Using K_{T} and K_{Q} for design

these notes are landscape as plots are usually shown in that mode
we have seen in general the development of the Wageningen B series. The performance curves are available either in chart form or can be generated from polynomials:
\square regression coeff. Re $=2^{\star} 10^{\wedge} 6$
1-polynomial representation

use in design

A typical design problem calls for designing a propeller that will provide the required thrust at a given speed of advance. These parameters result from applying thrust deduction and wake fraction to resistance and ship velocity respectively. Design will imply selecting a P/D from a B-series plot that will maximize open water efficiency.

For now we will arbitrarily pick a number of blades and expanded area ratio. Later we will address the criteria in their selection. Reviewing the non-dimensional forms of the parameters associated with thrust and speed:
$K_{T}=\frac{T}{\rho \cdot n^{2} \cdot D^{4}} \quad J=\frac{V_{A}}{n \cdot D}$
we have independent variables n and D . Normally one of these is determined by other criteria, e.g. maximum diameter by hull form, or n by the propulsion train design, so we will look at two cases, one in which D is fixed - determine n, and the other where n is fixed determine D

Case 1 given: $V_{A}, T, D \quad$ find n and P / D for maximum efficiency
only thing unknown is n, eliminate ... from ratio of K_{T} and J

$$
\frac{\mathrm{K}_{\mathrm{t}}}{\mathrm{~J}^{2}}=\frac{\mathrm{T}}{\rho \cdot \mathrm{n}^{2} \cdot \mathrm{D}^{4}} \cdot \frac{\mathrm{n}^{2} \cdot \mathrm{D}^{2}}{\mathrm{~V}_{\mathrm{A}}^{2}}=\frac{\mathrm{T}}{\rho \cdot \mathrm{D}^{2} \cdot \mathrm{~V}_{\mathrm{A}}^{2}} \quad \begin{aligned}
& \text { this says that propeller (full scale and model) must match this ratio which is a constant determined by } \mathrm{T}, \\
& \mathrm{~V}_{\mathrm{A}}, \mathrm{D} \text { and } \rho
\end{aligned}
$$

$$
\text { Kt_over_J_sq := } \frac{\mathrm{T}}{\rho \cdot \mathrm{D}^{2} \cdot \mathrm{~V}_{\mathrm{A}}^{2}}
$$

we can plot a curve of $\mathrm{K}_{\mathrm{T}} \mathrm{vs} \mathrm{J}^{2}$ and determine the points (values of J) for which K_{T} vs J for a given P/D match.
the design point for a particular propeller (B.n.nn) i.e. n is determined from the value of J that satisfies: $\quad \operatorname{Kt}(J)=\operatorname{constant\cdot J^{2}}$

for example, let

$$
\text { Kt_design(J) := Kt_over_J_sq. } \mathrm{J}^{2}
$$

what n i.e. J will satisfy the relationship for a B 5.75 propeller with P/D -1.0

$$
\text { select using B_series } \quad \mathrm{z}:=5 \quad \text { EAR }:=0.75 \quad \text { P_over_D }:=1.0
$$

determine intersection

intersection occurs at
$\mathrm{JJ}=0.64$
so ..
$\mathrm{n}=\frac{\mathrm{V}_{\mathrm{A}}}{\mathrm{JJ} \cdot \mathrm{D}}$
where V_{A} and D are known as described above
selection of the optimum n for this B z.EAR propeller is a matter of comparing similar curves for a range of P/D and choosing the maximum open water efficiency η_{0}

$$
\text { say } \quad \text { P over } \mathrm{D}:=\left(\begin{array}{l}
1.0 \\
0.8 \\
0.6
\end{array}\right)
$$

B series

$$
z=5
$$

$\mathrm{EAR}=0.75$

busy plot of $\mathrm{Kt}, \mathrm{Kq}, \eta_{\mathrm{o}}$ and $\mathrm{Kt}=$ constant * J^2. see breakdown below. P/D not labeled but $\sim \mathrm{J}$ at $\mathrm{Kt}=0$

1-intersection solution
plot with only Kt but vertical lines at J for $\mathrm{Kt} / \mathrm{J}^{\wedge} 2=\mathrm{Kt}$ to show points which satisfy the design requirements

note the η_{0} at each J intersection and select the maximum (P/D curves not well labeled, P/D $\sim=J$ at $K_{T}=0$. left to right lowest to highest

Plot for P/D $=\quad$ P_over_D ${ }^{T}=\left(\begin{array}{lllll}1.4 & 1.2 & 1 & 0.8 & 0.6\end{array}\right) \quad$ calculated using regression relationships
this case appears to have maximum at \quad J_ans $=0.64 \quad$ P_over_D_ans $=1 \quad \eta\left(J _a n s, E A R, z, P _o v e r _D _a n s\right)=0.61$
so ... $n=\frac{V_{A}}{J _ \text {ans } \cdot D} \quad$ where V_{A} and D are known as described above
case 2 given: $\quad \mathrm{V}_{\mathrm{A}}, \mathrm{T}, \mathrm{n} \quad$ find P/D and D for maximum efficiency
only thing unknown is D , eliminate \ldots from ratio of K_{T} and J
$\frac{K_{t}}{J^{4}}=\frac{T}{\rho \cdot n^{2} \cdot D^{4}} \cdot \frac{n^{4} \cdot D^{4}}{V_{A}{ }^{4}}=\frac{T}{\rho} \cdot \frac{n^{2}}{V_{A}{ }^{4}}$
this says that propeller (full scale and model) must match this ratio which is a constant determined by T , V_{A}, n and ρ
 match.
for example, let Kt_over_J_4 := 0.544

$$
\text { Kt design }(J):=\text { Kt_over_J_4 } \cdot \mathrm{J}^{4} \quad \text { select using B_series } \quad \text { z }:=5 \quad \text { EAR }:=0.75
$$

the design point for a particular propeller (B.n.nn) i.e. n is determined from the value of J that satisfies:

$$
\operatorname{Kt}(\mathrm{J})=\operatorname{constant} \cdot \mathrm{J}^{4}
$$

since the process is identical to case 1, only the final result is shown

1) in intersection solution
note the η_{0} at each J intersection and select the maximum (P/D curves not well labeled, P/D $\sim=J$ at $K_{T}=0$. left to right lowest to highest)

Plot for $P / D=$ P_over_D $^{T}=\left(\begin{array}{lllll}1.4 & 1.2 & 1 & 0.8 & 0.6\end{array}\right)$
calculated using regression relationships
this case appears to have maximum at
J _ans $=0.74$
P_over_D_ans = 1
$\eta\left(J _\right.$ans , EAR , z, P_over_D_ans $)=0.67$

$$
\text { and } \ldots \quad \mathrm{D}=\frac{\mathrm{V}_{\mathrm{A}}}{\mathrm{~J} _ \text {ans } \cdot \mathrm{n}}
$$

where V_{A} and n are known as described above

