PROPERTIES OF GASES

Equation of State

For a perfect gas: $\quad \mathrm{pv}=\mathrm{RT}$
where p is pressure, $\mathrm{N} / \mathrm{m}^{2}, \mathrm{~Pa}$, or kPa
v is specific volume, $\mathrm{m}^{3} / \mathrm{kg}$
T is absolute temperature, ${ }^{\circ} \mathrm{K}$
R is the gas constant, $\mathrm{J} / \mathrm{kgK}$ or $\mathrm{kJ} / \mathrm{kgK}$ and $\mathrm{R}=\mathscr{R} / \mathrm{M}$
where \mathscr{R} is the Universal Gas Constant $=8.3144 \mathrm{~kJ} / \mathrm{kmole} \mathrm{K}$
M is the molecular weight, e.g. for air $\mathrm{M}_{\mathrm{air}}=28.96 \mathrm{~kg} / \mathrm{kmol}, \mathrm{R}_{\mathrm{air}}=0.2871 \mathrm{~kJ} / \mathrm{kgK}$.

Other Properties

At moderate temperatures and pressures the properties internal energy and enthaply are assumed to be independent of pressure.

$$
u=u(T, M) \text { or for a particular gas } u=u(T)
$$

and $\quad \mathrm{h}=\mathrm{h}(\mathrm{T}, \mathrm{M})$ or $\mathrm{h}=\mathrm{h}(\mathrm{T})$
specific heats:

$$
\mathrm{c}_{\mathrm{v}}=\mathrm{du} / \mathrm{dT}, \mathrm{c}_{\mathrm{p}}=\mathrm{dh} / \mathrm{dt}, \text { and } \mathrm{c}_{\mathrm{p}} / \mathrm{c}_{\mathrm{v}}=\gamma
$$

since $\mathrm{h}=\mathrm{u}+\mathrm{pv}=\mathrm{u}+\mathrm{RT}$, then $\mathrm{dh} / \mathrm{dT}=\mathrm{du} / \mathrm{dT}+\mathrm{R}$. Thus $\mathrm{c}_{\mathrm{p}}=\mathrm{c}_{\mathrm{v}}+\mathrm{R}$ and

$$
\mathrm{c}_{\mathrm{p}}-\mathrm{c}_{\mathrm{v}}=\mathrm{R}, \text { or } \mathrm{R}=\mathrm{c}_{\mathrm{p}}(\gamma-1) / \gamma
$$

Second Law

$\mathrm{Tds}=\mathrm{dh}-\mathrm{vdp}$

$$
\therefore \mathrm{ds}=\mathrm{dh} / \mathrm{T}-\mathrm{vdp} / \mathrm{T}=\mathrm{dh} / \mathrm{T}-\mathrm{R} \mathrm{dp} / \mathrm{p}
$$

for an isentropic process $\mathrm{ds}=0$

$$
\therefore \mathrm{dh} / \mathrm{T}=\mathrm{R} \mathrm{dp} / \mathrm{p}
$$

This expression may be integrated to give
$\int_{T_{1}}^{T_{2 s}} c_{p} \frac{d T}{T}=R * \ln \frac{p_{2}}{p_{1}}$
For the special case where the specific heats remain constant this equation may be written as:

$$
\frac{T_{2 s}}{T_{1}}=\left(\frac{p_{2}}{p_{1}}\right)^{\frac{R}{c_{p}}}=\left(\frac{p_{2}}{p_{1}}\right)^{\frac{\gamma-1}{\gamma}}
$$

