end). 
The Peltier coefficient is defined as Π = /Q I . 

3. Applications 

Heat Source 

p n 

I 

I 

I 

Heat p n 

–+ 

∆V 

Refrigerator Power generator 
(Cooling of (Waste heat recovery) 
electronics) 

In the above figure, we show two major applications of thermoelectricity: refrigerator and 
S 2σpower generator. The efficiency of the refrigerator can be evaluated by ZT = T , in

k 
which S is seebeck coefficient, σ  is electrical conductivity, and k denotes thermal 
conductivity. Compared with mechanical refrigeration, thermoelectric cooling offers the 
following advantages: 
-No moving parts  
-Environmentally friendly 
-No loss of efficiency with size reduction 
-Can be integrated with electronic circuits (e.g. CPU) 
-Localized cooling with rapid response 

However, the current ZT value (~1) for TE cooling still lags behind that of mechanical 
refrigeration (ZT~3). 

4. Thermoelectric Properties of Conventional Materials 

In the following figure, we present the variations of three parameters against the carrier 

concentration. The ZT value reaches the maximum in the middle of the figure. However,
 
we should not use semimetals because they have both holes and electrons as carriers, 

which have different signs of S and the effects will cancel out in the cooling process. 

Therefore, we should focus on the edge of semiconductors. 
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3.5 

To increase ZT, we want S ↑,σ ↑, k ↓ . There is confliction in satisfying all these 
requirements. In the figure, we can find S ↑,σ ↓  and σ ↑, k ↑ . Basically we need to 
balance these factors. The best alloy Bi0.5Sb1.5Te3 has ZT ~ 1 at 300 K. 

INSULATORS 
SEMI

CONDUCTORS 

ZT 

SEMIMETALS 

Carrier concentration 

METALS 

 

S 

K

 

In the current investigations, people have tried different compositions to improve ZT. At 
different temperature ranges, in the right figure we have different best materials. The ZT 
values are still less than 1.0 after 40 years. 

5. Motivation for Nanotech Thermoelectricity 
To further improve the efficiency, low dimensional materials give additional control in 
-Enhanced density of states due to quantum confinement effects (we can increase S 
without reducing σ ) D 
-Boundary scattering at interfaces reduces k more than σ D 
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The above figure summarizes the recent advances in nanostructured thermoelectric 
materials, which led to a sudden increase in (ZT)300K > 1. Higher ZT reported 
experimentally at higher T. 

6. New Directions for Low Dimensional or Nanotech Thermoelectricity 
1) Electronic properties may be dramatically modified due to the electron confinement in 
nanostructures, which exhibit low-dimensional behaviors. Recall the following cases 
given in homework. 

E 

D. O. S. D. O. S. D. O. S. 

E E E 

D. O. S. 

3D 2D 1D 
0 
D 

2) Thermal conductivity can be significantly reduced by the scattering of phonons at the 
interfaces. In the following case, the electrical conductivity is not strongly affected. 

electro 
n 

conductorinsulator 

phonon 

lmfp < dWlmfp > 
dW 

In the above right figure, the 1D structure shows promise of increasing ZT to 3 at a 10 
nm diameter. In the next two figures, thermoelectric cooling using a Bi2Te3/Sb2Te3 
superlattice structure is reported. Enhanced cooling is accomplished by increased 
scattering of phonons at interfaces, thus lowering the lattice thermal conductivity. 
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Figure removed for copyright reasons. 

Venkatasubramanian et al., Nature 413, 589 (2001) 

Figure removed for copyright reasons. 

Harman et al. J. Electron. mater. Lett. 29, L1 (2000) 

In the above work, enhancement of ZT at 300 K in a quantum dot superlattice is more 
than a factor of two relative to best available bulk PbTe because 
-Favorable carrier scattering mechanism due to PbSeTe quantum dots 
-Lower lattice thermal conductivity in alloy 
And ZT = 3 at 600 K reported at MRS Boston in 2003. 

7. Quantum dot superlattice nanowires – model calculations 
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We have discussed the seebeck coefficient enhancement in 2D and 1D structure. 
Reducing the dimension to 0D may further increase S. However, difficulty exists in 
making connections to different quantum dots. This problem is solved by combining the 
idea of superlattice and nanowires. The new structure (superlattice nanowire) will restrict 
heat conduction but allow electrons to pass. 

Superlattice (2D) Nanowire (1D) 

Superlattice Nanowire 

e 
-

phonon 

In the following figures, three superlattice nanowires are presented. 

Photo removed for copyright reasons. See Photo removed for copyright reasons. See Fig. 2b Photo removed for copyright reasons. 
Figure 3 in Piraux et al. "Giant magnetoresistance in Wu, Fan, and Yang. "Block-by-block growth of See Figure 1d in Bjork, M.T., et al.

in magnetic multilayered nanowires." Appl. Phys. single-crystalline Si/SiGe superlattice nanowires." "One-dimensional Steeplechase for Electrons Realized." 

Lett. 65, no. 2484 (1994). Nano Lett., 2 (2002): 83. Nano Lett. 2: 2 (2002): 87-89. 

2.57 Fall 2004 – Lecture 20 
146



 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 

 

 

  
 

The theoretical modeling of this structure includes the following key parameters 
–Wire diameter: dW 
–Segment lengths: LA and LB (assumed to be equal) 
–Subband potential barrier: ∆Ec 
–Effective masses: mA and mB 
–Phonon mean free path: L 

LA LB 

A B  

Ec 
∆Ec = Band offset 

mA mB 

Y-M. Lin and M.S. Dresselhaus., Phys. Rev. B 68, 0753045 (2003) 

The utilized approaches are 
–Determination of the (sub)band structure 
–Derivation of the dispersion relation E(k) along the wire axis 
–Calculation of thermoelectric properties based on Boltzmann transport equations 

LA = LB = 60 nm LA = LB = 1 
nm 

In the above figures, the DOS for classical limit and alloy limit are shown. In real 
applications, we want more sharp pulses (~10) but not too many. In the following figures, 
the left one is suitable, while the right one already shows the trend to be a 3D structure.  
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LA = LB = 5 LA = LB = 20 
nm nm 

The following presents ZT for [001] n-type PbSe/PbS SL nanowires as a function of 
segment length at 77 K. Greater enhancement is predicted for SL nanowires with 
diameters of 5nm. 

Wire diameter: 10 nm 

PbSe/PbS 

8. Newly emerging research directions 
1) New methods for synthesis and assembly of nanowires 
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The following figure demonstrate the idea of making standing nanowires. 

thermal evaporation 
Si (100) 

Si (100) 
predeposited layers 

(adhesive / conductive / patterned) predeposited layers 

Al 

barrier layer 

electrochemical anodization Al 

Si (100) polishing 

Si (100) 

selective etch 1) patterning
 

2) deposition
 

porous alumina 

Si (100) Si (100) nanowires 

Two pictures of nanowires are shown below. 

Photo removed for copyright reasons. 

Rabin et al., Adv. Funct. Mater. (2003) 

2) Nanoparticle Composite Synthesis 

Ge Nanoparticle Si Nanoparticle Ge Host Si Nanoparticle 

Gang Chen, MIT 
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In the above figures, the idea of using nanoparticle composites is demonstrated. 

Expectations include: 

-Reduced thermal conductivity. 

-Electrical conductivity comparable to or better than bulk. 

-Increased thermoelectric figure of merit. 

-Cheap, self-assembly method 


3) New Nanoscale Tools for Thermoelectric Measurements 

Scanning thermoelectric microscopy (SThEM) allows measurements of the spatial 

profiles of the thermoelectric voltage, carrier concentration and electron energy band of a
 
p-n junction to 2 nm resolution. The following work has general implications on 

electronics and opto-electronics of nano-systems. 


Diagram and graphs removed for copyright reasons. 

SThEM measurement set-up Carrier profiles and electronicThermoelectric voltage profile across band energies across p-np-n junction with 2nm resolution 
junction 

H.-K. Lyeo et al. , Science 303, 816 (2004) 
9. Conclusions 
1) Model systems show that: 


ZT for 0D nanowire superlattice 

> ZT for 1D quantum wires  

> ZT for 2D quantum wells  

> ZT for bulk for same material 


2) New research directions now being pursued: 
-Self assembled bulk composites of nanostructures 
-New 3D crystalline materials with quantum dots 
-New thermoelectric tools at the nanoscale 
3) Objective 
–To have compact technology for cooling, especially for electronics and opto-electronics 
–To have efficient method for converting thermal to electrical energy, including waste 
heat recovery 
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2.57 Nano-to-Macro Transport Processes 

Fall 2004 


Lecture 21
 

Last time we talked about the current density as   
⎛ dΦ ⎞ ⎛ dT  ⎞Je = L11 'q⎜ ⎟+ L12 ⎜ ⎟ ,
⎝ dx ⎠ ⎝ dx ⎠

µFor electrons, q = −e  and Φ = ϕe − . Here ϕe is electrostatic potential, which is related 
e 

to the electrical field. Chemical potential µ is related to diffusion. Their combination Φ 
is electrochemical potential, indicating the total driving force of charges. The current 
density can be rewritten as 

⎛ dΦ ⎞ ⎛ dΤ ⎞J = L − + L .e 11 ⎜ ⎟ 12 ⎜ ⎟
⎝ dx ⎠ ⎝ dx ⎠ 

⎛ dΤ ⎞ ⎛ 1 dΤ ⎞ dQNote: The second term L = L T  is similar to S and may be∆ =12 ⎜ ⎟ 12 ⎜ ⎟
⎝ dx ⎠ ⎝ T dx ⎠ T 

compared with entropy flux. 

The heat transferred is 
2 ⎛ dΦ ⎞ dT  Jq = ∑∑∑vx (E − µ ) f = L21 ⎜ − ⎟ + L22 V kx ky kz ⎝ dx  ⎠ dx  

For open circuits, Je=0. We obtain 
dΦ / dx  V  LS = 12 ,− =  =  
dT / dx T −T Lh c 11 

where S is called the seebeck coefficient. 

Note: (1) S is dependent on the density of states. Therefore, it can be enhanced by using 
nanostructures such as thin films or nanowires. This effect is also the principle of thermal 
couples. (2) In the summation, we cannot use integral for quantized directions.  

y 

x 

J 

Π 

Π 
11 

2 
q=J(Π2-Π1) 

q=J(Π1-Π2) 
2 
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dΦ / dx  (2) In S = −  , T should be the electron temperature Te. In equilibrium cases, Te is 
dT / dx 

close to phonon Tp and we can use this effect to measure Tp. However, for extreme cases 
such as laser ablation, the two temperatures are not in equilibrium. Cautions should be 
taken. 
(3) For an on-chip thermocouple, the measured temperature does not correspond to the 
junction point, but closer to the average temperature from 1 to 3. This is different from 
the normal thermocouples. 

1 2 3 
1 

When dT/dx=0, we have 
⎛ dΦ ⎞ L21J = L − = J = Π  J ,q 21 ⎜ ⎟ e e
⎝ dx ⎠ L11 

where the Peltier coefficient Π = TS , L21=TL12. Note one thermoelectric coefficient (S 
here) can be used to express all other coefficients. This is a requirement of the “time 
reversal invariance” of the mechanical equations of motion, i.e., the particles retrace their 
former paths if all velocities are reversed. Based on this principle, Onsager (1931) 
derived the famous Onsager reciprocity relations. The flux of any extensive variable, 
Jk, of a system (such as energy flux, particle flux) or at a local point of a system can be 
expressed as a linear combination of all the generalized driven forces Fj, 
J = ∑ L F .k jk j


j
 
Onsager got a Nobel Prize for his work. 

Now apply the above equation to the small control volume shown in the following figure. 

The energy conservation yields 

Q = J − J = (Π  − Π  ) J ,
j q2 q1 2 1 e 

which is positive (absorbing heat from the ambient) for Π2 > Π1 . 

Je 

Qj 

Another phenomenon is the Thomson effect. Along the following bar, we have 
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dS 1 dq dx /T = = β . 
dT Je dT / dx 

Je dQ/dx 

The overall energy equation is 
. dJq dΦ 2 dT  q = + J = σ J + k + Thomson term .

dx e dx e dx 

And thermal conductivity is  
k = L L  / L − L .e 12 21 11 22 

The Wiedemann-Franz law states 
ke 2= const = L = 2.45E − 8 W Ω / K ,

σT 
where the constant L is Lorenz number.  

Now consider the Boltzmann equation under the relaxation time approximation 
∂g ∂f F F go+ + v • ∇ f + v • ∇ g + • ∇ f + • ∇ g = − , g =f-fo.r o r v o v∂t ∂t m m τ 
By neglecting some terms, we have obtained 

⎛ F ⎞ g = −τ ⎜ v • ∇ f + • ∇ f ⎟ .r o v o
⎝ m ⎠ 

fo f 

(1) Assume that f only has small deviation from f0, indicating local equilibrium. Now we 
have g=f-f0<<f0. This yields 
τ v •∇ f � fr o o 

dfo dT Λ dT dT or τ v � fo ⇒ � 1⇒ Λ  / L � 1, should not be too large.
dT dx T dx dx

(2) Within v •∇ f , v •∇ g , we ignore the latter one. This implies r o r 

∇ f � ∇ gr o r 
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∂fo(3) We ignore  on the LHS compared with g  on the RHS. This indicates 
∂t τ

∂fo g� ⇒ t � τ . 
∂t τ 

Now consider the above transient process in which an infinite wall is heated suddenly. 
∂T k ∂2TThe theoretical solution of = is T = exp (−x / αt ) , which indicate that T is 
∂t ρc ∂t2 

nonzero at any long distance from the wall. Since the thermal wave propagates with a 
limited velocity (sound velocity), this is obviously impossible. To compensate for the 
error, the Cattaneo equation is introduced 

∂Jq ∂Tτ + J = −kq∂t ∂x 
where τ  is a weighed average of the relaxation time relative to the heat flux expression.  

Combining this equation with the energy conservation equation (no heat generation 
considered), 

−∇ • Jq = ρc ∂T 
∂t 

and eliminating Jq, we arrive at the following governing equation for the temperature 
distribution, 

2 2∂ T ∂T k ∂ Tτ + = ,
2 2∂t ρc∂t ∂t 

which is a hyperbolic type of equation. 

However, the Cattaneo equation is not applicable in most experimental situations.  Under 
fast heating, the temperature gradient is usually very large, and thus the condition that 
(Λ/T dT/dx) cannot be satisfied. There is no convincing experimental data showing the 
validity of the hyperbolic equation. In femto-laser heating, the temperature of electrons 
is raised much higher than that of the phonons and after the relaxation time electrons 
exchange energy with phonons (the following figure).   
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An experiment that is often cited as the proof for the validity of the hyperbolic equation is 
the second sound, which is encountered in low-temperature physics. However, the second 
sound is due to a different physical mechanism.  At low temperatures, the umklap 
scattering is weak and normal scattering is strong, such that phonons have a nonzero 
average momentum (velocity). Equations for phonon hydrodynamics  can be developed 
and the second sound can be described by these equations rather than the hyperbolic 
equation. 

The derivations so far are for constitutive equations.  We can also derive conservative 
equations from the Boltzmann equation.  I will not go to details.  Such conservative 
equations can be developed for gas molecules (Navier-Stokes equations), for electrons 
and phonons. Note: (1) In the 80s, people also conducted research based on Navier-
Stokes type of equations for electron transport. However, it is not valid at nanoscale 
because just as Newton’s shear stress law is not valid for rarefied gas flow, the drift-
diffusion equation is not applicable to electrons. 

Chapter 7 Classical Size Effects 

xd 

y 

When the electron and/or phonon mean free paths are comparable to or larger than the 
thin film thickness, they will collide more with the boundaries. The previous requirement 
Λ / L � 1 is not satisfied in this case. Most reflection on the wall is elastic. Two 
possibilities occur here: specular reflection, diffuse reflection.  

First we have the Boltzmann equation 
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• ∇rv f + 
m 

F 
• ∇ v f = − 

f 
τ 

− of 

or 

•∇rv 0f + g•∇ rv + 
m 

F 
•∇v 0f + 

m 

F g•∇ v = − 
τ 
g . 

Ignore 
m 

F g•∇v . Magnitude comparison suggests that v y 

g 

y 

∂ 
∂ 
� vx 

g 

x 

∂ 
∂ 

,  v  z 

g 

z 

∂ 
∂ 

. Therefore, 

we obtain 

xv 0df 
dx 

+ 
m 

F 
•∇  v 0f =

τ y 

g v− − 
g 

y 

∂ 
∂ 

, 

xvτ 0df 
dx 

τ+ 0x 

x 

F df 
m dv 

= g yvτ−  −  
g 

y 

∂ 
∂ 

. 

Note: For boundary scattering, the function g( )v is unchanged but g( )r  is changed by 
scattering. For statistical calculation, caution needs to be taken when summation is 
conducted. 
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We have talked about the heat flux as 

qx = 
1 ∑∑∑  fv  x =ω .
V k k kx	 y z 

y 

ϕ 

vy
 
v
 

vvy θθ	 d vxvx 
x 

Temperature 	
vz 

Gradient 
Or Electrical Field (b)(a) 

The Boltzmann equation is JGG ⎛ G F ⎞
τ v ⋅∇  r 

G g + g = −τ ⎜v ⋅∇  r 
G f0 +  ⋅∇  v 

G f0 ⎟ = S0 , 
m⎝	 ⎠JG 

F G ∂gwhere ⋅∇G f0 = 0 for phonons, g=f-f0. Noticing v ⋅∇G g ≈ vy (d<<x) and 
m v r ∂y 

df dT
∇G f = 0 , the x direction component gives r 0	 dT dx
 

∂g df0 dT 
  g +τv = τv = S ( ) ,−	 xy x 0∂y  dT  dx  
the solution of which is 

⎛ y ⎞ g S− 0 = C exp ⎜− ⎟ .⎜ ⎟
⎝ vyτ ⎠ 

One boundary condition is required to determine C.  

Assuming both top and bottom of the film diffusely scatter phonons, we have 
⎧	 ⎛ π ⎞ y = 0, f = f0 , g = 0 for θ ∈⎜0, ⎟⎪⎪	 ⎝ 2 ⎠
⎨	 . 
⎪	 ⎛ π ⎞y d= , f = f0 , g = 0 for θ ∈⎜ ,π ⎟⎪⎩ ⎝ 2 ⎠ 
Finally we get  

⎛ π ⎞	 ⎛ ⎛ y ⎞⎞At y = 0,θ 0, , C = -S , g y,θ ) = S 1− exp  ⎜− ,∈⎜ ⎟ 0 ( 0 ⎜	 ⎟⎟
⎝	 2 ⎠ ⎝ ⎝ vτ cos θ ⎠⎠ 
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At y = d, θ ∈ ,π ⎞ , C = -S exp / cos θ ) , g y,θ = S 1− exp  − 
⎜
⎛ π 

⎟ 0 (d vτ ( ) 0 ⎜
⎛ 

⎜
⎛ d y  

⎟
⎞
⎟
⎞ . 

⎝ 2 ⎠ ⎝ ⎝ vτ cosθ ⎠⎠ 

yNote: is the ratio between the traveled distance and the mean free path of 
vτ cosθ 

phonons. 

1 ω 2π π D (ω)( ) = =ωv f  = dω dϕ =ωv f  sin θ θ  q y 
max d ,x ∑∑∑  x ∫0 ∫0 ∫0 xV v v v 4π 

x y z 

where vx = v sinθ cos ϕ  according to our spherical coordinate system, f=g+f0. Thus 

ωmax 2π π ⎛ df0 dT ⎛ ⎛ y ⎞ ⎞⎞ D (ω) 
θ θ  +q y  = dω dϕ[ 2 ω v cos ϕ sin θ −τv cos ϕ sinθ exp − −1 sin dx ( ) ∫ ∫ ∫ = ( )⎜ ⎜ ⎜ ⎟ ⎟⎟0 0 dT dx vτ cos θ 4π0 ⎝ ⎝ ⎝ ⎠ ⎠⎠ 

π ⎛ df0 dT ⎛ ⎛ d − y ⎞ ⎞⎞ D (ω)
∫π =ω (v cos ϕ sin θ ) −τv cos ϕ sin θ ⎜exp ⎜ ⎟ −1⎟⎟ sin d ]⎜ θ θ  

2 dT dx ⎝ vτ cosθ ⎠ ⎠⎠ 4π⎝ ⎝ 

Note: At y=0, the x-direction heat flux is nonzero. In the above expression, the second 
integral is not zero though the first one is. 

3 2Now let cosθ = µ and thus sin d = −dµ,sin d (1θ θ  θ θ  = −  −  µ )dµ . Also define 

1 ⎛ ξ ⎞ d 2πn−2 2E ( )ξ = µ exp⎜− dµ , ξ = , Λ =τ . Noting cos ϕdϕ πv = , the total heat 
µ Λn ∫0 ⎝ ⎠
⎟ ∫0 

flow per unit width is 

Q = ∫
d

q  y dy  ( )
0 

π dT ωmax df0 2 1 2 ⎛ ⎛ ⎛ ξ ⎞ ⎞ ⎞ 
= τv D  ( )d [ 1( − µ dµ Λµ exp  ⎜− 1= −  ∫0 
ω  ω ω  ∫0 ) ⎜⎜ ⎜ ⎟ − −  d ⎟⎟⎟ + 

4 dx dT µ⎝ ⎝ ⎝ ⎠ ⎠ ⎠ 

1 2 ⎛ ⎛ ⎛ ξ ⎞⎞ ⎞(1− µ )dµ ⎜−Λµ ⎜1− exp  − ⎟⎟ − d ⎟]∫0 ⎜ ⎜ µ ⎟
⎝ ⎝ ⎝ ⎠⎠ ⎠ 

dT
= −kd ,

dx 
which yields (if Λ is independent on ω ) 

/ 3 ( E ξ .k kbulk = −1 1− 4 3 ( )ξ − E5 ( ))
8ξ 

The tendency is drawn in the following figure. It is expected that k approaches the bulk 
value for d larger than the mean free path. Since in diffuse scattering part of the phonons 
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are scattered backward, the loss of x-direction momentum results in a lower thermal 
conductivity. 

σ k 
= 

σ kbulk bulk 

dξ = 
Λ 

1 

d 

For specular case (above figure), the x-direction momentum is conserved. Following all 

simplified k , which gives an underestimation of Λ . This is because the Debye 

these procedures, we can finally prove k=kbulk. 

Note: To determine the mean free path, we should use k = 
3 
Λ C  v  d∫ ω ω  ω instead of the 

CvΛ 
= 

3 
approximation overestimates the velocity approach the edge of the first Brillouin zone, 
where the group velocity should be zero. 

Acoustic 

Optical 

k 

ω 

For partial specular (momentum conserved) and partial diffuse (momentum not 
conserved), we have 

+ − −f µ,0  = pf −µ,0  + 2 1 − p f − ,0  dµ  µ µ  ,( )  ( ) (  )
1 

( )∫0 

where p represents the ratio of specular scattering.  
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f -
f + 

Now consider the y direction. Similarly, we have 

∂g df dT v g τv = S y  ( ) .τ + = −  0 
y y 0∂y dT dy
 

⎛ y ⎞
 
To solve this, first let 0 ( ) = exp ⎜⎜ ⎟ . In general, use C y  to replace S y =0, then g C  − ⎟ ( )

τv⎝ y ⎠ 
C. Substitute into the governing equation, we get 

⎛ y ⎞ dCτv exp⎜⎜− ⎟⎟ = S y  0 ( ) ,y τv dy⎝ y ⎠ 
⎛ y ' ⎞ exp⎜ ⎟⎜ ⎟ y τv0 ⎝ y ⎠C = ∫ 0 ( )' d + ( 0S y  y C y  ' ) , 

y τvy 

⎛ '− ⎞y yexp ⎜ ⎟ 
y ⎜ τv ⎟⎛ y ⎞ 0 ⎝ y ⎠g y( )  = ( )exp  ⎜− ⎟ + ∫y 0 ( )' dyC y  0 S y  ' . 

⎝ τv cosθ ⎠ τvy 

Now the boundary condition is (elastic scattering on boundaries) 
⎧ ⎛ π ⎞0, f = , = 0, C 0 = 0 for θ ∈ 0,y = f g  ⎪ 0 ( )  ⎜ ⎟
⎪ ⎝ 2 ⎠
⎨ . 

⎛ π ⎞ 
⎪y d f  0 ( )  θ ∈⎜ ,π ⎟⎪ = , = f g  , = 0,  C d  = 0 for  
⎩ ⎝ 2 ⎠ 
At steady state, we have 

ω 2π π D (ω)Const q = ωdω dϕ v f d= y ∫0 

max = ∫0 ∫0 y 4π
θ 

dq
And y = 0 yields

dy 

2 ( ) = E2 ( )η + ∫
ξ
θ η ' E1 η η  − ' )dη 'θ η  

0 
( )  ( 

T y( ) −T y d( )  1 2where we used dimensionless parameters θ y = ,η = ,ξ = .
T T1 − 2 Λ Λ 
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The temperature profiles for two extreme cases are drawn in the following figure. For 
ξ → 0 (note T1 ≠ T2 ), it is in nonequilibrium state but we define the equilibrium 
conception, temperature, based on the average value. 

T1

T2

Teq

T1 

T2 

Teq 

1 

1 
ξ →∞  

0ξ → 

y/d 

θ 
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2.57 Nano-to-Macro Transport Processes 
Fall 2004 

Lecture 23 

In the last lecture, we talked about the energy flux along a thin film as 

q = ∑∑∑  fv  = ω .x x
V kx ky kz


y 

d 
x 

θ 
v 

Temperature Gradient 

vx 

vy 

ϕ 

v 

vx 

vy 

θ 

vz 

Or Electrical Field 

(a) (b) 

Now let us consider the conduction of gas molecules between two plates. Similarly, the 
Boltzmann equation is JGG ⎛ G F ⎞
τ v ⋅∇  r 

G g + g = −τ ⎜v ⋅∇  G f0 +  ⋅∇  v 
G f0 ⎟ ,r m ⎠⎝ JG

Fwhere the bulk force 
m 
⋅∇  v 
G f0 = 0  for phonons, g=f-f0. Noticing v 

G
⋅∇G g ≈ vy 

∂g (d<<x)r ∂y 

and ∇G f0 = 
df0 dT , the x direction component gives r dT dx 

xg +τvy 
∂
∂ 

g
y 
= −τv df0 dT  

= S0 ( )  .x dT  dx  
We can solve g first and then substitute the expression f = g+f0 into any flux equation. 
Under the diffuse assumption, we obtain the following figure for the conductivities of the 
material. 

σ k 
kσ 

= 

ξ = 

1 

bulk bulk 

d 
Λ 

In the y direction, we have 
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τv ∂
∂ 

g
y

g y+ = −τv df0 .y dy  
Since no heat is generated in the volume, we finally obtain q y ( ) = const . The 

( ) = 
T (η ) −T2normalized temperature θ η  obeys

T T2−1 
ξ 

θ η) = E2 (η) + ∫θ (η ')E1(|η η  ' |)dη ' ,2 ( 	 − 
0 

λ ξ = d / ,  ( )where η = y / ,  λ λ  / d = Knudsen number, θ η may also represent normalized 
4 4u y  2 2blackbody emissive power 	 ( ) −u 

= 
T ( y) −T 

. This is the linear, nonhomogeneous, 
u u2 T1

4 −T2
4−1 

Fredholm integral equation of the second kind. The function E1(|η-η’|) is called the 
kernel. The Fredholm integral equation does not have an analytical solution, although 
approximate solution methods have been developed.   

To solve the equation numerically, first we discretize the equation with 
2d T  Ti+1 − 2Ti +T 

= i−1


dx2 2∆x2 . 


0 ξ

     Half trapezium at both ends 

The integration is calculated by dividing the area into many trapezia. We have 
ξ	 n−1−
∫θ (η ')E (|η η  ' |) dη  θ  0	

E η 
η θ ξ  

E1 (ξ η )
∆  + ∆η  θ η  i 1 − i− ' = ( )  1 ( )

∆  + ( )  η ∑ ( )E (|η η  |) ,1 2	 2 10 

which gives totally n+1 equations (n is the section number). Therefore, we get a set of 
linear equations for θ η  to solve. ( )i 

Another way to conduct the integration is to use the Gauss- Legendre method, which 
1 n 

( )  )generates sections in (0, ξ) with varying width. Then we can use f x dx  =∑ f (x  W  i i∫0 
i=1 

to find the approximating value, where Wi is the weight of different f (x ) .i 
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( ) = 
T ( ) −Tη 2The temperature θ η  within d is shown as following, which was discussed

T T2−1 

( ) = 
T T21in the last lecture. When ξ = d /λ → 0 , T y  + . 

2 

T1 

T2 

Te q 

T1

T2

Teq

1 

1 
ξ →∞  

0ξ → 

y/d 

θ 

More generally, θ should be the internal energy of the carriers. For photons, 

θ ( ) = u y  u  T  y  T 4( ) − 2 = 
4 ( ) − 2y


u u2 T T2
4 . 


− 1
4 −1 

The interpretation of the temperature discontinuity is worthy of special attentions. 
Sometimes, the jump is physical, while in other cases the jump is artificial. The 
discontinuity arises from the boundary conditions. We assume the boundaries are diffuse 
and carriers coming into the region are at temperatures T1 and T2 (emitted temperatures). 
These temperatures represent only those carriers entering the thin film. For photon 
transport, these are good representations of the carriers coming into the region because 
the internal conduction in both walls is much stronger and determines the solid 
temperatures that emit the photons. In this case, the temperature jump represents the 
difference of the solid temperature and the photon temperature inside the film. 

T1 σT1 
4 

σT2 
4 T2 

1 3 2 
T2 τ13 

T1 R13 

Linear 
approximation 
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For phonons, if the walls are assumed to be black, it also means that transmissivity equals 
one and there exists no thermal boundary resistance.  The phonon temperature inside 
region 1 should equal to that temperature in the film at the boundary.  The temperature 
jump is artificial, and arises from the fact T1 and T2 are only emitted phonon temperature 
entering the thin film, not the local equilibrium temperature as we use in the Fourier law 
or solved directly from the Boltzmann equation. However, if the interface reflectivity is 
not zero, there exists a temperature jump just as in the case of thermal boundary 
resistance that we discussed in chapter 5.  The value of this temperature jump is different 
from what is given from the boundary condition used.  This issue related to consistent use 
of a definition for temperature was also discussed for the case of thermal boundary 
resistance. Many comparisons between experimental data and theory are based on 
inconsistent definition on temperature and are thus wrong (theoretically).  In heat 
conduction experiments, one usually measure two points close to the interface and use 
linear approximation to get the temperatures on both sides of the interface. The 
temperature obtained is consistent with the Fourier law but not consistent with the 
boundary conditions we use here in the solution of the Boltzmann equation.  Iterative 
procedures are needed if one want to modify the boundary condition to be consistent with 
the temperatures defined in the Boltzmann equation and the Fourier law.  Similar 
phenomena also happen in when dealing with electron transport across an interface. 
Most people use drift-diffusion equations up to the interface and use Richardson formula 
(which is based on the emitted electron properties including their chemical potential and 
temperature). There are cases, however, one measure the emitted electron and phonon 
temperature or chemical potential, as in the case of photon radiation discussed above. 
One example is in the experiment determining the quantized conductance of a nanowire. 
The electrodes are large and the measured voltage drop should represent the differences 
of electrons entering the channel.  

Je 

Chemical potential Large electrodes to assure 

2 
Superlattice 

uniform temperatures 

1 

2 

1 

I found the importance of a consistent usage of the temperature definition when dealing 
with heat conduction in superlattices. For the above superlattice case, a consistent 
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temperature definition must be used such that results from Boltzmann equation and from 
simple ray tracing in the limit of no scattering agrees with each other. 

y 

d 
x 

θ v 

Flow 

vx 

vy 

ϕ 

v 

vx 

vy 

θ 

vz 

un2 n1 

For gas flow through two plates (driven by pressure difference), the velocity has a drop 
on the surface, which is called slip boundary condition. The mass flow rate per unit depth 
is drawn in the following figure. The mass flow rate demonstrates the existence of the 
Knudsen minimum around Kn=1 and is in reasonably good agreement with experimental 
results of Dong (1956). 

1/Kn=d/Λ 

( )2 

2 
/ 

mj 
d − 

j* 
RT  

dP  dx  

Now let us consider the interface temperature drop with learned equations. Here we use G 
diffusion approximation inside ( v ⋅∇G r g is dropped in Boltzmann equation), and assume 
diffusion/transmission boundary conditions. The Boltzmann equation becomes JG

⎛ G F ⎞
f − f0 = −τ ⎜v ⋅∇  G 

r f +  ⋅∇  v 
G f0 ⎟0 m ⎠⎝ 

1 2 

fo f1 

In the above left figure, at the interface we have 
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q = ∑ τ ωvx1 f1 + ∑ τ 21 =ωvx2 f2 .= 12 
vx1 >0,vy1 ,v vx 2 >0, vy 2 ,vz1 z 2 

Note in the right figure, only rightward arrows indicate transport to the second region 
(V > 0 ). Define τ ' , τ '  as the average transmissivity in each region. We have x 12 21 

q = ∑ τ ωvx1 f01 + ∑ τ =ωvx2 f02 +τ 21 ' q 
+τ12 ' 

q ,= 12 21 
vx1 >0,vy1 ,v vx 2 >0, vy 2 ,v 2 2 

z1 z 2 

[1 − 
1
2 
(τ 21 '+τ12 ')]q = ∑ τ =ωvx1 ⎡ f (T ) − f02 (T )⎤ .12 ⎣ 01 1 2 ⎦ 

vx1 >0,vy1 ,vz1 

If τ 21 ' =τ ' = 1 , no temperature drop happens in the above relationship. In practice, 12 

τ 21 ',τ '  are difficult to determine.  12 

Interface 
T1 

T2 

T1 T2 
/q T k= ∆ 

k 
For the case drawing as below, we have 

eff 3 /  4  Λd 
k 

= 
bulk 1− 

1
2 
(τ12 '+τ 21 ')

+ 
1− 

1 (τ 23 '+τ 22 ') 
, 

2 + 3 /  4  Λd
''τ 21 '' τ 23 

1− 
1 (τ12 '+τ 21 ') 1− 

1 (τ 23 '+τ 22 ')
dwhere 3 /  4  Λ << 2 + 2 in thin films, while in bulk materials 

τ 21 ' τ 23 ' 
d3 /  4  Λ is dominant. We have similar relationship as previous cases. 

k 
kbulk 

T1 T2 

dξ =1 2 3 
Λ 

1 

Chapter 9 Liquids 

For gases, after two particles collide, they do not have any memory of previous history. 

However, this is not true for solids and liquids, in which their previous locations affect 
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the shape change. The Boltzmann equation is only applicable to diluted gases. To deal 
with liquids, other approaches must be used. We list some of the efforts in this aspect. 

⎧
Modified Boltzmann equation 

⎧Two-particle distribution function
Enskog equation (denser gases) ⎪ ⎨ 

⎪ ⎩ 
Approaches ⎨

⎪Einstein (Brownian motion) ⇒ Langerin equation ⇒ 
⎪Linear response theory ⇒ Molecular Dynamics ⎪ 
⎪⎩ 

Stoke’s flow 
3F D uπ µ= 

P(x) P(x+dx) 

In the left figure above, pressure difference exists in the fluid. For one particle, the 
osmotic pressure is determined by 

1P = Nk  T  = nk  T  .
V B B 

Also, we can use the solution of Stoke’s flow around a sphere. The force is F = 3πDµu . 
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2.57 Nano-to-Macro Transport Processes 
Fall 2004 

Lecture 24 

In the last lecture, we have talked about Einstein’s work on the Brownian motion. 

Stoke’s flow 
3F D uπ µ= 

P(x) P(x+dx) 

In the left figure above, pressure difference exists in the fluid. For one particle, the 
osmotic pressure is determined by 

1P = Nk  T  = nk  T  .
V B B 

Also, we can use the solution of Stoke’s flow around a sphere to estimate the drag force. 
The value is F = 3π Dµu . For area Ac, the forced balance over the control volume gives 

( )  (  P x  + dx  )) ,A (P x  − = FdN  c

dP
−A dx ⋅ − 3 D udN = 0 ,π µc dx
 

dP
 
− 3 D un  = 0 ,− π µ

dx
 
dn
 

B − 3 D  un  0−k T  π µ  = ,
dx 

in which the product un  indicates flux. We have 
k T dn dnJ p = −  B = −a ,

3π µD dx  dx 
  
k T 
where a= B is the diffusivity and can be obtained by the diffusion experiment of 

3π Dµ
some materials. In a time t, the diffusing radius is r 6at  . We can calculate the ∆ =  

k Tconstant a and substitute back into a= B , thus D can be obtained. The relationship
3π Dµ 

between thermal diffusivity and viscosity is an example of the more general fluctuation-
dissipation theory as viscosity is a measure of dissipative process and diffusivity is a 
measure of random walk (fluctuation) process.  The relationship between thermal 
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diffusivity and viscosity is also called Einstein relation.  In chapter 6, there is a similar 
Einstein relation between electron diffusivity and mobility.  But Einstein really worked 
on the Brownian motion. 

Note: The osmotic pressure can be observed by putting a semi-permeable membrane such 
that only the base molecules in the solution penetrate the membrane, building up a 
concentration gradient on the two sides of the membranes.   

In addition to the above approach, Einstein also established another method to determine 
the diameter of the solute particles.  He proposed to measure the viscosity of the solvent 
and of the solution, µ , and µb , respectively, and derived, again assuming dilute solute 
particles, the following relationship between the viscosities 
µ 

= +1 2.5  ϕ , 
µo 

where ϕ  is the volumetric concentration of the solute molecules. 

The Einstein relation can also be derived from the stochastic approach developed by 
Langevin to treat Brownian motion of particles much larger than that of the surrounding 
medium.  The key idea of the Langevin equation is to consider that the motion of a 
Brownian particle is subject to a friction force that is linearly proportional to its velocity, 
as in Stokes law, and a random driving force (or “noise”), R(t), imparted by the random 
motion of the molecules in the bath.  In the absence of an external force, the Langevin 
equation that governs the instantaneous velocity of the Brownian particle can be written 
as, 

m du
= −mηu R ( ) ,+ t

dt 
where η is the friction coefficient, and for Brownian particles in a fluid the Stokes law 
gives F = 3π Dµu , so that the random driving force R(t) has the following characteristics: 

R ( )t = 0   (average of random driving force is zero) 

R t •u t = 0  (random driving force is not correlated to the velocity) ( )  ( )  
π δ  tR t s+ • R s = 2 R .(  ) ( )  o ( )  

9.2 Force and potentials 

For liquids, potential interaction contributes significant to transport.  In previous lectures,
 JG 
we have discussed force F = −∇Φ  . For the interaction of two charged particles as the 

Q Qfollowing left figure, the Coulomb potential is Φ =  1 2  , in which ε = ε ε .vacuum r4πε r 
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You can build up all potentials from the Coulomb potential.  Now let us consider the 
interaction of a charge and a dipole as shown in the right figure above case. We have  

Qq ⎡ 1 1 ⎤φ = − − ,
4πεo 

⎢⎣ AB AC ⎥⎦ 

where 
1/ 22 2⎡ ⎤⎛ d ⎞ ⎛ d ⎞AB = ⎢⎜ r − cosθ ⎟ + ⎜ sinθ ⎟ ⎥ ,


⎢⎝ 2 ⎠ ⎝ 2 ⎠ ⎥
⎣ ⎦ 
1/ 22 2⎡ ⎤⎛ d ⎞ ⎛ d ⎞AC = ⎢⎜r + cosθ ⎟ + ⎜ sinθ ⎟ ⎥ . 


⎢⎝ 2 ⎠ ⎝ 2 ⎠ ⎥
⎣ ⎦ 
Under the approximation r>>d, we obtain 

qβ cosθφ(r,θ ) = − , 
4πεor 2 

where β=Qd is the dipole moment.   

−2 −1Note: (1) The superimposed two fields yield Φ ~ r  instead of Φ ~ r . (2) If we have 
two dipoles, the potential becomes Φ = −  Cr−6 . 

The van der Waals potential between one atom and a surface 

xO 

D 

r 

Based on the elementary potential interactions discussed in the previous section, the force 
interaction between particles and surfaces can be obtained by summing up the 
interactions between the atoms or molecules involved, as demonstrated in the above 
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Afigure. For two opposite surfaces, the Van der Waals force is − . The Hamaker 
12π D2 

constant, after Hamaker (1937) 
A = π 2Cn1n2 , 
where n1 and n2 are the number density of molecules of the two interacting media.   

D 

A
Φ = −  

12π D2 

JG
Note: In F = −∇Φ  

GJ 
F, a positive A leads to positive (attractive force); otherwise it is 

repulsive force. 

9.2.3 Electric double layer potential 

Bounded 

-

-
-

-

-

-

+ + 

+ 

++ 
+ 

O 

Liquid 

Counterions 

-

-

+ 
+ 

Ions 

x 

Stern Electric 

Layer Double Layer
 

(Solid surface should not be separated from the negative ions.) 
Surfaces immersed in liquids are usually charged due to the ionization or dissociation of 
surface groups or due to the adsorption of ions from the solution onto a previously 
uncharged surface.  The charges accumulated at the surface are balanced by an equal but 
oppositely charged region of counterions. Some of these counterions are also bounded to 
the surface, forming a so-called Stern or Helmholtz layer, which is usually very thin (a 
few Angstroms).  The remaining counterions distribute near the surfaces but are free to 
move, forming a diffuse electric double layer. This electric double layer is of 
fundamental importance for a wide range of technologies such as batteries, fuel cells, 
colloids, and in biochemistry and biotechnology.     
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Note: You may compare this case to a p-n junction with the built-in potential. 

We first determine the magnitude of the potential developed on the solid-liquid interface. 

This potential can be easily measured using the solid as an electrode.  The ion density on 

the solid-surface obeys the Botlzmann distribution, 


−Zeψ s / κ BTc = c e ,s zp 

where Z is the number of charges per ions and e is the unit charge (–e for an electron), ψs 
is the electrostatic potential of the solid surface, and czp is the ion density at zero surface 
electrostatic potential. The above equation is also called the Nerst equation. 

JG
The Maxwell equation determines the displacement D asJG JG JG 
∇ ⋅ D = ρnet , D = ε E = ε (−∇Ψ  ) . 
Thus we obtain the Poisson-Boltzmann equation 

d 2Ψ ⎛ Z eψ ⎞
−ε ε  = ρ = Z en  exp i .0 r 2 net  ∑ i  oi  ⎜ − ⎟dx i κ T⎝ B ⎠ 
Finally we obtain the Debye length, 

2 21 Z e ni oi= ∑ .
δ ε ε κ Ti o r B 

Note: ε r ↑ ↑,δ . 

Now we consider the force balance inside the liquid.  Because the liquid is stationary, the 
electrostatic force on liquid must balance the pressure force. The pressure inside the 
electric double layer is higher than that inside the bulk liquid at the equilibrium state. 
Furthermore, the electric double layer creates an attraction force between the ions on the 
solid surface and the counterions in the liquid. This attraction electrostatic force is 
balanced by the positive pressure in the liquid. When two solid surfaces are brought close 
to each other, a repulsive force develops between the two surfaces because the 
electrostatic force no longer balances the positive pressure inside the liquid.   

5 10 
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(a) (b) 

Now consider particles in a solution.  Two main potentials interactions exist.  One is the 
van der Waals (usually attractive) and the other is double layer interaction (repulsive).  In 
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the above figure (a), a superposition of the double layer potential (repulsive electro 
potential) and van der Waals potential (attractive) is shown. Under varying salt 
concentration, different combinations can be obtained (figure (b)).  A colloid forms when 
there exists a minimum in potential so that particles are separated at a distance. 

The repulse forces between surfaces also created another interesting phenomenon, the 
disjoining pressure. The following figure shows an example where the disjoining 
pressure plays an important role.  At the base of liquid surface intersection the wall, the 
liquid layer climb up the wall due to surface tension.  The vapor and the solid wall are 
two parallel surfaces.  The medium in between is liquid.  When the interaction force 
between wall and vapor is repulsive (due to a negative Hammaker constant or electric 
double layer), a positive pressure in the liquid layer develops, superimposed on normal 
compressive pressure.  The thinner is the film, the more positive is the pressure.  Which 
means that a lifting force (due to larger compression pressure) at the base will push liquid 
up the wall, till it is balanced by the gravitational force.   

d 

Liquid 

Vapor 

Wall 
H 

Due to 
Surface Tension 

Due to 
Disjoining 
Pressure 

The appreciation of importance of potential and force interactions also allows one to do 
some quick orders of magnitude analysis.  Can liquid slip on a wall. My conclusion, 
based on a simple orders of magnitude analysis, as given in an example in the book, says 
not in practical cases. You can analyze this problem by considering how much bonding 
force an atom experiences from the wall, and compare that to the shear stress generated in 
practical situations. 

U: Potential Energy 

a+b 

x 
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Electric double layer is the basis of many microfluidc technologies.  Because the solid 
and the liquids are charged, an external field can create their motion.  There are two cases, 
one is the particle in a liquid moves (called electrophoretic motion).  This is the basis in 
DNA separation. In the following left figure, charged DNA molecules can be separated 
by the electric field. In the second case, the solid walls are stationary.  The ions will move 
under an external electric field (called electrokinetic flow).  The moving ions will also 
cause the fluid to move, and form a plug flow (flat profile). This is used for pumping 
purpose. 

Surface tension 
The idea of surface tension can be understand in terms of the energy stored in the surface. 
When we stretch the rod till it breaks, the work input is stored in the two new surfaces, 

i.e., 1  11  
1 
2 

Wγ = . 

V V 

Now consider the separation of two immiscible liquids in contact into two stand-alone 

parts at the interface. After separation, the interfacial energy on each surface is γ1 and γ2. 

The energy difference between the surface energy after the separation and the interfacial 

tension γ12 before the separation is called the work of adhesion, 

W = γ + γ − γ .
12 1 2 12 
The work of adhesion can be approximately estimated from the work of cohesion, 
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W12 = W11dW22d = 2 γ1dγ 2d . 
Thus 
γ = γ + γ − 212 1 2 dd 21 γγ . 

Surface tension is very important for microsystems.  There are two basic equations for 
analyzing surface tension.  One is the Laplace equation 

2γ p"− p'= , 
r 

if the two radii of curvature in two orthogonal directions are both r. The equation says 
there is a pressure difference between inside and outside a particle due to surface tension. 

The other is for the interaction of three surfaces.  For the following right case, the Young 
equation gives 
γ = γ cosθ + γ .13 23 12 
The forces are shown in the figure. 

γ 23 

12 

Size can affect the phase change processes.  One can easily appreciate this from the 
Laplace equation.  Since pressures inside and outside a particle (droplet, bubble, solid 
particle) are different, and they are further related to other thermodynamic properties, it is 
reasonable to anticipate that certain thermodynamic properties will be influenced by the 
size (saturation temperature, pressure, enthalpy, surface tension).  Due to the surface 
tension, an isolated nanoparticle usually has lower melting points compared with bulk 
materials.  The equilibrium vapor pressure increases as the liquid droplet radius decreases. 
For a given vapor pressure, smaller droplets tend to evaporate. 

P” 

P’ 
13γ 

γ1 

2 
3 
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