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Engine Turbo/Super Charging




Super and Turbo-charging


Why super/ turbo-charging? 
•	 Fuel burned per cycle in an IC engine is air limited 

– (F/A)stoich = 1/14.6 
ηf,ηv– fuel conversion and volumetric   

efficienciesηfm f QHV mf – fuel mass per cycle Torq = QHV– fuel heating value 
2πnR nR – 1 for 2-stroke, 2 for 4-stroke engine 

N – revolution per second 

Power = Torq ⋅ 2πN VD – engine displacement 
ρa,0 – air density 

Fmf = ( A)ηVρa,0VD 

Super/turbo-charging: increase air density 



Super- and Turbo- Charging


Purpose: To increase the charge density 
• Supercharge: compressor powered by engine output 

– No turbo-lag 
– Does not impact exhaust treatment 
– Fuel consumption penalty 

• Turbo-charge: compressor powered by exhaust turbine

– Uses ‘wasted’ exhaust energy 
– Turbo- lag problem 
– Affects exhaust treatment 

• Intercooler 
– Increase charge density (hence output power) by cooling the 

charge

– Lowers NOx emissions




Exhaust-gas turbocharger for trucks 
1.Compressor housing, 2. Compressor 
impeller, 3. Turbine housing, 4. Rotor, 5. 
Bearing housing, 6. inflowing exhaust gas, 7. 

Charge-air pressure regulation with Out-flowing exhaust gas, 8. Atmospheric fresh 
wastegate on exhaust gas end. 1.Engine, air, 9. Pre-compressed fresh air, 10. Oil inlet, 
2. Exhaust-gas turbochager, 3. Wastegate 11. Oil return 

Images removed due to copyright restrictions. Please see illustrations of "Charge-air Pressure Regulation with Wastegate on Exhaust 

Gas End", and "Exhaust-gas Turbocharger for Trucks." In the Bosch Automotive Handbook. London, England: John Wiley & Sons, 2004. 

From Bosch Automotive Handbook 



Compressor: basic thermodynamics


Compressor efficiency ηc 
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Turbine: basic thermodynamics

Turbine efficiency ηt4 
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Properties of Turbochargers


•	 Power transfer between fluid and shaft ∝ RPM3


–	Typically operate at ~ 60K to 120K RPM 
•	 RPM limited by centrifugal stress: usually tip 

velocity is approximately sonic 
•	 Flow devices, sensitive to boundary layer (BL) 

behavior 
–	Compressor: BL under unfavorable gradient 
–	Turbine: BL under favorable gradient 



Typical super/turbo-charged engine parameters


• Peak compressor pressure ratio ≈ 3.5


• BMEP up to 22 bar 
• Limits: 

– compressor aerodynamics 
– cylinder peak pressure 
– NOx emissions 



 

Compressor/Turbine Characteristics


•	 Delivered pressure P2 

• P2 = f(m� ,RT1,P1,N,D,μ, γ, geometric ratios) 
•	 Dimensional analysis: 

–	 7 dimensional variables → (7-3) = 4 dimensionless parameters 
(plus γ and geometric ratios) 
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Compressor Map 

T1= inlet temperature (K); P1= inlet pressure (bar); N = rev. per min.;  m� = mass flow rate (kg/s) 
(From “Principles and Performance in Diesel Engineering,” Ed. by Haddad and Watson) 
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Chichester, England: Ellis Horwood, 1984.



Compressor stall and surge


• Stall 
– Happens when incident flow angle is too large 

(large Vθ/Vx) 
– Stall causes flow blockage 

• Surge  
– Flow inertia/resistance, and compression system 

internal volume comprise a LRC resonance system 
– Oscillatory flow behave when flow blockage occurs 

because of compressor stall

¾ reverse flow and violent flow rate surges




Turbine Map 

T03=Turbine inlet temperature(K); P03 = Turbine inlet pressure(bar); P4= Turbine outlet 
pressure(bar); N = rev. per min.; m = mass flow rate (kg/s) 

(From “Principles and Performance in Diesel Engineering,” Ed. by Haddad and
Watson) 
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Compressor Turbine Matching Exercise


• For simplicity, take away 
intercooler and wastegate 

• Given engine brake power 
output ( ) and RPM, 
compressor map, turbine map, 
and engine map 

WE 
� 

1 4 

• Find operating point, i.e. air 
flow ( ), fuel flow rate (  ) 
turbo-shaft revolution per 
second (N), compressor and 
turbine pressure ratios (πc and 
πt) etc. 
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Compressor/ 
turbine/engine matching 

solution 
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Procedure : 
1. Guess πc; can get engine inlet conditions : 

⎡ γ−1 ⎤ 

P2 = πcP1 T2 = 
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2. Then engine volumetric efficiency calibration 
will give the air flow m� a that can be 'swallowed' 

3. From m� a and πc , the compressor speed N can be 
obtained from the compressor map 

4. The fuel flow rate m� f may be obtained from the 
engine map : 

W� E = m� f LHV ηf (RPM,W� E,A/F) 
5.Engine exhaust temperature T3 may be obtained from 

energy balance (with known engine mech. eff. ηM) 

(m� a + m� f )cpT3 = m� acpT2 + m� fLHV − W� E − Q� LηM 
6. Guess πt , then get turbine speed Nt from turbine map 
7.Determine turbine power from turbine efficiency on map 
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8.Iterate on the values of πc and πt until W� t = W� c and Nt = Nc 

Figure by MIT OpenCourseWare. Adapted from Haddad, Sam David, and Watson, N. Principles and Performance in Diesel Engineering. 
Chichester, England: Ellis Horwood, 1984.
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Compressor/ Engine/ Turbine Matching


Compressor characteristics, with airflow 
requirements of a four-stroke truck engine 
superimposed. 
(From “Principles and Performance in Diesel 
Engineering,” Ed. by Haddad and Watson) 

•	 Mass flows through compressor, engine, 
turbine and wastegate have to be 
consistent 

•	 Turbine inlet temperature consistent with 
fuel flow and engine power output 

•	 Turbine supplies compressor work 
•	 Turbine and compressor at same speed 
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Advanced turbocharger development


Electric assisted 

turbo-charging


• Concept

–	 Put motor/ generator on 


turbo-charger

–	 reduce wastegate function 

•	 Benefit 
–	 increase air flow at low 


engine speed Engine

–	 auxiliary electrical output 


at part load
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Advanced turbocharger development


Electrical turbo-charger 
•	 Concept 

–	 turbine drives generator; 
compressor driven by motor 

•	 Benefit 
–	 decoupling of turbine and 

compressor map, hence much more 
freedom in performance optimization 

–	 Auxiliary power output 
–	 do not need wastegate; no turbo-lag 
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Engine 

C TMotor 

Battery 



Advanced turbocharger development


Challenges 
•	 Interaction of turbo-charging system with 

exhaust treatment and emissions 
– Especially severe in light-duty diesel market 

because of low exhaust temperature 
• Cost  


