## Waterjet

first draft 9/23/04 from Prof. Carmichael notes. 9/17/06: modified to reflect $w\left(V=>V_{A}\right)$ and separate inlet and outlet pressure loss (in addition to drag) to reflect paper
$\mathrm{V}_{\mathrm{A}} \quad$ velocity inlet
w wake fraction
Vs ship velocity
Vj nozzle (outlet) velocity

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{A}}:=\mathrm{V}_{\mathrm{S}} \cdot(1-\mathrm{w}) \\
& \mathrm{T}=\mathrm{m}_{\text {_dot }} \cdot\left(\mathrm{V}_{\mathrm{J}}-\mathrm{V}_{\mathrm{A}}\right) \\
& \text { m_dot }=\text { mass_flow_rate }
\end{aligned}
$$


at inlet centerline $\ldots \quad \mathrm{p}_{\text {local }}=\mathrm{p}_{\text {athos }}+\rho \cdot \mathrm{g} \cdot \mathrm{d}$
at this point ... total pressure (pitot tube)

$$
\mathrm{p}_{\mathrm{oin}}=\mathrm{p}_{\mathrm{local}}+\frac{1}{2} \cdot \rho \cdot \mathrm{~V}_{\mathrm{A}}^{2}=\mathrm{p}_{\mathrm{atmos}}+\rho \cdot \mathrm{g} \cdot \mathrm{~d}+\frac{1}{2} \cdot \rho \cdot \mathrm{~V}_{\mathrm{A}}^{2}
$$

pressure at inlet to pump ...
total pressure (pitot tube) ...

$$
\mathrm{p}_{\mathrm{op}}=\mathrm{p}_{\mathrm{oin}}-\rho \cdot \mathrm{g} \cdot(\mathrm{~d}+\mathrm{h})=\mathrm{p}_{\text {atmos }}-\rho \cdot \mathrm{g} \cdot \mathrm{~h}+\frac{1}{2} \cdot \rho \cdot \mathrm{~V}_{\mathrm{A}}^{2}
$$

pressure at pump exit... total pressure (pitot tube) ..

$$
\mathrm{p}_{\mathrm{oj}}=\mathrm{p}_{\text {atmos }}+\frac{1}{2} \cdot \rho \cdot \mathrm{v}_{\mathrm{j}}^{2}
$$

total pressure increase across pump ...

$$
p_{o j}-p_{o p}=p_{\text {atmos }}+\frac{1}{2} \cdot \rho \cdot v_{j}^{2}-p_{\text {atmos }}+\rho \cdot g \cdot h-\frac{1}{2} \cdot \rho \cdot v_{A}^{2}=\frac{1}{2} \cdot \rho \cdot\left(v_{j}^{2}-v_{A}^{2}\right)+\rho \cdot g \cdot h
$$

energy rise across the pump per unit mass flow is ..

$$
\frac{\mathrm{p}_{\mathrm{oj}}-\mathrm{p}_{\mathrm{op}}}{\rho}=\frac{1}{2} \cdot\left(\mathrm{~V}_{\mathrm{j}}^{2}-\mathrm{V}_{\mathrm{A}}^{2}\right)+\mathrm{gh}
$$

power absorbed by ideal pump is therefore ...

$$
P_{p i}=m_{-} \text {dot } \cdot \frac{\mathrm{P}_{\mathrm{oj}}-\mathrm{P}_{\mathrm{Op}}}{\rho}=\mathrm{m}_{-} \text {dot } \cdot\left[\frac{1}{2} \cdot\left(\mathrm{~V}_{\mathrm{j}}^{2}-\mathrm{V}_{\mathrm{A}}^{2}\right)+\mathrm{gh}\right]
$$

ideal efficiency is then ... and quasi propulsive coefficient is ..

$$
\begin{aligned}
& \eta_{i}=\frac{P_{T i}}{P_{p i}} \quad \eta_{D}=\frac{\text { effective_power }}{\text { power_delivered }}=\frac{P_{E}}{P_{p i}}=\frac{R \cdot V_{S}}{P_{P i}}=\frac{(1-t) \cdot T \cdot V_{S}}{P_{P i}}=\frac{1-t}{1-w} \cdot \frac{T \cdot V_{A}}{P_{P i}}=\frac{1-t}{1-w} \cdot \frac{P_{T i}}{P_{p i}}=\frac{1-t}{1-w} \cdot \eta_{i} \\
& \eta_{i}=\frac{P_{T i}}{P_{p i}}=\frac{T \cdot V_{A}}{P_{p i}}=\frac{m_{-d o t} \cdot V_{A} \cdot\left(V_{J}-V_{A}\right)}{m_{-d o t} \cdot\left[\frac{1}{2} \cdot\left(V_{j}^{2}-V_{A}^{2}\right)+g h\right]}=\frac{2 \cdot V_{A} \cdot\left(V_{J}-V_{A}\right)}{V_{j}^{2}-V_{A}^{2}+2 g h}=\frac{2 \cdot V_{A} \cdot\left(V_{J}-V_{A}\right)}{V_{j}^{2}-V_{A}^{2}+2 g h}=\frac{2 \cdot\left(\frac{V_{J}}{V_{A}}-1\right)}{\left(\frac{V_{j}}{V_{A}}\right)^{2}-1+2 \frac{g h}{V^{2}}}
\end{aligned}
$$

if $h=0$

$$
\eta_{\mathrm{i}}=\frac{2 \cdot\left(\frac{\mathrm{~V}_{\mathrm{J}}}{\mathrm{~V}_{\mathrm{A}}}-1\right)}{\left(\frac{\mathrm{V}_{\mathrm{j}}}{\mathrm{~V}_{\mathrm{A}}}\right)^{2}-1}=\frac{2}{\frac{\mathrm{~V}_{\mathrm{j}}}{\mathrm{~V}_{\mathrm{A}}}+1}
$$

same as propeller (we developed following in actuator disk
from actuator_disk.mcd using new variables to avoid duplication

$$
\begin{aligned}
& \Delta \mathrm{v}:=\mathrm{VV}_{\mathrm{j}}-\mathrm{VV}_{\mathrm{A}} \\
& \mathrm{VV}:=\mathrm{VV}_{\mathrm{A}}+\frac{\Delta \mathrm{v}}{2} \quad \quad \eta_{\mathrm{I}}:=\frac{\mathrm{T} \cdot \mathrm{VV}_{\mathrm{A}}}{\mathrm{~T} \cdot \mathrm{~V}} \operatorname{simplify} \rightarrow 2 \cdot \frac{\mathrm{VV}_{\mathrm{A}}}{\mathrm{VV}_{A}+\mathrm{VV}_{\mathrm{j}} \quad \eta_{\mathrm{I}}=\frac{2}{1+\frac{\mathrm{VV}_{\mathrm{j}}}{\mathrm{VV}_{\mathrm{A}}}} \quad \quad \mathrm{VV}_{\mathrm{j}}=\mathrm{VV}_{\mathrm{A}} ?}
\end{aligned}
$$ $\mathrm{VV}_{\mathrm{j}}=\mathrm{VV}_{\mathrm{A}}$ ?

$h$ cannot be negative (would be ducted prop, h limits efficiency

## Real waterjet with losses

net thrust of waterjet

$$
\mathrm{T}_{\text {net }}=\mathrm{T}-\text { Drag }_{\text {inlet }}
$$

$$
\mathrm{T}=\mathrm{m}_{-} \operatorname{dot} \cdot\left(\mathrm{V}_{\mathrm{j}}-\mathrm{V}_{\mathrm{A}}\right)
$$

conventional drag coefficient

$$
\mathrm{C}_{\mathrm{d}}=\frac{\text { Drag }}{\frac{1}{2} \cdot \rho \cdot \mathrm{v}^{2} \cdot \mathrm{~A}}
$$

drag coefficient of inlet

$$
\mathrm{C}_{\mathrm{D}}=\frac{\text { Drag }}{\frac{1}{2} \cdot \rho \cdot \mathrm{v}^{2} \cdot \mathrm{~A}}=\frac{\text { Drag }}{\frac{1}{2} \cdot \rho \cdot \mathrm{~V}_{\mathrm{A}} \cdot \mathrm{~A} \cdot \mathrm{~V}_{\mathrm{A}}}=\frac{\text { Drag }}{\frac{1}{2} \cdot \mathrm{~m}_{-} \text {dot } \cdot \mathrm{V}_{\mathrm{A}}}
$$

net thrust

$$
\mathrm{T}_{\mathrm{net}}=\mathrm{T}-\text { Drag }_{\text {inlet }}=\mathrm{m}_{-} \operatorname{dot} \cdot\left(\mathrm{V}_{\mathrm{j}}-\mathrm{V}_{\mathrm{A}}\right)-\mathrm{C}_{\mathrm{D}} \cdot \frac{1}{2} \cdot \mathrm{~m}_{-} \operatorname{dot} \cdot \mathrm{V}_{\mathrm{A}}=\mathrm{m}_{-} \operatorname{dot} \cdot \mathrm{V}_{\mathrm{A}} \cdot\left[\left(\frac{\mathrm{~V}_{\mathrm{j}}}{\mathrm{~V}_{\mathrm{A}}}-1\right)-\mathrm{C}_{\mathrm{D}} \cdot \frac{1}{2}\right]
$$

net thrust power

$$
\mathrm{P}_{\mathrm{T}_{-} \mathrm{net}}=\mathrm{T}_{\mathrm{net}} \cdot \mathrm{~V}_{\mathrm{A}}=\mathrm{m}_{-} \operatorname{dot} \cdot \mathrm{V}_{\mathrm{A}}{ }^{2} \cdot\left[\left(\frac{\mathrm{~V}_{\mathrm{j}}}{\mathrm{~V}_{\mathrm{A}}}-1\right)-\mathrm{C}_{\mathrm{D}} \cdot \frac{1}{2}\right]
$$

delta p across pump must be increased to account for losses ...
we'll assume separate inlet and outlet losses
assume internal losses are $\ldots \sim 1 / 2^{*} \rho^{*} v^{\wedge} 2 \quad \Delta p_{\text {loss }}=\Delta \mathrm{p}_{\text {in_loss }}+\Delta \mathrm{p}_{\text {out_loss }}$ and the pump pressure rise is ...

$$
\begin{gathered}
\text { non-dimensional pressure loss coefficient is .... } \quad \mathrm{K}_{\mathrm{in}}=\frac{\Delta \mathrm{p}_{\text {in_loss }}}{\frac{1}{2} \cdot \rho \cdot \mathrm{~V}_{\mathrm{A}}^{2}} \quad \mathrm{~K}_{\mathrm{out}}=\frac{\Delta \mathrm{p}_{\text {out_loss }}}{\frac{1}{2} \cdot \rho \cdot \mathrm{~V}_{\mathrm{j}}^{2}} \\
\text { and the real pump pressure rise is } \ldots \\
\mathrm{p}_{\mathrm{oj}}-\mathrm{p}_{\mathrm{op}}=\frac{1}{2} \cdot \rho \cdot\left(\mathrm{~V}_{\mathrm{j}}^{2}-\mathrm{V}_{\mathrm{A}}^{2}\right)+\rho \cdot \mathrm{g} \cdot \mathrm{~h}+\Delta \mathrm{p}_{\mathrm{loss}}=\frac{1}{2} \cdot \rho \cdot\left(\mathrm{~V}_{\mathrm{j}}^{2}-\mathrm{V}_{\mathrm{A}}^{2}\right)+\rho \cdot \mathrm{g} \cdot \mathrm{~h}+\mathrm{K}_{\mathrm{in}} \cdot \frac{1}{2} \cdot \rho \cdot \mathrm{~V}_{\mathrm{A}}^{2}+\mathrm{K}_{\mathrm{out}} \cdot \frac{1}{2} \cdot \rho \cdot \mathrm{~V}_{\mathrm{j}}^{2} \\
\mathrm{p}_{\mathrm{oj}}-\mathrm{p}_{\mathrm{op}}=\frac{1}{2} \cdot \rho \cdot \mathrm{~V}_{\mathrm{A}}^{2} \cdot\left[\left(\frac{\mathrm{~V}_{\mathrm{j}}}{\mathrm{~V}_{\mathrm{A}}}\right)^{2}-1+2 \cdot \frac{\mathrm{~g} \cdot \mathrm{~h}}{\mathrm{~V}_{\mathrm{A}}^{2}}+\mathrm{K}_{\mathrm{in}}+\mathrm{K}_{\mathrm{out}} \cdot\left(\frac{\mathrm{~V}_{\mathrm{j}}}{\mathrm{~V}_{\mathrm{A}}}\right)^{2}\right]
\end{gathered}
$$

ideal pump power is $\ldots \quad P_{p i}=m_{-}$dot $\cdot \frac{P_{o j}-p_{o p}}{\rho}=m_{-} \operatorname{dot} \cdot \frac{1}{2} \cdot \mathrm{~V}_{\mathrm{A}}{ }^{2} \cdot\left[\left(\frac{\mathrm{~V}_{\mathrm{j}}}{\mathrm{V}_{\mathrm{A}}}\right)^{2}-1+2 \cdot \frac{\mathrm{~g} \cdot \mathrm{~h}}{\mathrm{~V}^{2}}+\mathrm{K}_{\mathrm{in}}+\mathrm{K}_{\text {out }} \cdot\left(\frac{\mathrm{V}_{\mathrm{j}}}{\mathrm{V}_{\mathrm{A}}}\right)^{2}\right]$
define $\eta_{p}$ such that $\quad \eta_{p}=\frac{P_{p i}}{P_{p}} \quad P_{p}=$ actual_pump_power

$$
\text { and substitute } \mu \text { for } V_{A} / V_{j} \ldots \quad \eta_{\text {real }}=\frac{2 \cdot \eta_{\mathrm{p}} \cdot \mu \cdot\left[(1-\mu)-\mathrm{C}_{\mathrm{D}} \cdot \frac{1}{2} \cdot \mu\right]}{\mu^{2} \cdot\left(\mathrm{~K}_{\text {in }}-1\right)+1+\mathrm{K}_{\text {out }}+2 \cdot \frac{\mathrm{~g} \cdot \mathrm{~h}}{\mathrm{~V}_{\mathrm{j}}{ }^{2}}}=\frac{2 \cdot \eta_{\mathrm{p}} \cdot \mu \cdot\left[(1-\mu)-\mathrm{C}_{\mathrm{D}} \cdot \frac{1}{2} \cdot \mu\right]}{1+\mathrm{K}_{\text {out }}-\mu^{2} \cdot\left(1-\mathrm{K}_{\text {in }}\right)+2 \cdot \frac{\mathrm{~g} \cdot \mathrm{~h}}{\mathrm{~V}_{\mathrm{j}}{ }^{2}}}
$$

and the quasi propulsive coefficient is then ..

$$
\eta_{D}=\frac{1-t}{1-w} \cdot \eta_{p} \cdot \frac{2 \cdot \eta_{p} \cdot\left[\left(\frac{V_{j}}{v_{A}}-1\right)-C_{D} \cdot \frac{1}{2}\right]}{\left(\frac{V_{j}}{V_{A}}\right)^{2}-1+2 \cdot \frac{g \cdot h}{V_{A}^{2}}+K_{\text {in }}+K_{\text {out }} \cdot\left(\frac{V_{j}}{V_{A}}\right)^{2}}=\frac{1-t}{1-w} \cdot \eta_{p} \cdot \frac{2 \cdot \mu \cdot\left[(1-\mu)-C_{D} \cdot \frac{1}{2} \cdot \mu\right]}{1+K_{\text {out }}-\mu^{2} \cdot\left(1-K_{i n}\right)+2 \cdot \frac{g \cdot h}{V_{j}^{2}}}
$$

as from above ...
net thrust power $\quad \mathrm{P}_{\mathrm{T}_{-} \text {net }}=\mathrm{T}_{\text {net }} \cdot \mathrm{V}=\mathrm{m}_{-}$dot $\cdot \mathrm{V}_{\mathrm{A}}{ }^{2} \cdot\left[\left(\frac{\mathrm{~V}_{\mathrm{j}}}{\mathrm{V}_{\mathrm{A}}}-1\right)-\mathrm{C}_{\mathrm{D}} \cdot \frac{1}{2}\right]$

$$
\begin{aligned}
& P_{p}=\frac{P_{P i}}{\eta_{p}}=\frac{m_{-} \text {dot }}{\eta_{p}} \cdot \frac{P_{o j}-p_{o p}}{\rho}=\frac{1}{2} \cdot \frac{m_{-} \text {dot } \cdot V_{A}{ }^{2}}{\eta_{p}} \cdot\left[\left(\frac{v_{j}}{V_{A}}\right)^{2}-1+2 \cdot \frac{\mathrm{~g} \cdot \mathrm{~h}}{v^{2}}+K_{\text {in }}+K_{o u t} \cdot\left(\frac{V_{j}}{V_{A}}\right)^{2}\right] \\
& \eta_{\text {real }}=\frac{P_{T_{2} \text { net }}}{P_{p}}=\frac{m_{-} \text {dot } \cdot \mathrm{V}_{\mathrm{A}}{ }^{2} \cdot\left[\left(\frac{\mathrm{~V}_{\mathrm{j}}}{\mathrm{~V}_{\mathrm{A}}}-1\right)-\mathrm{C}_{\mathrm{D}} \cdot \frac{1}{2}\right]}{\frac{1}{2} \cdot \frac{\mathrm{~m}_{-} \text {dot } \cdot \mathrm{V}_{\mathrm{A}}}{2}} \eta_{\mathrm{p}} \quad\left[\left(\frac{\mathrm{~V}_{\mathrm{j}}}{\mathrm{~V}_{\mathrm{A}}}\right)^{2}-1+2 \cdot \frac{\mathrm{~g} \cdot \mathrm{~h}}{\mathrm{~V}_{\mathrm{A}}{ }^{2}}+\left[\mathrm{K}_{\text {in }}+\mathrm{K}_{\text {out }} \cdot\left(\frac{\mathrm{V}_{\mathrm{j}}}{\mathrm{~V}_{\mathrm{A}}}\right)^{2}\right]\right]
\end{aligned}
$$

first some comments to relate to previous lecture/notes version and Wärtsilä paper with $K_{\text {out }}=0$ (N.B. this just means lumping all the pressure losses into a factor of $1 / 2^{*} \rho^{*} V_{A}{ }^{\wedge} 2$ and accounting for a drag increase due to the inlet ...
$\eta_{D}=\frac{1-t}{1-w} \cdot \eta_{p} \cdot \frac{2 \cdot \eta_{p} \cdot\left[\left(\frac{V_{j}}{V_{A}}-1\right)-C_{D} \cdot \frac{1}{2}\right]}{\left(\frac{V_{j}}{V_{A}}\right)^{2}-1+2 \cdot \frac{g \cdot h}{V_{A}{ }^{2}}+K}$ this is the form previously
and $\ldots$ with $C_{D}=0$ and assuming $h=0$ (i.e. head loss is small compared to other terms $\ldots$
this is the form in the paper with

$$
\begin{aligned}
\eta_{\mathrm{D}}=\frac{1-\mathrm{t}}{1-\mathrm{w}} \cdot \eta_{\mathrm{p}} \cdot \frac{2 \cdot \mu \cdot(1-\mu)}{1+\mathrm{K}_{\mathrm{out}}-\mu^{2} \cdot\left(1-\mathrm{K}_{\mathrm{in}}\right)} & \mathrm{K}_{\mathrm{out}}=\phi=\text { nozzle_loss_coefficient }
\end{aligned} \mathrm{K}_{\mathrm{out}}=\frac{\Delta \mathrm{p}_{\text {out_loss }}}{\frac{1}{2} \cdot \rho \cdot \mathrm{~V}_{\mathrm{j}}^{2}}
$$

at this point, assuming $K, C_{D}$, and $\eta_{p}$ are constant, could differentiate wrt $V_{j} / V_{A}$ (or $\mu$ ) and determine $V_{j} / V_{A}$ for max propulsive coefficient, but minimum weight usually determines parameters.
$\square$ pump background (Wislicenus)

D- example

