Some Relationships for Gases

these are extracted from Van Wylen \& Sonntag, Fudamentals of Classical Thermodynamics, Third Edition to which page numbers and equation numbers apply 2006: included reference to text: Woud section 2.23 in [W n.nn]
define some units
$\mathrm{kJ}:=10^{3} \cdot \mathrm{~J}$
kmol $:=10^{3}$ mole

section 3.4 Equations of state for the vapor phase of a simple compressile substance - page 41 (Woud page 20)

section 4.3 Work done at moveable boundary of simple compressible system - page 63

if $\ldots \quad \mathrm{p} \cdot \mathrm{V}^{\mathrm{n}}=$ constant $\quad \mathrm{n}=1 \quad \mathrm{~W}_{1 _2}=\int_{\mathrm{V}_{1}}^{\mathrm{V}_{2}} \mathrm{pdV}=\mathrm{p}_{1} \cdot \mathrm{~V}_{1} \cdot \int_{\mathrm{V}_{1}}^{\mathrm{V}_{2}} \frac{1}{\mathrm{~V}} \mathrm{dV}=\mathrm{p}_{1} \cdot \mathrm{~V}_{1} \cdot \ln \left(\frac{\mathrm{~V}_{2}}{\mathrm{~V}_{1}}\right)$

section 5.6 The Constant-Volume and

 Constant-Pressure Specific Heats - page 98specific heat $=$ increment of heat Q to change T by 1 deg

$$
\mathrm{c}=\frac{1}{\mathrm{~m}} \cdot \frac{\delta \mathrm{Q}}{\delta \mathrm{~T}} \quad \frac{1}{\mathrm{~m}}=\text { specfic }
$$

two cases: 1) constant volume

$$
\mathrm{c}_{\mathrm{v}}=\frac{1}{\mathrm{~m}} \cdot \frac{\delta \mathrm{Q}}{\delta \mathrm{~T}} \quad \text { constant volume }
$$

$$
\begin{equation*}
\text { 1st law } \ldots \quad \delta \mathrm{Q}=\mathrm{dE}+\delta \mathrm{W}=\mathrm{dU}+\mathrm{dKE}+\mathrm{dPE}+\delta \mathrm{W} \tag{5.4}
\end{equation*}
$$

$$
\delta \mathrm{Q}=\mathrm{dU}+\mathrm{p} \cdot \delta \mathrm{~V} \quad \mathrm{dKE}=\mathrm{dPE}=0 \quad \delta \mathrm{~W}=\mathrm{p} \cdot \delta \mathrm{~V}=0
$$

$$
\begin{equation*}
\mathrm{c}_{\mathrm{v}}=\frac{1}{\mathrm{~m}} \cdot \frac{\delta \mathrm{Q}}{\delta \mathrm{~T}}=\frac{1}{\mathrm{~m}} \cdot \frac{\delta \mathrm{U}}{\delta \mathrm{~T}}=\frac{\delta \mathrm{u}}{\delta \mathrm{~T}} \quad \mathrm{c}_{\mathrm{v}}=\frac{\delta \mathrm{u}}{\delta \mathrm{~T}} \quad \text { constant volume } \tag{5.14}
\end{equation*}
$$

2) constant pressure $\quad \delta Q=d U+p \cdot \delta V=\delta H \quad$ as $\ldots . \quad d H=d(U+p \cdot V)=d U+p \cdot d V+V \cdot d p d p=0$

$$
\mathrm{c}_{\mathrm{p}}=\frac{1}{\mathrm{~m}} \cdot \frac{\delta \mathrm{Q}}{\delta \mathrm{~T}}=\frac{1}{\mathrm{~m}} \cdot \frac{\delta \mathrm{H}}{\delta \mathrm{~T}}=\frac{\delta \mathrm{h}}{\delta \mathrm{~T}} \quad \mathrm{c}_{\mathrm{p}}=\frac{\delta \mathrm{h}}{\delta \mathrm{~T}} \quad \text { constant pressure } \quad \text { (5.15) } \quad[\mathrm{W} 2.37]
$$

$$
\begin{align*}
& \begin{array}{rlrl}
\text { gas at low density (experiment) } & \overline{\mathrm{p}} \cdot \overline{\mathrm{v}}=\overline{\mathrm{R}} \cdot \mathrm{~T} & \overline{\mathrm{R}}=\text { universal_gas_constant } \\
\overline{\mathrm{xxx}}=\text { mole_basis }
\end{array} \quad \text { (3.1) } \\
& \mathrm{R}=\frac{\overline{\mathrm{R}}}{\mathrm{mw}} \quad \mathrm{mw}=\text { molecular_weight } \quad \text { for } \mathrm{R}_{-} \text {bar above } \quad \mathrm{mw}=\frac{\mathrm{kg}}{\mathrm{kmol}} \\
& \mathrm{p} \cdot \mathrm{~V}=\mathrm{m} \cdot \mathrm{R} \cdot \mathrm{~T} \quad \text { or } \ldots \quad \mathrm{p} \cdot \mathrm{v}=\mathrm{R} \cdot \mathrm{~T} \tag{3.5}\\
& \frac{\mathrm{p}_{1} \cdot \mathrm{v}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{p}_{2} \cdot \mathrm{v}_{2}}{\mathrm{~T}_{2}} \tag{3.2}\\
& \text { [W 2.32, 2.33[}
\end{align*}
$$

section 5.7 The Internal Energy, Enthalpy and Specific Heats of Ideal Gases - page 100

ideal gas $\quad \mathrm{p} \cdot \mathrm{v}=\mathrm{R} \cdot \mathrm{T} \quad \mathrm{u}=\mathrm{f}(\mathrm{T}) \quad$ experiment (Joule)

$$
c_{v}=\frac{\delta u}{\delta T} \quad u \text { not a function of } v=>\quad d u=c_{v o} \cdot d T \quad \text { vo } \quad \begin{align*}
& \quad>\text { constant volume } \tag{5.20}\\
& \text { ideal gas }
\end{align*}
$$

also ...

$$
h=u+p \cdot v=u(T)+R \cdot T=h(T) \quad \text { i.e. } h=F(T) \text { only }
$$

$$
\begin{equation*}
\mathrm{c}_{\mathrm{p}}=\frac{\delta \mathrm{h}}{\delta \mathrm{~T}} \quad \Rightarrow \quad \mathrm{dh}=\mathrm{c}_{\mathrm{po}} \cdot \mathrm{dT} \tag{5.24}
\end{equation*}
$$

$$
\begin{aligned}
& \text { po } \begin{array}{l}
\text { id constant pressure } \\
\text { ideal gas }
\end{array}
\end{aligned}
$$

relation between c_{vo} and $\mathrm{c}_{\mathrm{po}} \cdots \quad \mathrm{h}=\mathrm{u}+\mathrm{pv}=\mathrm{u}+\mathrm{R} \cdot \mathrm{T} \quad \frac{\mathrm{dh}}{\mathrm{dT}}=\frac{\mathrm{du}}{\mathrm{dT}}+\mathrm{R} \quad$ differentiate w.r.t T

$$
\begin{equation*}
\mathrm{c}_{\mathrm{po}}=\mathrm{c}_{\mathrm{vo}}+\mathrm{R} \quad \text { or } \ldots \quad \mathrm{c}_{\mathrm{po}}-\mathrm{c}_{\mathrm{vo}}=\mathrm{R} \tag{5.27}
\end{equation*}
$$

with constant $\mathrm{c} \quad \mathrm{h}_{2}-\mathrm{h}_{1}=\mathrm{c}_{\mathrm{po}} \cdot\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$ otherwise integrate if $\mathrm{c}(\mathrm{T})$ known or tables (5.29) [W 2.38]

section 7.10 Entropy Change of an

Ideal Gas - page $206 \quad \mathrm{~T} \cdot \mathrm{ds}=\mathrm{du}+\mathrm{p} \cdot \mathrm{dv}$
[W 2.18]

$$
\begin{aligned}
& \mathrm{du}=\mathrm{c}_{\mathrm{vo}} \cdot \mathrm{dT} \quad \text { and } \ldots \quad \mathrm{p} \cdot \mathrm{v}=\mathrm{R} \cdot \mathrm{~T} \quad \Rightarrow \quad \mathrm{p}=\mathrm{R} \cdot \frac{\mathrm{~T}}{\mathrm{v}} \quad \Rightarrow \quad \mathrm{~T} \cdot \mathrm{ds}=\mathrm{c}_{\mathrm{vo}} \cdot \mathrm{dT}+\mathrm{R} \cdot \frac{\mathrm{~T}}{\mathrm{v}} \cdot \mathrm{dv} \\
& \mathrm{ds}=\mathrm{c}_{\mathrm{vo}} \cdot \frac{\mathrm{dT}}{\mathrm{~T}}+\mathrm{R} \cdot \frac{\mathrm{dv}}{\mathrm{v}} \quad(7.19) \quad \mathrm{s}_{2}-\mathrm{s}_{1}=\mathrm{c}_{\mathrm{vo}} \cdot \ln \left(\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}\right)+\mathrm{R} \cdot \ln \left(\frac{\mathrm{v}_{2}}{\mathrm{v}_{1}}\right) \quad(7.24) \quad \mathrm{c}_{\mathrm{vo}}=\text { constant }
\end{aligned} \begin{aligned}
& \text { otherwise integrate or use } \\
& \text { tables }
\end{aligned}
$$

$\mathrm{T} \cdot \mathrm{ds}=\mathrm{dh}-\mathrm{v} \cdot \mathrm{dp}$
[W 2.21]

$$
\begin{gather*}
\mathrm{dh}=\mathrm{c}_{\mathrm{po}} \cdot \mathrm{dT} \quad \text { and } \ldots \quad \mathrm{p} \cdot \mathrm{v}=\mathrm{R} \cdot \mathrm{~T} \quad \Rightarrow \quad \mathrm{v}=\mathrm{R} \cdot \frac{\mathrm{~T}}{\mathrm{p}} \quad \Rightarrow \quad \mathrm{~T} \cdot \mathrm{ds}=\mathrm{c}_{\mathrm{p}} \cdot \mathrm{dT}-\mathrm{R} \cdot \frac{\mathrm{~T}}{\mathrm{p}} \cdot \mathrm{dp} \\
\mathrm{ds}=\mathrm{c}_{\mathrm{po}} \cdot \frac{\mathrm{dT}}{\mathrm{~T}}-\mathrm{R} \cdot \frac{\mathrm{dp}}{\mathrm{p}} \quad(7.21) \quad \Rightarrow \mathrm{s}_{2}-\mathrm{s}_{1}=\mathrm{c}_{\mathrm{po}} \cdot \ln \left(\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}\right)-\mathrm{R} \cdot \ln \left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}} \quad \text { (7.23) } \quad \mathrm{c}_{\mathrm{po}}=\right.\text { constant } \tag{7.21}
\end{gather*}
$$

otherwise integrate or use tables
page 211 introduce specific heat
ratio $\gamma$$\quad \begin{aligned} & \gamma=\frac{\mathrm{c}_{\mathrm{po}}}{\mathrm{c}_{\mathrm{vo}}}\end{aligned} \quad$ (7.30) $\quad[\mathrm{W} 2.44] \quad \gamma=\gamma(\mathrm{T}) \quad$ as $\ldots \quad \mathrm{c}=\mathrm{c}(\mathrm{T})$
for constant specific heat $=$ perfect gas
reversible, adiabatic process $\ldots \quad \mathrm{T} \cdot \mathrm{ds}=\mathrm{du}+\mathrm{p} \cdot \mathrm{dv}=0 \quad$ reversible, adiabatic \ldots
for ideal gas

$$
\frac{\mathrm{p}_{1} \cdot \mathrm{v}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{p}_{2} \cdot \mathrm{v}_{2}}{\mathrm{~T}_{2}} \quad \Rightarrow \quad \frac{\mathrm{v}_{1}}{\mathrm{v}_{2}}=\frac{\mathrm{p}_{2}}{\mathrm{~T}_{2}} \cdot \frac{\mathrm{~T}_{1}}{\mathrm{P}_{1}}=\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}} \cdot \frac{\mathrm{p}_{2}}{\mathrm{p}_{1}} \quad \Rightarrow
$$

$$
\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}=\left(\frac{\mathrm{v}_{1}}{\mathrm{v}_{2}}\right)^{\gamma}=\left(\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}} \cdot \frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right)^{\gamma}=\left(\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}\right)^{\gamma} \cdot\left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right)^{\gamma} \quad \Rightarrow \quad\left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right)^{1-\gamma}=\left(\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}\right)^{\gamma} \quad \frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}=\left(\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}\right)^{\frac{\gamma}{1-\gamma}}=\left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)^{\frac{\gamma}{\gamma-1}}
$$

and ... for reversible adiabatic process constant specific heat (ideal gas)

$$
\begin{equation*}
\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}=\left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right)^{\frac{\gamma-1}{\gamma}}=\left(\frac{\mathrm{v}_{1}}{\mathrm{v}_{2}}\right)^{\gamma-1} \tag{W2.47}
\end{equation*}
$$

$$
\text { or } \ldots \quad \text { T. } \mathrm{p}^{\frac{\gamma}{\gamma-1}}=\mathrm{T} \cdot \mathrm{p}^{\frac{1-\gamma}{\gamma}}=\text { constant }
$$

$$
\mathrm{T} \cdot \mathrm{v}^{\gamma-1}=\text { constant }
$$

[W 2.48]

$$
\begin{aligned}
& \mathrm{du}+\mathrm{p} \cdot \mathrm{dv}=\mathrm{c}_{\mathrm{vo}} \cdot \mathrm{dT}+\mathrm{p} \cdot \mathrm{dv} \quad \mathrm{p} \cdot \mathrm{v}=\mathrm{R} \cdot \mathrm{~T} \quad \Rightarrow \quad \mathrm{dT}=\frac{1}{\mathrm{R}} \cdot(\mathrm{p} \cdot \mathrm{dv}+\mathrm{v} \cdot \mathrm{dp}) \\
& 0=c_{v o} \cdot d T+p \cdot d v=\frac{c_{v o}}{R} \cdot(p \cdot d v+v \cdot d p)+p \cdot d v=\frac{c_{v o}}{R} \cdot(p \cdot d v+v \cdot d p)+p \cdot d v=\frac{R}{\gamma-1} \cdot \frac{1}{R} \cdot(p \cdot d v+v \cdot d p)+p \cdot d v \\
& \Rightarrow \quad(p \cdot d v+v \cdot d p)+p \cdot d v(\gamma-1)=v \cdot d p+\gamma \cdot p \cdot d v=0 \quad \Rightarrow \quad \frac{d p}{p}+\gamma \cdot \frac{d v}{v}=0 \quad \text { dividing by } p v \\
& \text { integrating } \ldots \quad \ln (\mathrm{p})+\gamma \cdot \ln (\mathrm{v})=\text { constant or } \ldots \quad \text { p. } \mathrm{v}^{\gamma}=\text { constant } \quad \text { (7.32) 2.49] } \\
& \text { rearranging } \ldots \quad \frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}=\left(\frac{\mathrm{v}_{1}}{\mathrm{v}_{2}}\right)^{\gamma}
\end{aligned}
$$

$$
\begin{align*}
& \text { from above } \quad c_{p o}-c_{v o}=R \quad c_{v o}=c_{p o}-R=\gamma \cdot c_{v o}-R \quad=>\quad c_{v o} \cdot(1-\gamma)=-R \\
& \text { changing signs ... } \\
& \mathrm{c}_{\mathrm{vo}}=\frac{\mathrm{R}}{\gamma-1} \tag{7.31}\\
& \text { similarly ... } \\
& \mathrm{c}_{\mathrm{po}}-\mathrm{c}_{\mathrm{vo}}=\mathrm{R} \quad \mathrm{c}_{\mathrm{po}}=\mathrm{R}+\mathrm{c}_{\mathrm{vo}}=\mathrm{R}+\frac{\mathrm{c}_{\mathrm{po}}}{\gamma} \quad \Rightarrow \quad \mathrm{c}_{\mathrm{po}} \cdot\left(1-\frac{1}{\gamma}\right)=\mathrm{R}=\mathrm{c}_{\mathrm{po}} \cdot \frac{\gamma-1}{\gamma} \\
& \mathrm{c}_{\mathrm{po}}=\mathrm{R} \cdot \frac{\gamma}{\gamma-1} \tag{7.31}
\end{align*}
$$

to explore the effect of temperature on the coefficients of specific heat the following is provided

to calculate enthalpies at non-standard conditions one approach is to use constant-pressure specific heats from Table A. 9 of Van Wylen and Sonntag ... The applicable temperature range for these materials is $300-3500$ deg K with less than approximately 0.5 \% maximum error to experimental values. see also figure 5.10 on page 103.

O2

$$
\mathrm{C}_{\mathrm{po} _\mathrm{O} 2}(\theta):=37.432+0.020102 \cdot \theta^{1.5}-178.57 \cdot \theta^{-1.5}+236.88 \cdot \theta^{-2} \frac{\mathrm{~kJ}}{\mathrm{kmol} \cdot \mathrm{~K}}
$$

$\theta=\frac{\mathrm{T}}{100} \quad \begin{aligned} & \mathrm{T} \text { in deg }\end{aligned}$

C_O2

$$
\mathrm{C}_{\text {po_C_O2 }}(\theta):=-3.7357+30.529 \cdot \theta^{0.5}-4.1034 \cdot \theta+0.024198 \cdot \theta^{2} \quad \frac{\mathrm{~kJ}}{\mathrm{kmol} \cdot \mathrm{~K}}
$$

given in kJ/kmole*K so divide by molecular weight to get $\mathrm{kJ} / \mathrm{kg} * \mathrm{~K}$
N2

$$
\mathrm{C}_{\mathrm{po} _\mathrm{N} 2}(\theta):=39.060-512.79 \cdot \theta^{-1.5}+1072.7 \cdot \theta^{-2}-820.40 \cdot \theta^{-3} \frac{\mathrm{~kJ}}{\mathrm{kmol} \cdot \mathrm{~K}}
$$

H2_O

$$
\mathrm{C}_{\mathrm{po} _\mathrm{H} 2 _0}(\theta):=143.05-183.54 \cdot \theta^{0.25}+82.751 \cdot \theta^{0.5}-3.6989 \cdot \theta \quad \frac{\mathrm{~kJ}}{\mathrm{kmol} \cdot \mathrm{~K}}
$$

air based on volumetric average as these are on mole basis ...
air

$$
\begin{gathered}
\mathrm{C}_{\mathrm{po} _ \text {air }}(\theta):=0.21 \cdot \mathrm{C}_{\mathrm{po} _\mathrm{O} 2}(\theta)+0.79 \cdot \mathrm{C}_{\mathrm{po}}(\mathrm{~N} 2(\theta) \\
\mathrm{T}_{\mathrm{N}}:=300 . .3500
\end{gathered}
$$

Temperature deg K

Temperature deg K
relatively constant at reasonably low temperatures
the next section was added Nov 2005 to organize plots for Brayton and dual (Seiliger) cycles

applications of above relationships to processes

$$
\underset{\mathrm{R}}{\mathrm{R}}:=0.287 \quad \gamma:=1.4 \quad \mathrm{c}_{\mathrm{po}}:=1.0035 \quad \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \quad \mathrm{c}_{\mathrm{vo}}:=\frac{\mathrm{c}_{\mathrm{po}}}{\gamma} \quad \mathrm{c}_{\mathrm{vo}}=0.717
$$

units assumed are $p=$ bar, $v=m^{3} / \mathrm{kg}, \mathrm{T}=\mathrm{K}, \mathrm{s}=\mathrm{kJ} / \mathrm{kg}{ }^{*} \mathrm{~K}$ 100 necesary for consistency in numerical calculations without units.

isentropic adiabatic compression (expansion)

\qquad pressure ratio known

$$
\begin{array}{ccc}
\mathrm{p}_{\text {initial }}:=1 & \mathrm{~T}_{\text {initial }}:=400 \quad \mathrm{~s}_{\text {initial }}:=1 \quad \mathrm{v}_{\text {initial }}:=\frac{\mathrm{R} \cdot \mathrm{~T}_{\text {initial }}}{\mathrm{p}_{\text {initial }} \cdot 100} \quad \mathrm{v}_{\text {initial }}=1.148 \\
\mathrm{P}_{\text {final }}:=10 \quad \mathrm{~T}_{\text {final }}:=\mathrm{T}_{\text {initial }}\left(\frac{\mathrm{p}_{\text {final }}}{\mathrm{p}_{\text {initial }}}\right)^{\frac{\gamma-1}{\gamma}} \\
\mathrm{~T}_{\text {final }}=772.279 & \mathrm{~s}_{\text {final }}:=\mathrm{s}_{\text {initial }} \quad \mathrm{v}_{\text {final }}:=\mathrm{v}_{\text {initial }} \cdot\left(\frac{\mathrm{p}_{\text {initial }}}{\mathrm{P}_{\text {final }}}\right)^{\frac{1}{\gamma}} \\
\mathrm{~s}_{\text {final }}=1 & \mathrm{v}_{\text {final }}=0.222
\end{array}
$$

$p-v$ plot parameterized on either p or v say p
$\delta \mathrm{p}:=\frac{\mathrm{p}_{\text {final }}-\mathrm{p}_{\text {initial }}}{20} \quad$ to plot 20 points and accomodate increases and decreases

v_{p} plot $(\mathrm{pp}):=\mathrm{v}_{\text {initial }}\left(\frac{\mathrm{p}_{\text {initial }}}{\mathrm{pp}}\right)^{\frac{1}{\gamma}} \quad$ Ts_plot $:=\left(\begin{array}{cc}\mathrm{T}_{\text {initial }} & s_{\text {initial }} \\ \mathrm{T}_{\text {final }} & \mathrm{s}_{\text {final }}\end{array}\right) \quad$ Ts_plot $=\left(\begin{array}{cc}400 & 1 \\ 772.279 & 1\end{array}\right)$

isentropic adiabatic compression (expansion)

 volume ratio knownvinitialal:= 1
$\mathrm{T}_{\text {iniditial }}:=400$
Sinitian: $:=1 \quad$ Linitiall $:=\frac{\mathrm{R} \cdot \mathrm{T}_{\text {initial }}}{\mathrm{v}_{\text {initial }} \cdot 100} \quad \mathrm{p}_{\text {initial }}=1.148$

$$
\begin{aligned}
& \mathrm{V}_{\text {finadh }}:=\frac{1}{10} \quad \mathrm{~T}_{\text {finad }}:=\mathrm{T}_{\text {initial }}\left(\frac{\mathrm{v}_{\text {initial }}}{\mathrm{v}_{\text {final }}}\right)^{\gamma-1} \quad \mathrm{~s}_{\text {finall }}:=\mathrm{s}_{\text {initial }} \\
& \mathrm{s}_{\text {final }}=1 \\
& \text { Dfinadh }:=\mathrm{p}_{\text {initial }}\left(\frac{\mathrm{v}_{\text {initial }}}{\mathrm{v}_{\text {final }}}\right)^{\gamma} \\
& \mathrm{P}_{\text {final }}=28.836
\end{aligned}
$$

$p-v$ plot parameterized on either p or v say p
$\delta p:=\frac{\mathrm{P}_{\text {final }}-\mathrm{p}_{\text {initial }}}{20}$ to plot 20 points and accomodate increases and decreases

$$
\mathrm{pp}:=\mathrm{p}_{\text {initial }}, \mathrm{p}_{\text {initial }}+\delta \mathrm{p} . . \mathrm{p}_{\text {final }} \quad \mathrm{T}-\mathrm{s} \text { is straight line, need } 2 \text { points }
$$

$$
\operatorname{pv_ plot}(\mathrm{pp}):=\mathrm{v}_{\text {initial }} \cdot\left(\frac{\mathrm{p}_{\text {initial }}}{\mathrm{pp}}\right)^{\frac{1}{\gamma}} \quad \text { Ts_plot }:=\left(\begin{array}{cc}
\mathrm{T}_{\text {initial }} & \mathrm{s}_{\text {initial }} \\
\mathrm{T}_{\text {final }} & \mathrm{s}_{\text {final }}
\end{array}\right) \quad \text { Ts_plot }=\left(\begin{array}{cc}
400 & 1 \\
1.005 \times 10^{3} & 1
\end{array}\right)
$$

or
v

$$
\delta \mathrm{v}:=\frac{\mathrm{v}_{\text {final }}-\mathrm{v}_{\text {initial }}}{20} \quad \text { to plot } 20 \text { points and accomodate increases and decreases }
$$

set up to go from $T_{\text {initial }}$ to $T_{\text {final }}$ at $p=$ constant, $s_{\text {initial }}$ assumed $=1$

$$
\begin{array}{llll}
T_{\text {innitialh }} & =298 & s_{\text {minitiah }}:=1 & p_{\text {constant }}:=3 \text { bar }
\end{array} v_{\text {initial }}=1
$$

$\mathrm{T}_{\text {finarah }}=500 \quad$ final end state calculation

$$
s_{\text {sfinalk }}:=s_{\text {initial }}+\mathrm{c}_{\mathrm{po}} \cdot \ln \left(\frac{\mathrm{~T}_{\text {final }}}{\mathrm{T}_{\text {initial }}}\right) \quad \mathrm{s}_{\text {final }}=1.519 \quad \quad \mathrm{v}_{\text {final }}=0.1
$$

> inbetween states for plotting
$p-v$ is a straight line
needing only end
points to plot
if desired for a simulation where interim p v points are required, choose one parameter, e.g. T or v and calculate v or T using $\mathrm{pv} / \mathrm{T}=\mathrm{R}$ for the other

$$
\mathrm{TT}:=\mathrm{T}_{\text {initial }} \cdot \mathrm{T}_{\text {final }}
$$

$$
\mathrm{s}_{\mathrm{plot}}(\mathrm{TT}):=\left(\mathrm{s}_{\text {initial }}+\mathrm{c}_{\mathrm{po}} \cdot \ln \left(\frac{\mathrm{TT}}{\mathrm{~T}_{\text {initial }}}\right)\right)
$$

$$
\begin{aligned}
& \text { pvoplot: }=\left(\begin{array}{ll}
\mathrm{p}_{\text {constant }} & \mathrm{v}_{\text {initial }} \\
\mathrm{p}_{\text {constant }} & \mathrm{v}_{\text {final }}
\end{array}\right) \\
& \text { pv_plot }=\left(\begin{array}{cc}
3 & 1 \\
3 & 0.1
\end{array}\right)
\end{aligned}
$$

\qquad
set up to go from $\mathrm{T}_{\text {initial }}$ to $\mathrm{T}_{\text {final }}$ at $\mathrm{v}=$ constant, $\mathrm{s}_{\text {initial }}$ assumed $=1$
$\mathrm{T}_{\text {initial }}:=450 \quad$ sinitiadh $^{\text {min }}=1 \quad \mathrm{v}_{\text {constant }}:=0.3 \quad$ pinitial $:=\frac{\mathrm{R} \cdot \mathrm{T}_{\text {initial }}}{\mathrm{v}_{\text {constant }} \cdot 100} \quad \mathrm{p}_{\text {initial }}=4.305$
$T_{\text {finad }}:=298 \quad$ final end state calculation
$\mathrm{s}_{\text {final }}:=\mathrm{s}_{\text {initial }}+\mathrm{c}_{\mathrm{vo}} \cdot \ln \left(\frac{\mathrm{T}_{\text {final }}}{\mathrm{T}_{\text {initial }}}\right) \quad \mathrm{s}_{\text {final }}=0.705 \quad \quad \mathrm{P}_{\text {fiadah }}:=\frac{\mathrm{R} \cdot \mathrm{T}_{\text {final }}}{\mathrm{v}_{\text {constant }} \cdot 100} \quad \mathrm{p}_{\text {final }}=2.851$
inbetween states for plotting \qquad
$p-v$ is a straight line needing only end
points to plot

$$
\begin{gathered}
\text { pv_plot }:=\left(\begin{array}{cc}
\mathrm{p}_{\text {initial }} & \mathrm{v}_{\text {constant }} \\
\mathrm{p}_{\text {final }} & \mathrm{v}_{\text {constant }}
\end{array}\right) \\
\text { pv_plot }=\left(\begin{array}{cc}
4.305 & 0.3 \\
2.851 & 0.3
\end{array}\right)
\end{gathered}
$$

if desired for a simulation where interim p v points are required, choose one parameter, e.g. T or v and calculate v or T using $p v / T=R$ for the other

$$
\begin{gathered}
\mathrm{TT}:=\mathrm{T}_{\text {initial }} . \mathrm{T}_{\text {final }} \\
\mathrm{s}_{\text {mpdati }}(\mathrm{TT}):=\left(\mathrm{s}_{\text {initial }}+\mathrm{c}_{\mathrm{vo}} \cdot \ln \left(\frac{\mathrm{TT}}{\mathrm{~T}_{\text {initial }}}\right)\right)
\end{gathered}
$$

