Practical Rankine cycle

$$
\begin{array}{rl}
\text { define some units } & \mathrm{kJ}:=10^{3} \cdot \mathrm{~J} \\
\mathrm{kN}:=10^{3} \cdot \mathrm{~N} & \mathrm{kPa}:=10^{3} \cdot \mathrm{~Pa} \\
\mathrm{MPa}:=10^{6} \mathrm{~Pa} & \mathrm{bar}:=0.1 \mathrm{MPa}
\end{array}
$$

this file calculates irreversible Rankine cycle with following parameters: condenser 40 deg C
steam pressure 30 bars (3 MPa)
superheat 460 deg_C
file derived from Rankine class example.mcd
differences/assumptions:
1-2 adiabatic irreversible compression
2-3 heat transfer - small pressure loss - ignore
3-4 adiabatic irreversible expansion
4-1 heat transfer to saturated liquid - small subcooling - ignored
states are the same
1 - vacuum; saturated liquid

2 - sub cooled liquid at boiler pressure

3 - superheated vapor
4 - vapor + liquid @ saturation temperature and pressure
xx_{s} designates reversible (isentropic) process where different
refer to T -s and H -s diagrams at end of file
state 1: condenser outlet same as reversible
Table 1 or Table A.1.1 $\quad \mathrm{T}_{1}:=40 \quad \mathrm{p}_{1}:=7.384 \mathrm{kPa} \quad \mathrm{v}_{\mathrm{f}_{-} 1}:=0.0010078 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}} \quad \mathrm{v}_{1}:=\mathrm{v}_{\mathrm{f}-1}$

$$
\begin{array}{ll}
\mathrm{s}_{\mathrm{f}_{-} 1}:=0.5725 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \quad \mathrm{~s}_{\mathrm{fg}_{-} 1}:=7.6845 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \quad \mathrm{~h}_{\mathrm{f}_{-} 1}:=167.57 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \mathrm{~h}_{\mathrm{fg}_{-} 1}:=2406.7 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\
\mathrm{~s}_{1}:=\mathrm{s}_{\mathrm{f}_{-} 1} & \mathrm{~h}_{1}:=\mathrm{h}_{\mathrm{f}_{-} 1}
\end{array}
$$

\square properties p =3 Mpa

state 2: pump outlet - reversible

assume $v_{f}=v_{1}$ constant, isentropic, $d s=0=>T^{*} d s=0=>h 2=h 1+v 1^{*} d p$ from
relationships Tds $=d h+v^{*} d p$ integrated with constant v and Tds $=0$

$$
\mathrm{s}_{2 \mathrm{~s}}:=\mathrm{s}_{1}
$$

$$
\begin{array}{ll}
\mathrm{p}_{2}:=30 \mathrm{bar} & \mathrm{~h}_{2 \mathrm{~s}}:=\mathrm{h}_{1}+\mathrm{v}_{1} \cdot\left(\mathrm{p}_{2}-\mathrm{p}_{1}\right) \\
\mathrm{w}_{\mathrm{ps}}:=\mathrm{h}_{1}-\mathrm{h}_{2 \mathrm{~s}} & \mathrm{w}_{\mathrm{ps}}=-3.016 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
\end{array}
$$

calc of T in earlier version incorrect see VW\&S 5.18 with $\mathrm{C}=4.184 \mathrm{~kJ} /(\mathrm{kg} * \mathrm{~K})$ Table A. 7
using $\mathrm{C}_{\mathrm{p}} \quad \mathrm{Cp}:=4.184 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \quad$ actual units
and ... eqn $5.18 \quad h_{2}-h_{1}=C p \cdot\left(T_{2}-T_{1}\right)$

$$
\begin{aligned}
@ T & =40 \mathrm{C} \\
\mathrm{p} & =3 \mathrm{MPa}
\end{aligned}
$$

and ... eqn 5.18
$\mathrm{h}_{2}-\mathrm{h}_{1}=\mathrm{Cp} \cdot\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$

$$
\mathrm{p}_{2}=3 \mathrm{MPa}
$$

$$
\mathrm{h}_{22 \mathrm{~s}}:=170.21 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}
$$

$$
\mathrm{h}_{2 \mathrm{~s}}=170.586 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
$$

$$
\mathrm{T}_{22}:=40 \quad \mathrm{~T}_{2 \mathrm{~s}}:=\mathrm{T}_{22}+\frac{\mathrm{h}_{2 \mathrm{~s}}-\mathrm{h}_{22 \mathrm{~s}}}{\mathrm{Cp}} \quad \mathrm{~T}_{2 \mathrm{~s}}=40.09
$$

state 2: pump outlet - irreversible
pressure same
as above ...
pump efficiency $\ldots \quad \eta_{p}=\frac{\text { reversible_ } \Delta \mathrm{h}}{\text { actual_} \Delta \mathrm{h}}=\frac{\mathrm{h}_{1}-\mathrm{h}_{2 \mathrm{~s}}}{\mathrm{~h}_{1}-\mathrm{h}_{2}} \quad \mathrm{~h}_{2 \mathrm{~s}}=\mathrm{h}_{1}+\mathrm{v}_{1} \cdot\left(\mathrm{p}_{2}-\mathrm{p}_{1}\right) \quad \quad \eta_{\mathrm{p}}:=0.9$
$\mathrm{h}_{2}:=\mathrm{h}_{1}+\frac{\mathrm{v}_{1} \cdot\left(\mathrm{p}_{2}-\mathrm{p}_{1}\right)}{\eta_{\mathrm{p}}} \quad \mathrm{h}_{2}=170.921 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \mathrm{w}_{\mathrm{p}}:=\mathrm{h}_{1}-\mathrm{h}_{2} \quad \mathrm{w}_{\mathrm{p}}=-3.351 \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
$\mathrm{T}_{2}:=\mathrm{T}_{1}+\frac{\mathrm{h}_{2}-\mathrm{h}_{1}}{\mathrm{Cp}} \quad \mathrm{T}_{2}=40.801$
@ $\mathrm{T}=40 \mathrm{C} \quad$ and \ldots eqn $5.18 \quad \mathrm{~h}_{2}-\mathrm{h}_{1}=\mathrm{Cp} \cdot\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$
$p=3 \mathrm{MPa} \quad \mathrm{p}_{2}=3 \mathrm{MPa}$
$\mathrm{h}_{22}:=170.21 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \mathrm{~h}_{2}=170.921 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \mathrm{~T}_{22 \mathrm{~L} 2}:=40 \quad \mathrm{~T}_{2 \mu}:=\mathrm{T}_{22}+\frac{\mathrm{h}_{2}-\mathrm{h}_{22}}{\mathrm{Cp}} \quad \mathrm{T}_{2}=40.17$
find s from $p=p_{2}, h=h_{2}$: interpolate from tbl_2_3MPa row 2 (index 1)
\square interpolation details

$$
\text { data }=\left(\begin{array}{ccc}
\mathrm{T} & \mathrm{~s} & \mathrm{~h} \\
40 & 0.571 & 170.21 \\
80 & 1.073 & 337.26
\end{array}\right) \quad \text { input }=\mathrm{h}_{2} \quad \text { w/o units } \quad \text { input }=170.921
$$

$$
\begin{array}{lll}
\text { interpolate for } \mathrm{s}_{2} \text { and } \mathrm{T}_{2} & \mathrm{~s}_{2}=0.573 \frac{1}{\mathrm{~K}} \frac{\mathrm{~kJ}}{\mathrm{~kg}} & \mathrm{~T}_{-} \text {int }=40.17
\end{array} \begin{aligned}
& \text { N.B. different from } \mathrm{T}_{2} \text { ab } \\
& \text { granularity; investigating }
\end{aligned}
$$

summary ..

$$
\text { reversible } \ldots \quad \mathrm{h}_{2 \mathrm{~s}}=170.586 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \mathrm{~T}_{2 \mathrm{~s}}=40.09 \quad \mathrm{~s}_{2 \mathrm{~s}}=0.572 \frac{1}{\mathrm{~K}} \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \mathrm{w}_{\mathrm{ps}}=-3.016 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
$$

irreversible $\ldots \quad \mathrm{h}_{2}=170.921 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \mathrm{~T}_{2}=40.17 \quad \mathrm{~s}_{2}=0.573 \frac{1}{\mathrm{~K}} \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \mathrm{w}_{\mathrm{p}}=-3.351 \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
state 3: boiler outlet same as reversible

$$
\mathrm{p}_{3}:=\mathrm{p}_{2} \quad \mathrm{~T}_{3}:=460 \quad \mathrm{p}_{3}=3 \mathrm{MPa} \quad \mathrm{~h}_{3}:=3366.5 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \mathrm{~s}_{3}:=7.113 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}
$$

from interpolation Table A.1.3 P=3MPa page 622 interpolation_class_example.mcd
state 4: turbine outlet -reversible $\quad \begin{aligned} & \text { isentropic expansion to } 40 \text { deg } C \quad s_{4 s}:=s_{3} \\ & \text { determine } h_{4} \text { from } x\end{aligned}$

$$
\begin{array}{rlll}
\mathrm{s}_{4}=\mathrm{s}_{\mathrm{f}_{-} 1}+\mathrm{x} \cdot \mathrm{~s}_{\mathrm{fg}_{-} 1} \quad \Rightarrow \quad \mathrm{xs}:=\frac{\mathrm{s}_{4 \mathrm{~s}}-\mathrm{s}_{\mathrm{f}_{-} 1}}{\mathrm{~s}_{\mathrm{fg}} 1} & \mathrm{xs}=0.851 \\
\mathrm{~h}_{4 \mathrm{~s}}:=\mathrm{h}_{\mathrm{f}_{-} 1}+\mathrm{h}_{\mathrm{fg} __{-} 1} \cdot \mathrm{xs} & \mathrm{~h}_{4 \mathrm{~s}}=2216 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \mathrm{w}_{\text {ts }}:=\mathrm{h}_{3}-\mathrm{h}_{4 \mathrm{~s}} \quad & \mathrm{w}_{\text {ts }}=1151 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \mathrm{~T}_{4 \mathrm{~s}}:=40
\end{array}
$$

state 4: turbine outlet - irreversible
same temperature

$$
\eta_{\mathrm{t}}=\frac{\text { actual_enthalpy_change }}{\text { reversible_enthalpy_change }}=\frac{\mathrm{h}_{3}-\mathrm{h}_{4}}{\mathrm{~h}_{3}-\mathrm{h}_{4 \mathrm{~s}}}
$$

$$
\mathrm{h}_{4}=\mathrm{h}_{3}-\eta_{\mathrm{t}} \cdot\left(\mathrm{~h}_{3}-\mathrm{h}_{4 \mathrm{~s}}\right) \quad \eta_{\mathrm{t}}:=0.9
$$

$$
\mathrm{h}_{4}:=\mathrm{h}_{3}-\eta_{\mathrm{t}} \cdot\left(\mathrm{~h}_{3}-\mathrm{h}_{4 \mathrm{~s}}\right) \quad \mathrm{h}_{4}=2331.034 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
$$

work of turbine $\quad w_{t}:=w_{t s} \cdot \eta_{p} \quad w_{t}=1035.466 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad$ or $\ldots \quad w_{k t i}:=\mathrm{h}_{3}-\mathrm{h}_{4} \quad \mathrm{w}_{\mathrm{t}}=1035.466 \frac{\mathrm{~kJ}}{\mathrm{~kg}}$

$$
\begin{aligned}
& \text { now calculate } \mathrm{x} \text { should be }>\mathrm{xs} \\
& \text { see plot below }
\end{aligned} \quad \mathrm{h}_{4}=\mathrm{h}_{\mathrm{f}_{-} 1}+\mathrm{h}_{\mathrm{fg}_{-} 1} \cdot \mathrm{x} \quad \mathrm{x}:=\frac{\mathrm{h}_{4}-\mathrm{h}_{\mathrm{f}_{-} 1}}{\mathrm{~h}_{\mathrm{fg} _} 1} \quad \mathrm{x}=0.899
$$

$$
\mathrm{s}_{4}:=\mathrm{s}_{\mathrm{f}_{-} 1}+\mathrm{x} \cdot \mathrm{~s}_{\mathrm{fg}_{-} 1} \quad \mathrm{~s}_{4}=7.48 \frac{1}{\mathrm{~K}} \frac{\mathrm{~kJ}}{\mathrm{~kg}}
$$

summary ..

$$
\begin{array}{llll}
\begin{array}{r}
\text { reversible } \ldots
\end{array} & \mathrm{h}_{4 \mathrm{~s}}=2215.982 \frac{\mathrm{~kJ}}{\mathrm{~kg}} & \mathrm{~T}_{4 \mathrm{~s}}=40 & \mathrm{~s}_{4 \mathrm{~s}}=7.113 \frac{1}{\mathrm{~K}} \frac{\mathrm{~kJ}}{\mathrm{~kg}}
\end{array} \quad \mathrm{w}_{\mathrm{ts}}=1150.518 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
$$

thermal efficiency - reversible

$$
\eta_{\text {th }}=\frac{\text { work_net }}{Q_{H}}=\frac{Q_{H}+Q_{L}}{Q_{H}}=\frac{w_{t}+w_{p}}{Q_{H}}=\frac{\left(h_{3}-h_{4}\right)+\left(h_{1}-h_{2}\right)}{h_{3}-h_{2}}
$$

$$
\eta_{\text {ths }}:=\frac{\left(\mathrm{h}_{3}-\mathrm{h}_{4 \mathrm{~s}}\right)+\left(\mathrm{h}_{1}-\mathrm{h}_{2 \mathrm{~s}}\right)}{\mathrm{h}_{3}-\mathrm{h}_{2 \mathrm{~s}}} \quad \eta_{\text {ths }}=0.359 \quad \quad \eta_{\text {thhsv }}:=\frac{\mathrm{w}_{\mathrm{ts}}+\mathrm{w}_{\mathrm{ps}}}{\mathrm{~h}_{3}-\mathrm{h}_{2 \mathrm{~s}}} \quad \eta_{\text {ths }}=0.359
$$

$$
\mathrm{Q}_{\mathrm{Hs}}:=\mathrm{h}_{3}-\mathrm{h}_{2 \mathrm{~s}} \quad \mathrm{Q}_{\mathrm{Ls}}:=\mathrm{h}_{1}-\mathrm{h}_{4 \mathrm{~s}} \quad \eta_{\text {th_1s }}:=\frac{\mathrm{Q}_{\mathrm{Hs}}+\mathrm{Q}_{\mathrm{Ls}}}{\mathrm{Q}_{\mathrm{Hs}}} \quad \eta_{\text {th_1s }}=0.359
$$

thermal efficiency - irreversible

$$
\begin{array}{rrr}
\eta_{\text {th }}:=\frac{\left(h_{3}-h_{4}\right)+\left(h_{1}-h_{2}\right)}{h_{3}-h_{2}} & \eta_{\text {th }}=0.323 & \eta_{\text {dhh }}:=\frac{w_{t}+w_{p}}{h_{3}-h_{2}} \\
Q_{H}:=h_{3}-h_{2} & Q_{L}:=h_{1}-h_{4} & \eta_{\text {th_1 }}:=\frac{Q_{H}+Q_{L}}{Q_{H}}
\end{array} \quad \eta_{\text {th_1 }}=0.323
$$

\square data for saturation curve
data for Ts and H s plots

close up of points 1 and 2

much expanded ref: class example scale
$39.5<T<40.5$ $0.57<s<0.58$

much expanded ref: class example scale
$165<h<175$
$0.56<\mathrm{s}<0.6$

