Combustion

combustion of dodecane a parafin of type $\mathrm{C}_{\mathrm{n}} \cdot \mathrm{H}_{2 \mathrm{n}}$ (represents diesel fuel) in stochiometric proportions:
$\mathrm{C}_{12} \cdot \mathrm{H}_{26}+\mathrm{x} \cdot \mathrm{O}_{2}=\mathrm{y} \cdot \mathrm{H}_{2} \cdot \mathrm{O}+\mathrm{z} \cdot \mathrm{C} \cdot \mathrm{O}_{2}+$ heat
define some units

$$
\begin{aligned}
& \mathrm{kN}:=10^{3} \cdot \mathrm{~N} \quad \mathrm{kPa}:=10^{3} \cdot \mathrm{~Pa} \\
& \mathrm{MPa}:=10^{6} \mathrm{~Pa} \quad \mathrm{~kJ}:=10^{3} \cdot \mathrm{~J} \\
& \mathrm{kmol}:=10^{3} \mathrm{~mol}
\end{aligned}
$$

overkill in this case but general method represented by solution of simultaneous equations from elements involved

Given

$$
x:=1 \quad y:=1 \quad z:=1
$$

initial values for given construct
element:
C $\quad \mathrm{z}=12$
O $\quad x \cdot 2=y+2 \cdot z$
H $26=2 \cdot \mathrm{y}$

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right):=\operatorname{Find}(x, y, z) \quad\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
18.5 \\
13 \\
12
\end{array}\right)
$$

so combustion equation is

$$
\mathrm{C}_{12} \cdot \mathrm{H}_{26}+\mathrm{x} \cdot \mathrm{O}_{2}=\mathrm{y} \cdot \mathrm{H}_{2} \cdot \mathrm{O}+\mathrm{z} \cdot \mathrm{C} \cdot \mathrm{O}_{2}+\text { heat } \rightarrow \mathrm{C}_{12} \cdot \mathrm{H}_{26}+\frac{37}{2} \cdot \mathrm{O}_{2}=13 \cdot \mathrm{H}_{2} \cdot \mathrm{O}+12 \cdot \mathrm{C} \cdot \mathrm{O}_{2}+\text { heat }
$$

O2 comes with nitrogen: 21% by volume and 23.3% by weight in air ($79 \% \mathrm{~N} 2$ by volume and $76.7 \% \mathrm{~N} 2$ by weight - ~ 1\% Ar lumped with N2) so ... need 79/21 atoms (volume) N2 for each O2

$$
\begin{aligned}
& 18.5 \cdot \frac{79}{21}=69.6 \quad \text { and combustion is } \ldots \\
& \mathrm{C}_{12} \cdot \mathrm{H}_{26}+18.5 \cdot \mathrm{O}_{2}+69.6 \cdot \mathrm{~N}_{2}=13 \cdot \mathrm{H}_{2} \cdot \mathrm{O}+12 \cdot \mathrm{C} \cdot \mathrm{O}_{2}+69.6 \cdot \mathrm{~N}_{2}+\text { heat }
\end{aligned}
$$

this is on a stochiometric basis (mole basis- i.e. 1 mole of C 12 H 26 combines with 18.5 moles of O 2 etc.) or volume basis to convert to weight use molecular mw_O2 := $32 \frac{\mathrm{~kg}}{\mathrm{kmol}} \quad$ mw_C12_H26 $:=(144+26) \cdot \frac{\mathrm{kg}}{\mathrm{kmol}} \mathrm{mw}_{-} \mathrm{N} 2:=28 \frac{\mathrm{~kg}}{\mathrm{kmol}}$ weights

$$
\mathrm{mw}_{-} \mathrm{H} 2_{-} \mathrm{O}:=(2+16) \cdot \frac{\mathrm{kg}}{\mathrm{kmol}} \quad \text { mw_C_O2 }:=(12+32) \cdot \frac{\mathrm{kg}}{\mathrm{kmol}}
$$

$$
1 \mathrm{kmolC}_{12} \cdot \mathrm{H}_{26}+18.5 \cdot \mathrm{kmol} \cdot \mathrm{O}_{2}+69.6 \cdot \mathrm{kmol} \cdot \mathrm{~N}_{2}=13 \cdot \mathrm{kmol} \cdot \mathrm{H}_{2} \cdot \mathrm{O}+12 \mathrm{kmol} \cdot \mathrm{C} \cdot \mathrm{O}_{2}+69.6 \mathrm{kmol} \cdot \mathrm{~N}_{2}+\mathrm{LHV}
$$

result is ... combustion of C 12 H 26 by weight ...
$1 \mathrm{~kg} \cdot \mathrm{C}_{12} \cdot \mathrm{H}_{26}+3.48 \cdot \mathrm{~kg} \cdot \mathrm{O}_{2}+11.46 \cdot \mathrm{~kg} \cdot \mathrm{~N}_{2}=1.38 \cdot \mathrm{~kg} \cdot \mathrm{H}_{2} \cdot \mathrm{O}+3.11 \cdot \mathrm{k} \cdot \mathrm{C} \cdot \mathrm{O}_{2}+11.46 \cdot \mathrm{~kg} \cdot \mathrm{~N}_{2}+$ heat
weight of air : weight of fuel = air-fuel ratio air_fuel_ratio := $3.48+11.46 \quad$ air_fuel_ratio $=14.94$
In order to insure complete combustion, air is usually supplied in excess, see example below. Products would include air i.e. O2 and N2
to analyze combustion process use first law ...
steady state, steady flow process ...

$$
\begin{equation*}
\mathrm{m}_{-} \text {dot }=\text { flow_rate } \tag{5.46}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d}{d t} Q_{c_{-} v}+\sum_{n} m_{-} \operatorname{dot}_{i_{n}} \cdot\left(h_{i}+\frac{V_{i}^{2}}{2}+g \cdot z_{i}\right)=\sum_{n} m_{-} \operatorname{dot}_{e_{n}} \cdot\left(h_{e}+\frac{V_{e}^{2}}{2}+g \cdot z_{e}\right)+\frac{d}{d t} W_{c_{-} v} \tag{5.47}
\end{equation*}
$$

$$
\begin{aligned}
& \text { work, } K E \text { and } P E=0 . . \quad Q_{-} \operatorname{dot}_{c_{-} v}+m_{-} \operatorname{dot}_{f} h_{f}+m_{-} \operatorname{dot}_{\mathrm{a}} \cdot h_{a}=m_{-} \operatorname{dot}_{\mathrm{p}} \cdot h_{p} \quad p=\text { products } \\
& \text { conservation of mass ... } m_{-} \operatorname{dot}_{p}=m_{-} \operatorname{dot}_{f}+m_{-} \operatorname{dot}_{a} \\
& \frac{\mathrm{Q}_{-} \operatorname{dot}_{\mathrm{c}_{-} \mathrm{v}}}{\mathrm{~m}_{-} \operatorname{dot}_{\mathrm{f}}}=\frac{\mathrm{m}_{-} \operatorname{dot}_{\mathrm{p}}}{\mathrm{~m}_{-} \operatorname{dot}_{\mathrm{f}}} \cdot \mathrm{~h}_{\mathrm{p}}-\left(\mathrm{h}_{\mathrm{f}}+\frac{\mathrm{m}_{-} \operatorname{dot}_{\mathrm{a}}}{\mathrm{~m}_{-} \operatorname{dot}_{\mathrm{f}}} \cdot \mathrm{~h}_{\mathrm{a}}\right)=\left(1+\frac{\mathrm{m}_{-} \operatorname{dot}_{\mathrm{a}}}{\left.\mathrm{~m}_{-} \operatorname{dot}_{\mathrm{f}}\right)} \cdot \mathrm{h}_{\mathrm{p}}-\left(\mathrm{h}_{\mathrm{f}}+\frac{\mathrm{m}_{-} \operatorname{dot}_{\mathrm{a}}}{\mathrm{~m}_{-} \operatorname{dot}_{\mathrm{f}}} \cdot \mathrm{~h}_{\mathrm{a}}\right)\right.
\end{aligned}
$$

or per unit mass ...

$$
\mathrm{Q}_{\mathrm{c}_{-} \mathrm{v}}=\mathrm{H}_{\mathrm{P}}-\mathrm{H}_{\mathrm{R}} \quad \mathrm{R}=\text { reactants }
$$

To quantitatively calculate this equation the basic approach would include accounting for the enthalpy of formation of each of the entities in the process. To avoid repeatedly accounting for the enthalpy of formation of various fuels a calculation (measurement) is done at a standard condition and then specific processes need only account for the deviation from this standard. The standard chosen was 25 deg C and atmospheric pressure (100 kPa) designated the zero (0) subscript. e.g. the enthalpy of formation of $C->C O 2$ such that 1 kmol C combines with 1 $\mathrm{kmol} O 2$ to yield 1 kmol CO2 gives off $393,522 \mathrm{~kJ} / \mathrm{kmol}$. This measurement for fuels is accomplished and the net result is tabulated as the heating value. If the H 2 O in the products is liquid it is the higher heating value (HHV), if the H 2) is vapor - the heating value is the lower heating vaue (LHV). The difference is due to the heat of vaporization being extracted as heat.
$\left(\begin{array}{cccc}\cdot & \text { HHV } & \text { LHV } & \text { sp_gr } \\ \cdot & \frac{\mathrm{kJ}}{\mathrm{kg}} & \frac{\mathrm{kJ}}{\mathrm{kg}} & \cdot \\ \text { distillate } & 45900 & 43000 & 0.825 \\ \text { heavy_bunker } & 42900 & 40600 & 1.014 \\ \text { dodecane = diesel } & 47470 & 44109 & - \\ \text { octane = gasoline } & 47893 & 44425 & -\end{array}\right)$

$$
\mathrm{Q}_{\mathrm{c} _\mathrm{v} _0}=\mathrm{H}_{\mathrm{P} 0}-\mathrm{H}_{\mathrm{R} 0}=- \text { heating_value }
$$

some typical values ...
negative as heating value usually expressed as positive negative Q in first law indicates heat given off
from Prof. Carmichael's notes and Table 12.3 in Van Wylen and Sonntag. dodecane and octane are in liquid form. Vapor form has slightly higher value same concept as HHV vs LHV
that is ...

$$
\mathrm{Q}_{\mathrm{c} _ \text {v_0_octane }}=\mathrm{H}_{\mathrm{P} 0}-\mathrm{H}_{\mathrm{R} 0}=- \text { heating_value }=-47893 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \text { fuel as liquid, water in preoduct as liquid }
$$

this enables us to write ...

$$
\mathrm{Q}_{\mathrm{c}_{-} \mathrm{v}}=\mathrm{H}_{\mathrm{P}}-\mathrm{H}_{\mathrm{R}}=\mathrm{H}_{\mathrm{P}}-\mathrm{H}_{\mathrm{P} 0}-\left(\mathrm{H}_{\mathrm{R}}-\mathrm{H}_{\mathrm{R} 0}\right)+\left(\mathrm{H}_{\mathrm{P} 0}-\mathrm{H}_{\mathrm{R} 0}\right)=\mathrm{H}_{\mathrm{P}}-\mathrm{H}_{\mathrm{P} 0}-\left(\mathrm{H}_{\mathrm{R}}-\mathrm{H}_{\mathrm{R} 0}\right)-\text { heating_value }
$$

or ... writing for boiler, ...
$-\mathrm{Q}_{\mathrm{c}_{-} \mathrm{v}}=-\mathrm{Q}_{\mathrm{B}}=\mathrm{H}_{\mathrm{R}}-\mathrm{H}_{\mathrm{R} 0}-\left(\mathrm{H}_{\mathrm{P}}-\mathrm{H}_{\mathrm{P} 0}\right)+$ heating C_{-}value
QB on unit mass basis
or on a specific enthalpy basis ...
$-\frac{\mathrm{Q}_{-} \operatorname{dot}_{\mathrm{c}_{-} \mathrm{v}}}{\mathrm{m}_{-} \operatorname{dot}_{\mathrm{f}}}=-\mathrm{Q}_{\mathrm{B}}=\mathrm{h}_{\mathrm{f}}-\mathrm{h}_{\mathrm{f} 0}+\frac{\mathrm{m}_{-} \operatorname{dot}_{\mathrm{a}}}{\mathrm{m}_{-} \operatorname{dot}_{\mathrm{f}}} \cdot\left(\mathrm{h}_{\mathrm{a}}-\mathrm{h}_{\mathrm{a} 0}\right)-\left(1+\frac{\mathrm{m}_{-} \operatorname{dot}_{\mathrm{a}}}{\mathrm{m}_{-} \operatorname{dot}_{\mathrm{f}}}\right) \cdot\left(\mathrm{h}_{\mathrm{p}}-\mathrm{h}_{\mathrm{p} 0}\right)+$ heating_value
so ... in calculation of boiler process, need only to look up heating value for fuel - appropriate to its state as gas or liquid and water product state as gas or liguid (HHV or LHV) then "correct" heat for deviation from standard state using gas tables or other estimates.
With this result can calculate boiler efficiency ...

$$
\eta_{B}=-\frac{Q_{-} \operatorname{dot}_{c}-v}{m_{-} \operatorname{dot}_{\mathrm{f}} \mathrm{HHV}}=\frac{-\mathrm{Q}_{\mathrm{B}}}{\mathrm{HHV}}=\frac{\mathrm{HV}+\left(\mathrm{h}_{\mathrm{f}}-\mathrm{h}_{\mathrm{f} 0}\right)+\frac{\mathrm{m}_{-} \operatorname{dot}_{\mathrm{a}}}{\mathrm{~m}_{-} \operatorname{dot}_{\mathrm{f}}} \cdot\left(\mathrm{~h}_{\mathrm{a}}-\mathrm{h}_{\mathrm{a} 0}\right)-\left(1+\frac{\mathrm{m}_{-} \text {air_dot }}{\mathrm{m}_{-} \text {fuel_dot }}\right) \cdot\left(\mathrm{h}_{\mathrm{p}}-\mathrm{h}_{\mathrm{p} 0}\right)}{H H V}
$$

if for example, the fuel and air entering the boiler are at standard conditions (25 deg C , atmospheric pressure) and the H 2 O in the exhaust is vapor, the boiler efficiency becomes ...

$$
\eta_{\mathrm{B}}=\frac{\text { LHV }-\left(1+\frac{\mathrm{m}_{-} \text {air_dot }}{\mathrm{m}_{-} \text {fuel_dot }}\right) \cdot\left(\mathrm{h}_{\mathrm{p}}-\mathrm{h}_{\mathrm{p} 0}\right)}{\mathrm{HHV}}
$$

$$
\begin{aligned}
& \mathrm{h}_{\mathrm{a}}-\mathrm{h}_{\mathrm{a} 0}=0 \\
& \mathrm{~h}_{\mathrm{f}}-\mathrm{h}_{\mathrm{f} 0}=0
\end{aligned}
$$

As an example, let's consider the effect of exhaust (stack) temperature on efficiency ... the calculations are straight-forward but extensive. We will specify combustion with 15% excess air of dodecane ...

The calculation of enthelpy of the products is the challenge. Either it can be done by "unlumping" the participants or forming a weighted average of the product enthalpies.
example ... combustion of dodecane with 15% excess air, fuel and air entering at standard conditions, H2O exhaust as vapor, estimate efficiency of the combustion process with exhaust temperature of 120, 230, and 340 deg C. An additional calculation at 226.85 deg C will be done to check the calculations. Assume also 1.5% heat loss to environment.
from above ..result is ... combustion of C 12 H 26 by weight ... adjusted for 15% excess air ... and using the LHV

$$
1 \mathrm{~kg} \cdot \mathrm{C}_{12} \cdot \mathrm{H}_{26}+\left(3.48 \cdot \mathrm{~kg} \cdot \mathrm{O}_{2}+11.46 \cdot \mathrm{~kg} \cdot \mathrm{~N}_{2}\right) \cdot 1.15=\left[\begin{array}{l}
1.38 \cdot \mathrm{~kg} \cdot \mathrm{H}_{2} \cdot \mathrm{O}+3.11 \cdot \mathrm{~kg} \cdot \mathrm{C} \cdot \mathrm{O}_{2}+11.46 \cdot \mathrm{~kg} \cdot \mathrm{~N}_{2} \ldots \\
+\left(3.48 \cdot \mathrm{~kg} \cdot \mathrm{O}_{2}+11.46 \cdot \mathrm{~kg} \cdot \mathrm{~N}_{2}\right) \cdot 0.15
\end{array}\right]+\mathrm{LHV}
$$

which is same as ... athough we will use elemental expression for enthalpy calculation - probably could use air parameters

$$
\mathrm{C}_{12} \cdot \mathrm{H}_{26}+(3.48+11.46) \cdot 1.15 \cdot \text { air }=1.38 \cdot \mathrm{H}_{2} \cdot \mathrm{O}+3.1 \cdot \mathrm{C} \cdot \mathrm{O}_{2}+11.46 \cdot \mathrm{~N}_{2}+(3.48+11.46) \cdot 0.15 \cdot \mathrm{air}+\mathrm{LHV}
$$ weighted average statement

$h_{p}-h_{p 0}=\frac{\left[\begin{array}{l}\mathrm{m}_{-} \mathrm{H} 2 _\mathrm{O} \cdot\left(\mathrm{h}_{\mathrm{H}_{2} \cdot \mathrm{O}}-\mathrm{h}_{\mathrm{H}_{2} \cdot \mathrm{O} \cdot 0}\right)+\mathrm{m}_{-} \mathrm{C} _\mathrm{O} 2 \cdot\left[\mathrm{~h}_{\mathrm{C} \cdot \mathrm{O}_{2}}-\left(\mathrm{h}_{\mathrm{C} \cdot \mathrm{O}_{2} \cdot 0}\right)\right] \cdots \\ +\mathrm{m}_{-} \mathrm{N} 2 \cdot\left(\mathrm{~h}_{\mathrm{N}_{2}}-\mathrm{h}_{\mathrm{N}_{2} \cdot 0}\right)+\left(\mathrm{m}_{-} \mathrm{O} 2+\mathrm{m}_{-} \mathrm{N} 2\right) \cdot 0.15 \cdot\left(\mathrm{~h}_{\mathrm{air}}-\mathrm{h}_{\mathrm{air}} \cdot 0\right)\end{array}\right]}{\mathrm{m}_{-} \mathrm{H} 2 _\mathrm{O}+\mathrm{m}_{-} \mathrm{C} __{-} \mathrm{O} 2+\mathrm{m}_{-} \mathrm{N} 2+\left(\mathrm{m}_{-} \mathrm{O} 2+\mathrm{m}_{-} \mathrm{N} 2\right) \cdot 0.15}$
where $m _x x$ is mass of the entity
to calculate enthalpies at non-standard conditions use constant-pressure specific heats from Table A. 9 of Van Wylen and Sonntag ...

O2

$$
\mathrm{C}_{\mathrm{po} _\mathrm{O} 2}(\theta):=37.432+0.020102 \cdot \theta^{1.5}-178.57 \cdot \theta^{-1.5}+236.88 \cdot \theta^{-2} \frac{\mathrm{~kJ}}{\mathrm{kmol} \cdot \mathrm{~K}} \quad \theta=\frac{\mathrm{T}}{100}
$$

given in kJ/kmole*K so divide by molecular weight to get kJ/kg*K
$\mathrm{N} 2 \quad \mathrm{C}_{\mathrm{po}} \mathrm{N} 2(\theta):=39.060-512.79 \cdot \theta^{-1.5}+1072.7 \cdot \theta^{-2}-820.40 \cdot \theta^{-3} \frac{\mathrm{~kJ}}{\mathrm{kmol} \cdot \mathrm{K}}$

H2_O \quad Co_H2_0 $(\theta):=143.05-183.54 \cdot \theta^{0.25}+82.751 \cdot \theta^{0.5}-3.6989 \cdot \theta \quad \frac{\mathrm{~kJ}}{\mathrm{kmol} \cdot \mathrm{K}}$
$\mathrm{T}:=\left[\left(\left.\begin{array}{cc}120 \\ 230 \\ 340\end{array} \right\rvert\,+273.15\right] \cdot \mathrm{K} \theta \mathrm{T}:=\frac{\mathrm{T}}{100 \mathrm{~K}} \quad \theta \mathrm{~T}=\left(\begin{array}{c}3.93 \\ 5.03 \\ 500-273.15\end{array}\right) \quad \mathrm{T}=\binom{393.15}{6.13} \quad \mathrm{~T}_{0}:=(25+273.15) \mathrm{K}\right.$
integrate $\quad d h=C_{p} \cdot d T \quad$ with variable change to $\theta . \quad h_{H_{-}} 2 \mathrm{OT}=\left(h_{H_{2}} \cdot \mathrm{O}-h_{H_{2}} \cdot \mathrm{O} \cdot 0\right) \quad$ etc.... $i:=0 . .3$

H2_O

$$
\mathrm{h}_{\mathrm{H}}^{-2 \mathrm{OT}}=\left(\begin{array}{c|l}
178.81 \\
390.4 & \mathrm{~kJ} \\
609.19 & \frac{\mathrm{~kg}}{384.25}
\end{array}\right.
$$

C_O2

$$
\mathrm{h}_{\mathrm{C}}^{-} \mathrm{O} 2 \mathrm{~T}=\left(\begin{array}{c|c}
84.39 & \\
191.77 & \mathrm{~kJ} \\
307.3 & \left.\frac{\mathrm{~kg}}{188.57}\right)
\end{array}\right.
$$

N2

$$
\mathrm{h}_{\mathrm{N} 2 \mathrm{~T}}=\left(\begin{array}{c|c}
99.01 \\
214.22 & \mathrm{~kJ} \\
331.66 & \\
210.9
\end{array}\right)
$$

O2

$$
\mathrm{h}_{\mathrm{O} 2 \mathrm{~T}}=\left(\begin{array}{c|c}
88.02 & \\
193.2 & \frac{\mathrm{~kJ}}{} \\
302.34 & \frac{\mathrm{~kg}}{190.13}
\end{array}\right)
$$

these data could also have been obtained from gas tables. as a check the values for the reference temperature were obtained fromTable A. 11 of VW \&S - taken from the gas tables

$$
\begin{array}{ll}
\mathrm{h}_{\mathrm{H}_{-} 2 \mathrm{OT}_{3}} \cdot \mathrm{mw}_{-} \mathrm{H}_{2} \mathrm{O}=6916.45 \frac{\mathrm{~kJ}}{\mathrm{kmol}} & 6920 \text { in table A. } 11 \\
\mathrm{~h}_{\mathrm{C}_{-} \mathrm{O}_{2} \mathrm{~T}_{3}} \cdot \mathrm{mw}_{-} \mathrm{C}_{-} \mathrm{O} 2=8297.06 \frac{\mathrm{~kJ}}{\mathrm{kmol}} & 8314 \text { in table A. } 11 \\
\mathrm{~h}_{\mathrm{N}_{2} \mathrm{~T}_{3}} \cdot \mathrm{mw}_{-} \mathrm{N} 2=5905.1 \frac{\mathrm{~kJ}}{\mathrm{kmol}} & 5912 \text { in table A. } 11 \\
\mathrm{~h}_{\mathrm{O}_{2} \mathrm{~T}_{3}} \cdot \mathrm{mw}_{-} \mathrm{O} 2=6084.08 \frac{\mathrm{~kJ}}{\mathrm{kmol}} & 6088 \text { in table A. } 11
\end{array}
$$

now calculate weighted average ... separating air into N2 and O2
h.prod is weighted average of products

$$
\begin{aligned}
& \mathrm{m}_{-} \mathrm{H} 2 _\mathrm{O}:=1.38 \quad \mathrm{~m}_{-} \mathrm{C} _\mathrm{O} 2:=3.1 \quad \mathrm{~m}_{-} \mathrm{N} 2:=11.46 \cdot 1.15 \quad \text { m_O2 }:=3.48 \cdot 0.15
\end{aligned}
$$

$$
\begin{aligned}
& \text { LHV }:=44109 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \mathrm{HHV}:=47470 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\
& \eta_{B}=\frac{\text { LHV }-\left[\left(1+\frac{m_{- \text {_air_dot }}}{m_{-} \text {fuel_dot }}\right) \cdot\left(h_{p}-h_{p 0}\right)\right.}{\text { HHV }} \\
& \text { air_fuel_ratio }=\frac{\mathrm{m}_{-} \text {air_dot }}{\mathrm{m}_{-} \text {fuel_dot }}=14.94 \quad \text { in stochiometric combustion } \\
& \text { in this case } \quad \text { air_fuel_ratio }:=14.94 \cdot 1.15 \\
& \eta_{\mathrm{B}}:=\frac{\text { LHV }-(1+\text { air_fuel_ratio }) \cdot h_{\text {prod }}}{\text { HHV }} \cdot 0.985 \quad \eta_{\mathrm{B}}=\left(\begin{array}{l}
0.877) \\
0.831 \\
0.784 \\
0.832
\end{array}\right) \\
& \text { heat loss accounted for } \\
& \text { by reucing net heat from } \\
& \text { combustion * } 0.985 \\
& \text { if we had just calculated the products individually, instead of }
\end{aligned}
$$ the weighted average ...

$$
\begin{aligned}
& \mathrm{C}_{12} \cdot \mathrm{H}_{26}+(3.48+11.46) \cdot 1.15 \cdot \mathrm{air}=1.38 \cdot \mathrm{H}_{2} \cdot \mathrm{O}+3.1 \cdot \mathrm{C} \cdot \mathrm{O}_{2}+11.46 \cdot \mathrm{~N}_{2}+(3.48+11.46) \cdot 0.15 \cdot \mathrm{air}+\mathrm{LHV} \\
& \eta_{\mathrm{B}}:=\frac{\mathrm{LHV}-\left(1.38 \cdot \mathrm{~h}_{\mathrm{H} _2 \mathrm{OT}}+3.1 \cdot \mathrm{~h}_{\mathrm{C}_{_} \mathrm{O} 2 \mathrm{~T}}+11.46 \cdot 1.15 \cdot \mathrm{~h}_{\mathrm{N} 2 \mathrm{~T}}+3.48 \cdot 0.15 \cdot \mathrm{~h}_{\mathrm{O} 2 \mathrm{~T}}\right)}{\mathrm{HHV}} \cdot 0.985 \quad \eta_{\mathrm{B}}=\left(\begin{array}{l}
0.877) \\
0.831 \\
0.784 \\
0.832
\end{array}\right)
\end{aligned}
$$

effect of excess air

$$
\begin{aligned}
& \text { air_fuel_ratio }=\frac{\mathrm{m}_{-} \text {air_dot }}{\mathrm{m}_{-} \text {fuel_dot }}=14.94 \quad \text { in stochiometric combustion } \\
& \text { exc_air }:=\left(\begin{array}{l}
0.1 \\
0.15 \\
0.25
\end{array}\right) \quad j:=0 . .2
\end{aligned}
$$

$$
\mathrm{m}_{-} \mathrm{H} 2 _\mathrm{O}:=1.38 \quad \mathrm{~m}_{-} \mathrm{C} _\mathrm{O} 2:=3.1 \quad \mathrm{~m}_{-} \mathrm{N} 2_{\mathrm{j}}:=11.46 \cdot\left(1+\text { exc_air }_{\mathrm{j}}\right) \quad \mathrm{m}_{-} \mathrm{O} 2_{\mathrm{j}}:=3.48 \cdot \text { exc_air }_{\mathrm{j}}
$$

$$
\mathrm{h}_{\operatorname{prod}_{\mathrm{i}, \mathrm{j}}}:=\frac{\mathrm{h}_{\mathrm{H}_{-} 2 \mathrm{OT}}^{\mathrm{i}}}{} \cdot \mathrm{~m}_{-} \mathrm{H}_{2} \mathrm{O}+\mathrm{h}_{\mathrm{C}_{-} \mathrm{O}_{2} 2 \mathrm{~T}_{\mathrm{i}}} \cdot \mathrm{~m}_{-} \mathrm{C}_{-} \mathrm{O} 2+\mathrm{h}_{\mathrm{N} 2 \mathrm{~T}_{\mathrm{i}}} \cdot \mathrm{~m}_{-} \mathrm{N} 2_{\mathrm{j}}+\mathrm{h}_{\mathrm{O} 2 \mathrm{~T}_{\mathrm{i}}} \cdot \mathrm{~m}_{-} \mathrm{O} 2_{\mathrm{j}} \mathrm{~m}_{-} \mathrm{H}_{-} \mathrm{O}+\mathrm{m}_{-} \mathrm{C}_{-} \mathrm{O} 2+\mathrm{m}_{-} \mathrm{N} 2_{\mathrm{j}}+\mathrm{m}_{-} \mathrm{O} 2_{\mathrm{j}} \mathrm{~m}
$$

$$
\mathrm{h}_{\text {prod }}=\left(\begin{array}{lll}
102.51 & 102.26 & 101.82 \\
223.75 & 223.16 & 222.11 \\
348.71 & 347.73 & 345.99 \\
220.23 & 219.65 & 218.62
\end{array}\right)
$$

in this case \quad air_fuel_ratio $_{\mathrm{j}}:=14.94 \cdot\left[\left(1+\right.\right.$ exc_air $\left._{\mathrm{j}} \mathrm{j}\right]$
heat loss accounted for by reucing net heat from combustion * 0.985

$$
\eta_{\mathrm{B}_{\mathrm{i}, \mathrm{j}}}:=\frac{\text { LHV - }\left(1+\text { air_fuel_ratio }_{\mathrm{j}}\right) \cdot \mathrm{h}_{\text {prod }_{\mathrm{i}, \mathrm{j}}}}{\mathrm{HHV}} \cdot 0.985 \eta_{\mathrm{B}}=\left(\begin{array}{ccc}
0.878 & 0.877 & 0.874 \\
0.834 & 0.831 & 0.825 \\
0.789 & 0.784 & 0.774 \\
0.836 & 0.832 & 0.826
\end{array}\right)
$$

