Massachusetts Institute of Technology
 DEPARTMENT OF OCEAN ENGINEERING

2.611 SHIP POWER and PROPULSION

Problem Set \#2, Waterjet Problems, Due: October 5, 2006

1. In the following equation for Total Propulsive Efficiency in a waterjet, what does K_in and K_out physically represent. What is the designer using to derive values for K_in and K_out?

$$
\eta_{D}=\left[\frac{(1-t)}{(1-w)}\right] \cdot \eta_{p} \cdot\left[\frac{2 \cdot \mu(1-\mu)}{1+K_{\text {out }}-\mu^{2} \cdot\left(1-K_{\text {in }}\right)}\right]
$$

As a designer, how would you optimize overall efficiency in a waterjet? Hint: The above equation makes some assumptions that may not always be true and substitutes for $\mathrm{Vj} / \mathrm{Va}$.

Bonus: What is the optimum value for $\mathrm{Vj} / \mathrm{Va}$?
2. Two waterjet propulsion systems are proposed for a surface effect ship having a net thrust of $225,000 \mathrm{lbf}$ at 70 knots. Determine the total propulsive efficiency, pump pressure rise, the mass flow rate, and the total horsepower delivered to the pumps, for the two designs with the following characteristics:

$\mathrm{V}_{\mathrm{J}} / \mathrm{V}_{\mathrm{A}}$	$\frac{\text { Ram }}{2.0}$	$\frac{\text { Flush }}{2.0}$
h	12 ft	12 ft
C_{D}	0.4	0.15
$\mathrm{~K}_{\text {in }}$	0.8	0.2
$\mathrm{~K}_{\text {out }}$	0.7	0.2
$\eta_{\text {pump }}$	0.9	0.9

** For this problem you can assume w and t are equal, or use reasonable values for each.

