Ref: Woud 2.3

Electrical Overview

$$
\begin{array}{llll}
I=\frac{Q}{t} & Q=\text { charge } & C=1 C & C=1 \text { coul } \tag{2.50}\\
& t=\text { time } & \min =60 \mathrm{~s} & \mathrm{~s}=1 \mathrm{~s} \\
& I=\text { current } & A=1 A &
\end{array}
$$

N.B. this is a long note and repeats much of what is is the text
work done per unit charge = potential difference two points aka electromotive force (EMF)

$$
\begin{equation*}
\text { Power }=\mathrm{U}(\mathrm{t}) \cdot \mathrm{I}(\mathrm{t}) \quad 1 \mathrm{~V} \cdot 1 \mathrm{~A}=1 \mathrm{~W} \quad 1 \mathrm{~V} \cdot 1 \mathrm{~A}=1 \text { watt } \tag{2.51}
\end{equation*}
$$

source, resistance, inductance, capacitance

resistance

resistance $=\mathrm{R} \quad \Omega=1 \Omega \quad$ ohm $=1 \Omega \quad$ friction in mechanical system
Ohm's law

$$
\begin{equation*}
\mathrm{U}(\mathrm{t})=\mathrm{I}(\mathrm{t}) \cdot \mathrm{R} \tag{2.52}
\end{equation*}
$$

power in a resistor ..

$$
\begin{equation*}
\text { Power }=\mathrm{U}(\mathrm{t}) \cdot \mathrm{I}(\mathrm{t})=\mathrm{I}(\mathrm{t})^{2} \cdot \mathrm{R} \tag{2.53}
\end{equation*}
$$

$1 \Omega \cdot(1 \mathrm{~A})^{2}=1 \mathrm{~W}$

inductance

mass of inertia in mechanical system
inductance $=\mathrm{L}$
$\mathrm{H}=1 \mathrm{H}$
henry $=1 \mathrm{H}$
$\mathrm{U}(\mathrm{t})=\mathrm{L} \cdot \frac{\mathrm{d}}{\mathrm{dt}} \mathrm{I}(\mathrm{t})$

$$
\begin{equation*}
\text { or } \ldots \quad \mathrm{I}(\mathrm{t})=\int_{0}^{\mathrm{t}} \frac{\mathrm{U}(\mathrm{t})}{\mathrm{L}} \mathrm{dt} \quad \frac{\mathrm{~V} \cdot \mathrm{~s}}{\mathrm{H}}=1 \mathrm{~A} \tag{2.54}
\end{equation*}
$$

$$
\begin{array}{ll}
\mathrm{H} \cdot \frac{\mathrm{~A}}{\mathrm{~s}}=1 \mathrm{~V} & \text { or } \ldots \tag{2.55}\\
\mathrm{I}(\mathrm{t})=\int_{0}^{\mathrm{t}} \frac{\mathrm{U}(\mathrm{t})}{\mathrm{L}} \\
\mathrm{P}=\mathrm{U} \cdot \mathrm{I}=\mathrm{L} \cdot \mathrm{I} \cdot\left(\frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{I}\right) & \mathrm{H} \cdot \mathrm{~A} \cdot \frac{\mathrm{~A}}{\mathrm{~s}}=1 \mathrm{~W}
\end{array}
$$

inductive_energy_stored $=\mathrm{E}_{\mathrm{ind}}=\int_{0}^{\mathrm{t}} \mathrm{P}(\mathrm{t}) \mathrm{dt}=\int_{0}^{\mathrm{t}} \mathrm{L} \cdot \mathrm{I} \cdot\left(\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{I}\right) \mathrm{dt}=\int_{0}^{\mathrm{I}} \mathrm{L} \cdot \mathrm{IdI} \quad \int_{0}^{\mathrm{I}} \mathrm{L} \cdot \mathrm{IdI} \rightarrow \frac{1}{2} \cdot \mathrm{I}^{2} \cdot \mathrm{~L}$

$$
A^{2} \cdot H=1 J
$$

capacitance

spring in mechanical system

$$
\begin{align*}
& \text { capacitance }=\mathrm{C} \quad \mathrm{~F}=1 \mathrm{~F} \quad \text { farad }=1 \mathrm{~F} \\
& \mathrm{I}(\mathrm{t})=\mathrm{C} \cdot \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{U}(\mathrm{t}) \quad \mathrm{F} \cdot \frac{\mathrm{~V}}{\mathrm{~s}}=1 \mathrm{~A} \quad \text { or } \ldots \quad \mathrm{U}(\mathrm{t})=\int_{0}^{\mathrm{t}} \frac{\mathrm{I}(\mathrm{t})}{\mathrm{C}} \mathrm{dt} \quad \frac{\mathrm{~A} \cdot \mathrm{~s}}{\mathrm{~F}}=1 \mathrm{~V} \tag{2.57}\\
& \mathrm{P}=\mathrm{U} \cdot \mathrm{I}=\mathrm{C} \cdot \mathrm{U} \cdot \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{U}(\mathrm{t}) \\
& \mathrm{F} \cdot \mathrm{~V} \cdot \frac{\mathrm{~V}}{\mathrm{~s}}=1 \mathrm{~W} \\
& \text { capacitive_energy_stored }=\mathrm{E}_{\text {cap }}=\int_{0}^{\mathrm{t}} \mathrm{P}(\mathrm{t}) \mathrm{dt}=\int_{0}^{\mathrm{t}} \mathrm{C} \cdot \mathrm{U} \cdot \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{U}(\mathrm{t}) \mathrm{dt}=\int_{0}^{\mathrm{U}} \mathrm{C} \cdot \mathrm{UdU} \int_{0}^{\mathrm{U}} \mathrm{C} \cdot \mathrm{UdU} \rightarrow \frac{1}{2} \cdot \mathrm{U}^{2} \cdot \mathrm{C} \tag{2.58}
\end{align*}
$$

$$
\mathrm{V}^{2} \cdot \mathrm{~F}=1 \mathrm{~J}
$$

Kirchhoff's laws

first ...

$$
\begin{align*}
\text { sum_of_currents_towards_node }=0 & \sum_{i=1}^{\text {number_of_currents }} \\
& {\left[I_{i}(t)\right]=0 } \\
\text { sum_of_voltages_around_closed_path }=0 & \text { direction specified } \tag{2.60}
\end{align*}
$$

second ...
sum_of_voltages_around_closed_path $=0$

$$
\sum_{\mathrm{i}=1}^{\text {number_of_voltages }}\left[\mathrm{U}_{\mathrm{i}}(\mathrm{t})\right]=0
$$

series connection of resistance and inductance ...

$$
\begin{array}{cll}
\text { imposed } \ldots \text { external } & \mathrm{U}(\mathrm{t}):=\mathrm{U}_{\mathrm{m}} \cdot \cos (\omega \cdot \mathrm{t}) & \mathrm{U}=\text { amplitude_of_voltage } \\
& & \mathrm{V}=1 \mathrm{~V} \\
& & \mathrm{t}=\text { frequency } \tag{2.63}\\
\text { resulting current assumed also harmonic } & \mathrm{I}(\mathrm{t}):=\mathrm{I}_{\mathrm{m}} \cdot \cos (\omega \cdot \mathrm{t}-\phi) & \mathrm{I}_{\mathrm{m}}=\text { amplitude_of_current }
\end{array} \quad \mathrm{A}=1 \mathrm{amp}
$$

it is useful to represent this parameters as vectors using complex notation, where the values are represented by the real parts

$$
\mathrm{Uz}(\mathrm{t}):=\mathrm{U}_{\mathrm{m}} \cdot \cos (\omega \cdot \mathrm{t})+\mathrm{U}_{\mathrm{m}} \cdot \sin (\omega \cdot \mathrm{t}) \cdot \mathrm{i} \quad \mathrm{Iz}(\mathrm{t}):=\mathrm{I}_{\mathrm{m}} \cdot \cos (\omega \cdot \mathrm{t}-\phi)+\mathrm{I}_{\mathrm{m}} \cdot \cos (\omega \cdot \mathrm{t}-\phi) \cdot \mathrm{i}
$$

\square plotting set up

Real parts of $\mathrm{Uz}(\mathrm{t}), \mathrm{Iz}(\mathrm{t})=\mathrm{U}(\mathrm{t}), \mathrm{I}(\mathrm{t})$
over R voltage drop will be \qquad $\mathrm{U}_{\mathrm{R}}(\mathrm{t}):=\mathrm{R} \cdot \mathrm{I}(\mathrm{t}) \rightarrow \mathrm{R} \cdot \mathrm{I}_{\mathrm{m}} \cdot \cos [(-\omega) \cdot \mathrm{t}+\phi] \quad \mathrm{U}_{\mathrm{R}}(\mathrm{t})=\mathrm{R} \cdot \mathrm{I}_{\mathrm{m}} \cdot \cos (\omega \cdot \mathrm{t}-\phi) \quad \cos (\alpha)=\cos (-\alpha)$ over L voltage drop will be ...

$$
\begin{aligned}
& \mathrm{U}_{\mathrm{L}}(\mathrm{t}):=\mathrm{L} \cdot \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{I}(\mathrm{t}) \rightarrow \mathrm{L} \cdot \mathrm{I}_{\mathrm{m}} \cdot \sin [(-\omega) \cdot \mathrm{t}+\phi] \cdot \omega \\
& \mathrm{L} \cdot \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{I}(\mathrm{t})=-\mathrm{I}_{\mathrm{m}} \cdot \omega \cdot \mathrm{~L} \cdot \sin (\omega \cdot \mathrm{t}-\phi)=\mathrm{I}_{\mathrm{m}} \cdot \omega \cdot \mathrm{~L} \cdot \cos \left(\frac{\pi}{2}+\omega \cdot \mathrm{t}-\phi\right)
\end{aligned}
$$

$\cos \left(\frac{\pi}{2}+\alpha\right) \rightarrow-\sin (\alpha) \quad$ or $\ldots \quad \cos \left(\frac{\pi}{2}+\alpha\right)=\cos \left(\frac{\pi}{2}\right) \cdot \cos (\alpha)-\sin \left(\frac{\pi}{2}\right) \cdot \sin (\alpha)=0 \cdot \cos (\alpha)-1 \cdot \sin (\alpha)$
in complex (vector) notation ...

$$
\begin{aligned}
& \mathrm{Uz}_{\mathrm{R}}(\mathrm{t}):=\mathrm{R} \cdot \mathrm{I}_{\mathrm{m}} \cdot \cos (\omega \cdot \mathrm{t}-\phi)+\mathrm{R} \cdot \mathrm{I}_{\mathrm{m}} \cdot \sin (\omega \cdot \mathrm{t}-\phi) \cdot \mathrm{i} \\
& \mathrm{Uz}_{\mathrm{L}}(\mathrm{t}):=\mathrm{I}_{\mathrm{m}} \cdot \omega \cdot \mathrm{~L} \cdot \cos \left(\frac{\pi}{2}+\omega \cdot \mathrm{t}-\phi\right)+\mathrm{I}_{\mathrm{m}} \cdot \omega \cdot \mathrm{~L} \cdot \sin \left(\frac{\pi}{2}+\omega \cdot \mathrm{t}-\phi\right) \cdot \mathrm{i}
\end{aligned}
$$

1-plotting set up

Real parts of $\mathrm{Uz}(\mathrm{t}), \operatorname{UzR}(\mathrm{t}), \mathrm{UzL}(\mathrm{t})=\mathrm{U}(\mathrm{t}), \mathrm{UR}(\mathrm{t}), \mathrm{UL}(\mathrm{t})$
at this point these vectors are shown with two unknowns included I_{m} and ϕ
i.e. directions are correct relatively given ϕ and magnitudes arbitrary given I_{m}

Kirchoff's second law ...

$$
\begin{aligned}
& \mathrm{U}(\mathrm{t}):=\mathrm{U}_{\mathrm{R}}(\mathrm{t})+\mathrm{U}_{\mathrm{L}}(\mathrm{t}) \rightarrow \mathrm{R} \cdot \mathrm{I}_{\mathrm{m}} \cdot \cos [(-\omega) \cdot \mathrm{t}+\phi]+\mathrm{L} \cdot \mathrm{I}_{\mathrm{m}} \cdot \sin [(-\omega) \cdot \mathrm{t}+\phi] \cdot \omega \\
& \mathrm{U}_{\mathrm{m}} \cdot \cos (\omega \cdot \mathrm{t})=\mathrm{R} \cdot \mathrm{I}_{\mathrm{m}} \cdot \cos (\omega \cdot \mathrm{t}-\phi)+\mathrm{L} \cdot \mathrm{I}_{\mathrm{m}} \cdot \omega \cdot \cos \left(\frac{\pi}{2}+\omega \cdot \mathrm{t}-\phi\right)
\end{aligned}
$$

this can be solved for ϕ and I_{m} after expanding the rhs into sines and cosines and setting cos $=\cos$ and $\sin =\sin$ easier if think in terms of vectors

Real parts of $\mathrm{Uz}(\mathrm{t}), \mathrm{UzR}(\mathrm{t}), \mathrm{UzL}(\mathrm{t})=\mathrm{U}(\mathrm{t}), \mathrm{UR}(\mathrm{t}), \mathrm{UL}(\mathrm{t})$
for $U z R(t)+z L(t)$ to $=U z(t)$ magnitude and angle must be $=$

$$
\mathrm{Uz}(\mathrm{t}) \rightarrow \mathrm{U}_{\mathrm{m}} \cdot \cos (\omega \cdot \mathrm{t})+\mathrm{i} \cdot \mathrm{U}_{\mathrm{m}} \cdot \sin (\omega \cdot \mathrm{t})
$$

$$
U_{m}=\sqrt{\left(\mathrm{R} \cdot \mathrm{I}_{\mathrm{m}}\right)^{2}+\left(\mathrm{L} \cdot \mathrm{I}_{\mathrm{m}} \cdot \omega\right)^{2}}=\sqrt{\mathrm{R}^{2}+(\mathrm{L} \cdot \omega)^{2}} \cdot \mathrm{I}_{\mathrm{m}}
$$

$$
\mathrm{Uz}_{\mathrm{R}}(\mathrm{t}) \rightarrow \mathrm{R} \cdot \mathrm{I}_{\mathrm{m}} \cdot \cos [(-\omega) \cdot \mathrm{t}+\phi]-\mathrm{i} \cdot \mathrm{R} \cdot \mathrm{I}_{\mathrm{m}} \cdot \sin [(-\omega) \cdot \mathrm{t}+\quad
$$

$$
\mathrm{Uz}_{\mathrm{L}}(\mathrm{t}) \rightarrow \mathrm{L} \cdot \mathrm{I}_{\mathrm{m}} \cdot \sin [(-\omega) \cdot \mathrm{t}+\phi] \cdot \omega+\mathrm{i} \cdot \mathrm{I}_{\mathrm{m}} \cdot \omega \cdot \mathrm{~L} \cdot \cos [(-\omega) \cdot \mathrm{t}+\bar{\phi}
$$

$$
\text { or } \ldots \quad I_{m}=\frac{U_{m}}{\sqrt{R^{2}+(L \cdot \omega)^{2}}}
$$

$$
\text { and } \ldots \quad \phi=\operatorname{atan}\left(\frac{\mathrm{L} \cdot \omega}{\mathrm{R}}\right)
$$

using these relationships in the plot ...

[^0]

Real parts of $\mathrm{Uz}(\mathrm{t}), \mathrm{UzR}(\mathrm{t}), \mathrm{UzL}(\mathrm{t})$ etc. $=\mathrm{U}(\mathrm{t}), \mathrm{UR}(\mathrm{t})$, $\mathrm{UL}(\mathrm{t})$, etc.
N.B. angle may not appear as right angle due to scales ϕ shown as lag (positive value with negative sign)

- capacitor lead approach (text)

similar for Capacitance

$$
\begin{array}{lll}
\text { imposed } \ldots \text { external } \quad \mathrm{U}(\mathrm{t}):=\mathrm{U}_{\mathrm{m}} \cdot \cos (\omega \cdot \mathrm{t}) & \mathrm{U}_{\mathrm{m}}=\text { amplitude_of_voltage } & \mathrm{V}=1 \mathrm{~V} \\
& \omega=\text { frequency } & \mathrm{Hz}=1 \frac{1}{\mathrm{~s}} \quad \mathrm{~min}=60 \mathrm{~s} \tag{2.62}
\end{array}
$$

this is different from text: lag phase angle vs. lead angle used

resulting current assumed also harmonic $\quad \mathrm{I}(\mathrm{t}):=\mathrm{I}_{\mathrm{m}} \cdot \cos (\omega \cdot \mathrm{t}-\phi) \quad \mathrm{I}_{\mathrm{m}}=$ amplitude_of_current $\quad \mathrm{V}=1 \mathrm{~V}$
current assumed to have lag angle. this approach taken to allow common treatment of L and C in circuits

$$
\phi=\text { phase_lag_angle }
$$

complex (vector) representation, set up with real part expressed as cos

$$
\mathrm{Uz}(\mathrm{t})=\mathrm{U}_{\mathrm{m}} \cdot \cos (\omega \cdot \mathrm{t})+\mathrm{U}_{\mathrm{m}} \cdot \sin (\omega \cdot \mathrm{t}) \cdot \mathrm{i} \quad \mathrm{Iz}(\mathrm{t})=\mathrm{I}_{\mathrm{m}} \cdot \cos (\omega \cdot \mathrm{t}-\phi)+\mathrm{I}_{\mathrm{m}} \cdot \sin (\omega \cdot \mathrm{t}-\phi) \cdot \mathrm{i}
$$

[^1]voltage and current at omega*t positive lag phase angle

voltage across capacitor (from above)
(2.57)
$$
\mathrm{U}_{\mathrm{C}}(\mathrm{t})=\int_{0}^{\mathrm{t}} \frac{\mathrm{I}(\mathrm{t})}{\mathrm{C}} \mathrm{dt}=\int_{0}^{\mathrm{t}} \frac{\mathrm{I}_{\mathrm{m}} \cdot \cos (\omega \cdot \mathrm{t}-\phi)}{\mathrm{C}} \mathrm{dt}=\frac{\mathrm{I}_{\mathrm{m}} \cdot \sin (\omega \cdot \mathrm{t}-\phi)}{\mathrm{C} \cdot \omega}=\frac{\mathrm{I}_{\mathrm{m}}}{\mathrm{C} \cdot \omega} \cdot \cos \left(\omega \cdot \mathrm{t}-\phi-\frac{\pi}{2}\right)
$$
using complex (vector) notation
\[

$$
\begin{gathered}
\mathrm{Uz}(\mathrm{t}):=\mathrm{U}_{\mathrm{m}} \cdot \cos (\omega \cdot \mathrm{t})+\mathrm{U}_{\mathrm{m}} \cdot \sin (\omega \cdot \mathrm{t}) \cdot \mathrm{i}(\mathrm{t}):=\mathrm{I}_{\mathrm{m}} \cdot \cos (\omega \cdot \mathrm{t}-\phi)+\mathrm{I}_{\mathrm{m}} \cdot \cos (\omega \cdot \mathrm{t}-\phi) \cdot \mathrm{i} \\
\mathrm{Uz}_{\mathrm{C}}(\mathrm{t}):=\frac{\mathrm{I}_{\mathrm{m}}}{\mathrm{C} \cdot \omega} \cdot \cos \left(\omega \cdot \mathrm{t}-\phi-\frac{\pi}{2}\right)+\frac{\mathrm{I}_{\mathrm{m}}}{\mathrm{C} \cdot \omega} \cdot \sin \left(\omega \cdot \mathrm{t}-\phi-\frac{\pi}{2}\right) \cdot \mathrm{i} \\
\mathrm{Uz}_{\mathrm{R}}(\mathrm{t}):=\mathrm{R} \cdot \mathrm{I}_{\mathrm{m}} \cdot \cos (\omega \cdot \mathrm{t}-\phi)+\mathrm{R} \cdot \mathrm{I}_{\mathrm{m}} \cdot \sin (\omega \cdot \mathrm{t}-\phi) \cdot \mathrm{i}
\end{gathered}
$$
\]

Kirchoff's second law for resistor with capacitor...
$\mathrm{Uz}(\mathrm{t}):=\mathrm{Uz}_{\mathrm{R}}(\mathrm{t})+\mathrm{Uz}_{\mathrm{C}}(\mathrm{t}) \rightarrow \Omega \cdot \mathrm{I}_{\mathrm{m}} \cdot \cos [(-\omega) \cdot \mathrm{t}+\phi]-\mathrm{i} \cdot \Omega \cdot \mathrm{I}_{\mathrm{m}} \cdot \sin [(-\omega) \cdot \mathrm{t}+\phi]-\frac{\mathrm{I}_{\mathrm{m}}}{\mathrm{C} \cdot \omega} \cdot \sin [(-\omega) \cdot \mathrm{t}+\phi]-\mathrm{i} \cdot \frac{\mathrm{I}_{\mathrm{m}}}{\mathrm{C} \cdot \omega} \cdot \cos [(-\omega) \cdot \mathrm{t}+\phi]$
D-plotting set up

N.B. angle is distorted due to scales; angle between $\mathrm{UzR}(\mathrm{t})$ and $\mathrm{UzC}(\mathrm{t})$ is $\pi / 2)$

Real parts of $U z(t), U z R(t), U z C(t)$ etc. $=U(t), U R(t), U C(t)$, etc.
$U z(t)=U_{m} \cdot \cos (\omega \cdot t)+U_{m} \cdot \sin (\omega \cdot t)=R \cdot I_{m} \cdot \cos (\omega \cdot t-\phi)+i \cdot R \cdot I_{m} \cdot \sin (\omega \cdot t-\phi)+\frac{I_{m}}{C \cdot \omega} \cdot \sin (\omega \cdot \mathrm{t}-\phi)-i \cdot \frac{I_{m}}{C \cdot \omega} \cdot \cos (\omega \cdot \mathrm{t}-\phi)$
look at solution plotted

用- plotting set up

Real parts of $\mathrm{Uz}(\mathrm{t}), \mathrm{UzR}(\mathrm{t}), \mathrm{UzC}(\mathrm{t})$ etc. $=\mathrm{U}(\mathrm{t}), \mathrm{UR}(\mathrm{t}), \mathrm{UC}(\mathrm{t})$, etc.
$U z(t)=U_{m} \cdot \cos (\omega \cdot t)+U_{m} \cdot \sin (\omega \cdot t)=R \cdot I_{m} \cdot \cos (\omega \cdot t-\phi)+i \cdot R \cdot I_{m} \cdot \sin (\omega \cdot t-\phi)+\frac{I_{m}}{C \cdot \omega} \cdot \sin (\omega \cdot t+\phi)-i \cdot \frac{I_{m}}{C \cdot \omega} \cdot \cos (\omega \cdot t+\phi)$
magnitude similar to above ...

$$
\mathrm{I}_{\mathrm{m}}=\frac{\mathrm{U}_{\mathrm{m}}}{\sqrt{\mathrm{R}^{2}+\frac{1}{(\omega \cdot \mathrm{C})^{2}}}} \quad \begin{aligned}
& \text { phase angle is negative; } \\
& \text { hence referred to as } \\
& \text { lead angle }
\end{aligned} \quad \phi=-\operatorname{atan}\left(\frac{1}{\omega \cdot \mathrm{C} \cdot \mathrm{R}}\right)
$$

N.B. angle may not appear as right angle due to scales ϕ shown as lead (negative value with negative sign) $\quad \phi 1=-26.565 \mathrm{deg}$ in this numerical example
so with both L and C

$$
\phi=\operatorname{atan}\left(\frac{\omega \cdot \mathrm{L}}{\mathrm{R}}-\frac{1}{\omega \cdot \mathrm{C} \cdot \mathrm{R}}\right)
$$

Section 2.3.4

Direct current (DC) $\quad \mathrm{P}=\mathrm{U} \cdot=\mathrm{I}^{2} \cdot \mathrm{R}$

Single phase alternating current (AC)

$$
\mathrm{P}(\mathrm{t})=\mathrm{U}(\mathrm{t}) \cdot \mathrm{I}(\mathrm{t})
$$

typically sinusoidal $\ldots \quad \mathrm{U}(\mathrm{t}):=\mathrm{U}_{\mathrm{m}} \cdot \cos (\omega \cdot \mathrm{t}) \quad \mathrm{I}(\mathrm{t}):=\mathrm{I}_{\mathrm{m}} \cdot \cos (\omega \cdot \mathrm{t}-\phi) \quad$ lag phase angle used
average power $\ldots \quad \mathrm{P}_{\mathrm{a}}:=\lim _{\mathrm{T} \rightarrow \infty}\left(\frac{1}{\mathrm{~T}} \cdot \int_{0}^{\mathrm{T}} \mathrm{U}(\mathrm{t}) \cdot \mathrm{I}(\mathrm{t}) \mathrm{dt}\right) \rightarrow \frac{1}{2} \cdot \mathrm{U}_{\mathrm{m}} \cdot \mathrm{I}_{\mathrm{m}} \cdot \cos (\phi)$
in practice effective values are used

$$
\begin{aligned}
\mathrm{U}_{\mathrm{e}}:=\lim _{\mathrm{T} \rightarrow \infty} \sqrt{\frac{1}{\mathrm{~T}} \cdot \int_{0}^{\mathrm{T}}\left(\mathrm{U}_{\mathrm{m}} \cdot \cos (\omega \cdot \mathrm{t})\right)^{2} \mathrm{dt}} \rightarrow \frac{1}{2} \cdot 2^{\frac{1}{2}} \cdot\left(\mathrm{U}_{\mathrm{m}}{ }^{2}\right)^{\frac{1}{2}} & \mathrm{U}_{\mathrm{e}}:=\frac{\mathrm{U}_{\mathrm{m}}}{\sqrt{2}}
\end{aligned} \mathrm{U}_{\mathrm{e}}=\text { effective_voltage }
$$

$$
\text { so average power becomes } \ldots \quad \quad \mathrm{P}_{\mathrm{a}}:=\mathrm{U}_{\mathrm{e}} \cdot \mathrm{I}_{\mathrm{e}} \cdot \cos (\phi) \quad \cos (\phi)=\text { power_factor }
$$

what is current required in two systems with same effective voltage but larger phase lag?
here forward e subscript dropped and $U==U_{e}, I==I_{e}$
some power and current definitions

$$
\begin{array}{llll}
\text { apparent_power }=\mathrm{V} \cdot \mathrm{~A}=\mathrm{U} \cdot \mathrm{I} & & \mathrm{I}=\text { current } & \mathrm{A}=1 \mathrm{amp} \\
\text { real_power }=\mathrm{U} \cdot \cdot \cos (\phi) & \mathrm{W}=1 \mathrm{~W} & \text { same for current } & \text { load_current }=\mathrm{I} \cdot \cos (\phi) \\
\text { reactive_power }=\mathrm{U} \cdot \mathrm{I} \cdot \sin (\phi) & \mathrm{V} \cdot \mathrm{~A} & & \text { reactive_current }=\mathrm{I} \cdot \sin (\phi)
\end{array} \mathrm{A}=1 \mathrm{amp} \mathrm{amp}
$$

three phase alternating current

$$
\alpha:=\left(\begin{array}{c}
0 \\
2 \cdot \frac{\pi}{3} \\
4 \cdot \frac{\pi}{3}
\end{array}\right)
$$

phase angle for respective phases
and ...

$$
\begin{aligned}
& \text { ORIGIN }:=1 \\
& \quad \mathrm{i}:=1 . .3 \\
& \mathrm{U}_{\mathrm{p}_{\mathrm{i}}}:=\mathrm{U}_{\mathrm{m}} \cdot \cos \left(\omega \cdot \mathrm{t}-\alpha_{\mathrm{i}}\right) \\
& \mathrm{I}_{\mathrm{p}_{\mathrm{i}}}:=\mathrm{I}_{\mathrm{m}} \cdot \cos \left(\omega \cdot \mathrm{t}-\alpha_{\mathrm{i}}-\phi\right)
\end{aligned}
$$

$$
\sum_{\mathrm{i}=1}^{3} \mathrm{U}_{\mathrm{p}_{\mathrm{i}}} \text { expand } \rightarrow 0
$$

$$
\sum_{\mathrm{i}=1}^{3} \mathrm{I}_{\mathrm{p}_{\mathrm{i}}} \text { expand } \rightarrow 0
$$

star connection ... $\quad \mathrm{I}_{\mathrm{L}_{1}}=\mathrm{I}_{\mathrm{p}_{1}} \quad \mathrm{I}_{\mathrm{L}_{2}}=\mathrm{I}_{\mathrm{p}_{2}} \quad \mathrm{I}_{\mathrm{L}_{3}}=\mathrm{I}_{\mathrm{p}_{3}}$

$$
\begin{array}{ccc}
\mathrm{i}:=1 . .2 & \mathrm{U}_{\mathrm{L}_{\mathrm{i}}}:=\mathrm{U}_{\mathrm{p}_{\mathrm{i}}}-\mathrm{U}_{\mathrm{P}_{\mathrm{i}+1}} & \mathrm{U}_{\mathrm{L}_{3}}:=\mathrm{U}_{\mathrm{P}_{3}}-\mathrm{U}_{\mathrm{P}_{31}} \\
\mathrm{i}:=1 . .3 & \mathrm{Uz}_{\mathrm{p}_{\mathrm{i}}}:=\mathrm{U}_{\mathrm{m}} \cdot \cos \left(\omega \cdot \mathrm{t}-\alpha_{\mathrm{i}}\right)+\mathrm{U}_{\mathrm{m}} \cdot \sin \left(\omega \cdot \mathrm{t}-\alpha_{\mathrm{i}}\right) \cdot \mathrm{i} \\
\mathrm{i}:=1 . .2 & \mathrm{Uz}_{\mathrm{L}_{\mathrm{i}}}:=\mathrm{Uz}_{\mathrm{p}_{\mathrm{i}}}-\mathrm{Uz}_{\mathrm{p}_{\mathrm{i}+1}} & \mathrm{Uz}_{\mathrm{L}_{3}}:=\mathrm{Uz}_{\mathrm{p}_{3}}-\mathrm{Uz}_{\mathrm{p}_{1}}
\end{array}
$$

$\mathrm{i}:=1$.. $3 \quad$ e.g. magnitude is ... from trigonometry...
$\mathrm{U}_{\mathrm{m}}{ }^{*} \quad \sqrt{\left(\cos (\omega \cdot \mathrm{t})+\cos \left(\omega \cdot \mathrm{t}+\frac{\pi}{3}\right)\right)^{2}+\left(\sin (\omega \cdot \mathrm{t})+\sin \left(\omega \cdot \mathrm{t}+\frac{\pi}{3}\right)\right)^{2}} \operatorname{expand} \rightarrow\left(3 \cdot \cos (\omega \cdot \mathrm{t})^{2}+3 \cdot \sin (\omega \cdot \mathrm{t})^{2}\right)^{\frac{1}{2}}$

$$
\begin{equation*}
\text { magnitude }:=U_{m} \cdot \sqrt{3} \tag{2.85}
\end{equation*}
$$

angle relative to $\omega^{* t}\left(\operatorname{set} \omega^{* t}=0\right)$
$\mathrm{Uz}_{\mathrm{L}_{1}} \begin{aligned} & \text { simplify } \\ & \text { substitute, } \mathrm{t}=0\end{aligned} \rightarrow \mathrm{U}_{\mathrm{m}} \cdot \cos (0)+\mathrm{i} \cdot \mathrm{U}_{\mathrm{m}} \cdot \sin (0)+\mathrm{U}_{\mathrm{m}} \cdot \cos \left(\frac{1}{3} \cdot \pi\right)+\mathrm{i} \cdot \mathrm{U}_{\mathrm{m}} \cdot \sin \left(\frac{1}{3} \cdot \pi\right)$
for plotting ... i := 1 .. 3

$$
{\underset{\sim N}{N}}_{\omega 1}^{:=1 \quad \mathrm{~m}_{\mathrm{M}}^{\mathrm{t}}:=0.79} \text { angle }_{\omega \mathrm{t}}=\operatorname{atan}\left(\frac{\sin \left(\frac{\pi}{3}\right)}{1+\cos \left(\frac{\pi}{3}\right)}\right)
$$

$$
\text { angle }_{\omega \mathrm{t}}=\operatorname{atan}\left(\frac{\sin \left(\frac{\pi}{3}\right)}{1+\cos \left(\frac{\pi}{3}\right)}\right) \quad \operatorname{atan}\left(\frac{\sin \left(\frac{\pi}{3}\right)}{1+\cos \left(\frac{\pi}{3}\right)}\right)=30 \mathrm{deg}
$$

$\phi_{1}:=1 \quad \mathrm{U} 1_{m a n}:=1 \quad \mathrm{U1}_{\mathrm{p}_{\mathrm{i}}}:=\mathrm{U} 1_{\mathrm{m}} \cdot \cos \left(\omega 1 \cdot \mathrm{t} 1-\alpha_{\mathrm{i}}\right)$

$$
\mathrm{U} 1 \mathrm{z}_{\mathrm{p}_{\mathrm{i}}}:=\mathrm{U} 1_{\mathrm{m}} \cdot \cos \left(\omega 1 \cdot \mathrm{t} 1-\alpha_{\mathrm{i}}\right)+\mathrm{U} 1_{\mathrm{m}} \cdot \sin \left(\omega 1 \cdot \mathrm{t} 1-\alpha_{\mathrm{i}}\right) \cdot \mathrm{i}
$$

similarly in a delta connection ... current has same geometry

$$
\mathrm{U}_{\mathrm{L}}=\mathrm{U}_{\mathrm{p}} \quad(2.86) \quad \mathrm{I}_{\mathrm{L}}=\mathrm{I}_{\mathrm{p}} \cdot \sqrt{3}
$$

2.3.5 Magnetic induction

$B=\mu \cdot \frac{\mathrm{I}}{2 \cdot \pi \cdot \mathrm{r}} \quad \begin{aligned} & \mathrm{B}=\text { flux_density } \\ & (2.90)\end{aligned} \quad \mathrm{T}=1$ tesla $\quad \mathrm{T}=1 \frac{\mathrm{~Wb}}{\mathrm{~m}^{2}} \quad \mathrm{~T}=1 \underset{\mathrm{amp} \cdot \mathrm{s}^{2}}{\mathrm{~kg}}$
$\mu=$ permeability_of_medium $\quad \frac{\mathrm{H}}{\mathrm{m}}=1 \frac{\mathrm{~m} \cdot \mathrm{~kg}}{\mathrm{~A}^{2} \cdot \mathrm{~s}^{2}} \quad \frac{\mathrm{H}}{\mathrm{m}}=1 \frac{\text { henry }}{\mathrm{m}}$
$\mu=\mu_{0} \cdot \mu_{\mathrm{R}} \quad \quad \mu_{0}=$ permeability_of_vacuum $\quad \mu_{\text {ali }}:=4 \cdot \pi \cdot 10 \frac{7}{\mathrm{H}} \frac{\mathrm{H}}{\mathrm{m}}$

$\mu_{\mathrm{R}}=$ permeability_of_medium_relative_to_vacuum unitless
magnetic field around wire carrying current derived from Biot-Savart law
e.g. magnetic field at point P results from motion of charged particle at velocity V in vacuum

$$
\begin{aligned}
& \mu_{0}=\text { permeability_in_vacuum } \quad \mu_{\text {avi }}:=4 \cdot \pi \cdot 10^{-7} \frac{\mathrm{H}}{\mathrm{~m}} \quad \frac{\mathrm{H}}{\mathrm{~m}}=1 \frac{\mathrm{~N}}{\mathrm{~A}^{2}} \quad \frac{\mathrm{H}}{\mathrm{~m}}=1 \frac{\text { newton }}{\mathrm{amp}^{2}} \\
& \mathrm{q}=\text { charge } \quad \mathrm{C}=1 \text { coul } \mathrm{C}=1 \mathrm{~A} \cdot \mathrm{~s} \\
& \overrightarrow{\mathrm{~V}}=\text { velocity_vector_of_charge } \quad \frac{\mathrm{m}}{\mathrm{~s}} \\
& \overrightarrow{a_{r}}=\text { unit_vector_from_charge_q_to_point_P units check } \\
& r=\text { distance_from_P_to_charge m } \\
& \frac{H}{m} \cdot C \cdot \frac{m}{s} \cdot \frac{1}{m^{2}}=1 \mathrm{~T} \\
& \begin{array}{l}
\text { differential } \quad d B=\frac{\mu_{0}}{4 \cdot \pi} \cdot d q \cdot \frac{\overrightarrow{\mathrm{~V}} \times \overrightarrow{\mathrm{a}_{\mathrm{r}}}}{\text { form }_{2}^{2}}
\end{array} \\
& \text { line currents } \ldots \quad q \cdot \vec{V}=I \cdot \overrightarrow{d l} \\
& \text { so .. } \quad \mathrm{dB}=\frac{\mu_{0}}{4 \cdot \pi} \cdot \mathrm{I} \cdot \frac{\overrightarrow{\mathrm{dl}} \times \overrightarrow{\mathrm{a}_{\mathrm{r}}}}{\mathrm{r}^{2}} \quad \mathrm{~B}=\int \frac{\mu_{0}}{4 \cdot \pi} \cdot \frac{\mathrm{I}}{\mathrm{r}^{2}} \overrightarrow{\mathrm{dl}} \times \overrightarrow{\mathrm{a}_{\mathrm{r}}}
\end{aligned}
$$

e.g. long straight wire with current I

$$
\mathrm{dB}=\frac{\mu_{0}}{4 \cdot \pi} \cdot \mathrm{I} \cdot \frac{\overrightarrow{\mathrm{dl}} \times{\overrightarrow{\mathrm{a}_{\mathrm{r}}}}_{\mathrm{r}^{2}}^{\mu_{0}}}{\mathrm{\mu}_{0}} \cdot \frac{\mathrm{dl} \cdot \sin (\theta)}{4 \cdot \pi} \cdot \frac{\mathrm{r}^{2}}{}
$$

see figure at right

$$
\begin{aligned}
& \mathrm{dl} \cdot \sin (\theta)=\mathrm{r} \cdot \mathrm{~d} \alpha \\
& \frac{\mathrm{~d} \cdot \sin (\theta)}{\mathrm{r}^{2}}=\frac{\mathrm{r} \cdot \frac{\mathrm{~d} \alpha}{\sin (\theta)} \cdot \sin (\theta)}{\mathrm{r}^{2}}=\frac{\mathrm{d} \alpha}{\mathrm{r}}
\end{aligned}
$$

geometry for solution set up
$d \alpha$
$\mathrm{dB}=\frac{\mu_{0}}{4 \cdot \pi} \cdot \mathrm{I} \cdot \frac{\overrightarrow{\mathrm{dl}} \times \overrightarrow{\mathrm{a}_{\mathrm{r}}}}{\mathrm{r}^{2}}=\frac{\mu_{0}}{4 \cdot \pi} \cdot \mathrm{I} \cdot \frac{\mathrm{dl} \cdot \sin (\theta)}{\mathrm{r}^{2}}=\frac{\mu_{0}}{4 \cdot \pi} \cdot \mathrm{I} \cdot \frac{\cos (\alpha) \cdot \mathrm{d} \alpha}{\mathrm{R}}$
$B=\int 1 d B=\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \frac{\mu_{0}}{4 \cdot \pi} \cdot \mathrm{I} \cdot \frac{\cos (\alpha)}{\mathrm{R}} \mathrm{d} \alpha \quad \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \frac{\mu_{0}}{4 \cdot \pi} \cdot \mathrm{I} \cdot \frac{\cos (\alpha)}{\mathrm{R}} \mathrm{d} \alpha \rightarrow \frac{1}{2} \cdot \frac{\mu_{0}}{\pi} \cdot \frac{\mathrm{I}}{\Omega} \quad B=\frac{\mu_{0} \cdot \mathrm{I}}{2 \cdot \pi \cdot R} \quad$ Q.E.D.
if area not vacuum, substitute $\mu=\mu_{\mathrm{r}}{ }^{*} \mu_{0} \ldots$

magnetic flux density over an area $A A$

$\Phi:=\int \mathrm{B} \mathrm{dAA} \quad \mathrm{AA}=$ enclosed_area $\quad \begin{aligned} & \text { to distinguish from } \mathrm{A} \\ & \text { (ampere) }\end{aligned} \quad \mathrm{Wb}=1$ weber $\quad \mathrm{Wb}=1 \frac{\mathrm{~kg} \cdot \mathrm{~m}^{2}}{\mathrm{~A} \cdot \mathrm{~s}^{2}} \quad \mathrm{~A}=1 \mathrm{amp}$

Lorentz force

a force will act on a current carrying conductor when it is placed in a magnetic field
$\mathrm{F}_{\mathrm{L}}=\mathrm{B} \cdot \mathrm{I} \cdot$ len

$\mathrm{F}_{\mathrm{L}}=$ Lorentz_force	$\mathrm{N}=1$ newton
$\mathrm{B}=$ flux_density	$\mathrm{T}=1$ tesla
$\mathrm{I}=$ current_thru_conductor	$\mathrm{A}=1 \mathrm{amp}$
len $=$ length	m

$\mathrm{T} \cdot \mathrm{A} \cdot \mathrm{m}=1 \mathrm{~N}$
$F_{L}=I \cdot \overrightarrow{l e n} \times B \quad$ where x is vector cross product and magnitude is
B•I• $\sin ($ angle $)$

view of single coil in magnetic field (B) with current (I) (slightly revised from text; len*sin(β)

top view

| force on one segment (h) of coil | $F=I \times B \cdot h$ | $N \cdot B . I$ is perpendicular to $B=>\quad F=I \cdot B \cdot h$ |
| :--- | :---: | :---: | :---: |
| torque on coil depends on β | $M=F \cdot l e n \cdot \sin (\beta)$ | len $\cdot \sin (\beta)=$ distance_between_couple_of_force_F |

$\mathrm{M}=\mathrm{F} \cdot$ len $\cdot \sin (\beta)=\mathrm{I} \cdot \mathrm{B} \cdot \mathrm{h} \cdot \operatorname{len} \cdot \sin (\beta)=\mathrm{I} \cdot \mathrm{B} \cdot \mathrm{AA} \cdot \sin (\beta)=\mathrm{I} \cdot \Phi \cdot \sin (\beta) \quad \mathrm{AA}=$ area_of_coil $=$ enclosed_area $\quad \mathrm{AA}$ to distinguish from A (ampere)
account for multiple windings (turns) $(\mathrm{N}) \quad \mathrm{M}=\mathrm{N} \cdot \mathrm{I} \cdot \Phi \cdot \sin (\beta)$
general relationship recognizing proportionality to I* Φ

$$
\begin{equation*}
\mathrm{M}=\mathrm{K}_{\mathrm{m}} \cdot \Phi \cdot \mathrm{I} \quad \mathrm{~K}_{\mathrm{m}}=\text { constant_for_given_motor } \tag{2.93}
\end{equation*}
$$

Faraday's Law

Voltage is generated in conductor when moving in magnetic field
$\mathrm{E}=-\mathrm{B} \cdot \operatorname{len} \cdot \mathrm{v}$
$\mathrm{E}=$ induction_potential $\boldsymbol{=}$ electromotive_force $\quad \mathrm{V}=1$ volt
B = flux_density $\quad \mathrm{T}=1$ tesla
$\mathrm{v}=$ velocity $\quad \frac{\mathrm{m}}{\mathrm{s}}$
units check
$\mathrm{T} \cdot \frac{\mathrm{m}}{\mathrm{s}} \cdot \mathrm{m}=1 \mathrm{~V}$
len = length_of_conductor m

E as shown is positive value and direction minus sign is consistent with observation that E as shown would produce a current in the same direction which in turn would produce a force opposite to velocity.
vector form ... $\quad E=-(B \times v)$ •len
consistent with text ... multiply by $\sin (\alpha)$ where α is angle between B and v
may also be expressed as ...

$$
\mathrm{E}=\frac{\mathrm{d}}{\mathrm{dt}} \Phi \quad \begin{align*}
& \text { for single turn and } . . \tag{2.95}\\
& \text { for } \mathrm{N} \text { turns }
\end{align*} \quad \mathrm{E}=-\mathrm{N} \frac{\mathrm{~d}}{\mathrm{dt}} \Phi \quad \frac{\mathrm{~Wb}}{\mathrm{~s}}=1 \mathrm{~V}
$$

$$
\text { since } \ldots \quad \Phi=\mathrm{B} \cdot \text { Area } \quad \mathrm{E}=\frac{\mathrm{d}}{\mathrm{dt}} \Phi=\frac{\mathrm{d}}{\mathrm{dt}}(\mathrm{~B} \cdot \text { Area })=-\mathrm{B} \frac{\mathrm{~d}}{\mathrm{dt}} \text { Area }=-\mathrm{B} \cdot \operatorname{len} \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{x} \quad \text { as } \ldots \quad \text { Area }=\operatorname{len} \cdot \mathrm{x}
$$

in coil rotating in constant magnetic field B

$$
\begin{aligned}
& \Phi=\mathrm{B} \cdot \operatorname{Area} \cdot \cos (\beta)=\mathrm{B} \cdot \operatorname{Area} \cdot \cos (\\
& \omega \cdot t)) \rightarrow \mathrm{E}=\mathrm{N} \cdot \mathrm{~B} \cdot \operatorname{Area} \cdot \sin (\omega \cdot \mathrm{t}) \cdot \omega
\end{aligned}
$$ and with N turns ...

$$
E=-N \frac{d}{d t}(B \cdot \operatorname{Area} \cdot \cos (\omega \cdot t)) \rightarrow E=N \cdot B \cdot \operatorname{Area} \cdot \sin (\omega \cdot t) \cdot \omega
$$

as abve for motor constant ... express ... $\quad \mathrm{E}=\mathrm{K}_{\mathrm{E}} \cdot \Phi \cdot \mathrm{n} \quad \mathrm{K}_{\mathrm{E}}=$ constant_for_given_motor

$$
\begin{array}{ll}
\mathrm{E}=\text { induced_electromotive_force } & \mathrm{V}=1 \text { volt } \\
\Phi=\text { magnetic_flux } & \mathrm{Wb}=1 \text { weber } \\
\mathrm{n}=\text { rotation_speed } & \text { rpm }=0.105 \frac{1}{\mathrm{sec}} \quad 1 \mathrm{~Wb} \cdot 60 \mathrm{rpm}=6.283 \mathrm{~V}
\end{array}
$$

Area $=$ area_enclosed_in_coil

$$
\text { substituting } \ldots \quad \omega=2 \cdot \pi \cdot \mathrm{n} \quad \mathrm{n}=\mathrm{rpm} \quad \mathrm{rpm}=6.283 \frac{\mathrm{rad}}{\mathrm{~min}} \quad \mathrm{E}=\mathrm{N} \cdot 2 \cdot \pi \cdot \mathrm{n} \cdot \mathrm{~B} \cdot \operatorname{Area} \cdot \sin (\omega \cdot \mathrm{t})
$$

$$
\mathrm{K}_{\mathrm{E}}=\text { constant_for_given_motor }
$$

[^0]: 1-plotting set up

[^1]: D-plotting set up

