Ref: Woud 2.3	: Woud 2.3 Electrical Overview				N.B. this is a long note and	
$I = \frac{Q}{Q}$	Q = charge	C = 1 C	C = 1 coul	repeats much c	of what is is the text (2.50)	
t	t = time	$\min = 60 \mathrm{s}$	s = 1 s		(2.00)	
	I = current	$\mathbf{A} = 1 \mathbf{A}$				
work done per unit aka electro	charge = potential differer pmotive force (EMF)	nce two points	U = volts	V = 1 V		
Power = $U(t) \cdot I(t)$		$\cdot 1 A = 1 W$	$1 \mathbf{V} \cdot 1 \mathbf{A} = 1$ watt		(2.51)	
source, resistance, i	nductance, capacitance					
<u>resistance</u>						
resistance $= R$	$\Omega = 1 \Omega$	ohm = 1Ω	fi	riction in mechan	ical system	
Ohm's law	$\mathbf{U}(t) = \mathbf{I}(t) \cdot \mathbf{R}$				(2.52)	
power in a resistor	Power = $U(t) \cdot I(t)$	= $I(t)^2 \cdot R$	$1\Omega \cdot (1A)^2 =$	1 W	(2.53)	
<u>inductance</u>			n	nass of inertia in	mechanical system	
inductance = L	H = 1 H	henry $= 1 H$				
$U(t) = L \cdot \frac{d}{dt} I(t)$	$H \cdot \frac{A}{s} = 1 V$	or I(t)	$= \int_{0}^{t} \frac{U(t)}{L} dt \qquad \frac{V}{H}$	$\frac{1}{H} = 1 \text{ A}$	(2.54)	
	$\mathbf{P} = \mathbf{U} \cdot \mathbf{I} = \mathbf{L} \cdot \mathbf{I} \cdot \left[\frac{\mathbf{d}}{\mathbf{d}t} \right]$	I) H·A	$\frac{A}{s} = 1 W$		(2.55)	
inductive_energy_stor	red = $E_{ind} = \int_0^t P(t) dt = \int_0^t P(t) dt$	$\int_{0}^{t} \mathbf{L} \cdot \mathbf{I} \cdot \left(\frac{\mathrm{d}}{\mathrm{dt}}\mathbf{I}\right) \mathrm{dt} = \int_{0}^{\mathbf{I}} \mathbf{I}$	$\therefore I dI \qquad \int_0^I L$	$\cdot \mathrm{I}\mathrm{d}\mathrm{I} \to \frac{1}{2} \cdot \mathrm{I}^2 \cdot \mathrm{L}$ $\mathrm{A}^2 \cdot \mathrm{H} =$	(2.56) 1 J	
<u>capacitance</u>			spring in mech	anical system		
capacitance = C	F = 1 F	farad = 1 F				
$I(t) = C \frac{d}{dt} U(t)$	$F \cdot \frac{V}{s} = 1 A$ or	$U(t) = \int_0^t \frac{I(t)}{C} dt$	$\frac{\mathbf{A} \cdot \mathbf{s}}{\mathbf{F}} = 1 \mathbf{V}$	V	(2.57)	
I	$P = U \cdot I = C \cdot U \cdot \frac{d}{dt} U(t)$		$F \cdot V \cdot \frac{V}{s} = 1 V$	V		

capacitive_energy_stored = $E_{cap} = \int_0^t P(t) dt = \int_0^t C \cdot U \cdot \frac{d}{dt} U(t) dt = \int_0^U C \cdot U dU \qquad \int_0^U C \cdot U dU \rightarrow \frac{1}{2} \cdot U^2 \cdot C$ (2.58), (2.59) $V^2 \cdot F = 1 J$

Kirchhoff's laws

first ... number_of_currents sum of currents towards node = 0 $\left[I_{i}(t) \right] = 0$ (2.60)second ...

sum of voltages around closed path = 0

direction specified

number_of_voltages $\left[\mathbf{U}_{\mathbf{i}}(\mathbf{t})\right] = \mathbf{0}$ (2.61)

series connection of resistance and inductance

imposed ... external

$$U_{\rm m}$$
 = amplitude_of_voltage $V = 1 V$ (2.62)
 ω = frequency $Hz = 1 \frac{1}{s}$
 $t = time$ $min = 60 s$

resulting current assumed also harmonic $I(t) := I_m \cdot \cos(\omega \cdot t - \phi)$ $I_m = amplitude_of_current$ A = 1 amp

 $\mathbf{U}(\mathbf{t}) := \mathbf{U}_{\mathbf{m}} \cdot \cos(\boldsymbol{\omega} \cdot \mathbf{t})$

ϕ = phase_lag_angle

it is useful to represent this parameters as vectors using complex notation, where the values are represented by the real parts

 $Uz(t) := \frac{\mathbf{U}_{\mathbf{m}}}{\cdot} \cos(\omega \cdot t) + U_{\mathbf{m}} \cdot \sin(\omega \cdot t) \cdot i$ $Iz(t) := \mathbf{I}_{\mathbf{m}} \cdot \cos(\omega \cdot t - \phi) + I_{\mathbf{m}} \cdot \cos(\omega \cdot t - \phi) \cdot i$

plotting set up

Real parts of Uz(t), Iz(t) = U(t), I(t)

 $\text{over R voltage drop will be } \dots \quad U_R(t) \coloneqq R \cdot I_m \cdot \cos[(-\omega) \cdot t + \phi] \\ \qquad U_R(t) = R \cdot I_m \cdot \cos(\omega \cdot t - \phi) \\ \qquad \cos(\alpha) = \cos(-\alpha) + \frac{1}{2} + \frac{1}{2}$ $U_{L}(t) := L \cdot \frac{d}{dt} I(t) \rightarrow L \cdot I_{m} \cdot \sin[(-\omega) \cdot t + \phi] \cdot \omega$ over L voltage drop will be ...

$$L \cdot \frac{d}{dt} I(t) = -I_{m} \cdot \omega \cdot L \cdot \sin(\omega \cdot t - \phi) = I_{m} \cdot \omega \cdot L \cdot \cos\left(\frac{\pi}{2} + \omega \cdot t - \phi\right)$$

(2.63)

$$\cos\left(\frac{\pi}{2} + \alpha\right) \rightarrow -\sin(\alpha) \qquad \text{or } \dots \qquad \cos\left(\frac{\pi}{2} + \alpha\right) = \cos\left(\frac{\pi}{2}\right) \cdot \cos(\alpha) - \sin\left(\frac{\pi}{2}\right) \cdot \sin(\alpha) = 0 \cdot \cos(\alpha) - 1 \cdot \sin(\alpha)$$

in complex (vector) notation ...
$$U_{\text{T}_{D}}(t) := \mathbf{R} \cdot \mathbf{L} \cdot \cos(\alpha \cdot t - \alpha) + \mathbf{R} \cdot \mathbf{L} \cdot \sin(\alpha \cdot t - \alpha) \cdot \mathbf{i}$$

ſ

$$\begin{aligned} & \mathsf{Uz}_{\mathbf{R}}(\mathsf{t}) \coloneqq \mathbf{R} \cdot \mathbf{I}_{\mathbf{m}} \cdot \cos(\omega \cdot \mathsf{t} - \phi) + \mathbf{R} \cdot \mathbf{I}_{\mathbf{m}} \cdot \sin(\omega \cdot \mathsf{t} - \phi) \cdot \mathsf{i} \\ & \mathsf{Uz}_{\mathbf{L}}(\mathsf{t}) \coloneqq \mathbf{I}_{\mathbf{m}} \cdot \omega \cdot \mathbf{L} \cdot \cos\left(\frac{\pi}{2} + \omega \cdot \mathsf{t} - \phi\right) + \mathbf{I}_{\mathbf{m}} \cdot \omega \cdot \mathbf{L} \cdot \sin\left(\frac{\pi}{2} + \omega \cdot \mathsf{t} - \phi\right) \cdot \mathsf{i} \end{aligned}$$

plotting set up

Real parts of Uz(t), UzR(t), UzL(t) = U(t), UR(t), UL(t)

at this point these vectors are shown with two unknowns included \boldsymbol{I}_m and $\boldsymbol{\phi}$

i.e. directions are correct relatively given $_{\varphi}$ and magnitudes arbitrary given I_{m}

$$\begin{aligned} \text{Kirchoff's second law ...} \qquad & \text{U(t)} \coloneqq \text{U}_{R}(t) + \text{U}_{L}(t) \rightarrow \text{R} \cdot \text{I}_{m} \cdot \cos\left[\left(-\omega\right) \cdot t + \phi\right] + \text{L} \cdot \text{I}_{m} \cdot \sin\left[\left(-\omega\right) \cdot t + \phi\right] \cdot \omega \\ & \text{U}_{m} \cdot \cos\left(\omega \cdot t\right) = \text{R} \cdot \text{I}_{m} \cdot \cos\left(\omega \cdot t - \phi\right) + \text{L} \cdot \text{I}_{m} \cdot \omega \cdot \cos\left(\frac{\pi}{2} + \omega \cdot t - \phi\right) \end{aligned}$$

this can be solved for ϕ and I_m after expanding the rhs into sines and cosines and setting cos = cos and sin = sin easier if think in terms of vectors

for UzR(t) + zL(t) to = Uz(t) magnitude and angle must be =

$$\mathbf{U}_{m} = \sqrt{\left(\mathbf{R} \cdot \mathbf{I}_{m}\right)^{2} + \left(\mathbf{L} \cdot \mathbf{I}_{m} \cdot \boldsymbol{\omega}\right)^{2}} = \sqrt{\mathbf{R}^{2} + \left(\mathbf{L} \cdot \boldsymbol{\omega}\right)^{2}} \cdot \mathbf{I}_{m}$$

or ...
$$I_{m} = \frac{U_{m}}{\sqrt{R^{2} + (L \cdot \omega)^{2}}}$$

and ...
$$\phi = \operatorname{atan}\left(\frac{L \cdot \omega}{R}\right)$$

using these relationships in the plot ...

$$Uz(t) \rightarrow U_{m} \cdot \cos(\omega \cdot t) + i \cdot U_{m} \cdot \sin(\omega \cdot t)$$
$$Uz_{R}(t) \rightarrow R \cdot I_{m} \cdot \cos[(-\omega) \cdot t + \phi] - i \cdot R \cdot I_{m} \cdot \sin[(-\omega) \cdot t + \phi]$$
$$t) \rightarrow L L \cdot \sin[(-\omega) t + \phi] + i L \cdot \omega L \cdot \cos[(-\omega) t + \phi]$$

$$Uz_{L}(t) \rightarrow L \cdot I_{m} \cdot \sin[(-\omega) \cdot t + \phi] \cdot \omega + i \cdot I_{m} \cdot \omega \cdot L \cdot \cos[(-\omega) \cdot t + \phi]$$

N.B. angle may not appear as right angle due to scales ϕ shown as lag (positive value with negative sign)

capacitor lead approach (text)

similar for Capacitance

imposed ... external $U(t) := U_{\mathbf{m}} \cdot \cos(\omega \cdot t)$ $U_{\mathbf{m}} = \text{amplitude_of_voltage}$ V = 1 V (2.62) $\omega = \text{frequency}$ $Hz = 1 \frac{1}{s}$ $\min = 60 s$ t = time

this is different from text: lag phase angle vs. lead angle used

resulting current assumed also harmonic

 I_m = amplitude_of_current V = 1 V

current assumed to have *lag* angle. this approach taken to allow common treatment of L and C in circuits

 $\phi = \text{phase}_{lag}_{angle}$

complex (vector) representation, set up with real part expressed as cos

$$Uz(t) = U_{m} \cdot \cos(\omega \cdot t) + U_{m} \cdot \sin(\omega \cdot t) \cdot i \qquad Iz(t) = I_{m} \cdot \cos(\omega \cdot t - \phi) + I_{m} \cdot \sin(\omega \cdot t - \phi) \cdot i$$

voltage and current at omega*t positive lag phase angle

voltage across capacitor (from above)

(2.57)
$$U_{C}(t) = \int_{0}^{t} \frac{I(t)}{C} dt = \int_{0}^{t} \frac{I_{m} \cdot \cos(\omega \cdot t - \phi)}{C} dt = \frac{I_{m} \cdot \sin(\omega \cdot t - \phi)}{C \cdot \omega} = \frac{I_{m}}{C \cdot \omega} \cdot \cos\left(\omega \cdot t - \phi - \frac{\pi}{2}\right)$$

using complex (vector) notation

$$Uz(t) := \mathbf{U}_{\mathbf{m}} \cdot \cos(\omega \cdot t) + U_{\mathbf{m}} \cdot \sin(\omega \cdot t) \cdot \mathbf{i} \qquad \qquad Iz(t) := \mathbf{I}_{\mathbf{m}} \cdot \cos(\omega \cdot t - \phi) + \mathbf{I}_{\mathbf{m}} \cdot \cos(\omega \cdot t - \phi) \cdot \mathbf{i}$$

$$\begin{split} & \text{Uz}_{\mathbf{C}}(t) \coloneqq \frac{\mathbf{I}_{\mathbf{m}}}{\mathbf{C} \cdot \boldsymbol{\omega}} \cdot \cos\left(\boldsymbol{\omega} \cdot t - \boldsymbol{\phi} - \frac{\pi}{2}\right) + \frac{\mathbf{I}_{\mathbf{m}}}{\mathbf{C} \cdot \boldsymbol{\omega}} \cdot \sin\left(\boldsymbol{\omega} \cdot t - \boldsymbol{\phi} - \frac{\pi}{2}\right) \cdot \mathbf{i} \\ & \text{Uz}_{\mathbf{R}}(t) \coloneqq \mathbf{R} \cdot \mathbf{I}_{\mathbf{m}} \cdot \cos\left(\boldsymbol{\omega} \cdot t - \boldsymbol{\phi}\right) + \mathbf{R} \cdot \mathbf{I}_{\mathbf{m}} \cdot \sin\left(\boldsymbol{\omega} \cdot t - \boldsymbol{\phi}\right) \cdot \mathbf{i} \end{split}$$

Kirchoff's second law for resistor with capacitor...

$$Uz(t) := Uz_{R}(t) + Uz_{C}(t) \rightarrow \Omega \cdot I_{m} \cdot \cos[(-\omega) \cdot t + \phi] - i \cdot \Omega \cdot I_{m} \cdot \sin[(-\omega) \cdot t + \phi] - \frac{I_{m}}{C \cdot \omega} \cdot \sin[(-\omega) \cdot t + \phi] - i \cdot \frac{I_{m}}{C \cdot \omega} \cdot \cos[(-\omega) \cdot t + \phi]$$

N.B. angle is distorted due to scales; angle between UzR(t) and UzC(t) is $\pi/2$)

Real parts of Uz(t), UzR(t), UzC(t) etc. = U(t), UR(t), UC(t), etc.

$$Uz(t) = U_{m} \cdot \cos(\omega \cdot t) + U_{m} \cdot \sin(\omega \cdot t) = R \cdot I_{m} \cdot \cos(\omega \cdot t - \phi) + i \cdot R \cdot I_{m} \cdot \sin(\omega \cdot t - \phi) + \frac{I_{m}}{C \cdot \omega} \cdot \sin(\omega \cdot t - \phi) - i \cdot \frac{I_{m}}{C \cdot \omega} \cdot \cos(\omega \cdot t - \phi)$$

look at solution plotted

Real parts of Uz(t), UzR(t), UzC(t) etc. = U(t), UR(t), UC(t), etc.

$$Uz(t) = U_{m} \cdot \cos(\omega \cdot t) + U_{m} \cdot \sin(\omega \cdot t) = R \cdot I_{m} \cdot \cos(\omega \cdot t - \phi) + i \cdot R \cdot I_{m} \cdot \sin(\omega \cdot t - \phi) + \frac{I_{m}}{C \cdot \omega} \cdot \sin(\omega \cdot t + \phi) - i \cdot \frac{I_{m}}{C \cdot \omega} \cdot \cos(\omega \cdot t + \phi)$$

magnitude similar to above ...

$$I_{m} = \frac{U_{m}}{\sqrt{R^{2} + \frac{1}{(\omega \cdot C)^{2}}}}$$

phase angle is negative; hence referred to as *lead* angle

$$\phi = -atan \left(\frac{1}{\omega \cdot C \cdot R}\right)$$

N.B. angle may not appear as right angle due to scales ϕ shown as *lead* (negative value with negative sign)

 $\phi 1 = -26.565 \, deg~$ in this numerical example

so with both L and C

$$\phi = \operatorname{atan}\left(\frac{\omega \cdot \mathbf{L}}{\mathbf{R}} - \frac{1}{\omega \cdot \mathbf{C} \cdot \mathbf{R}}\right)$$

Direct current (DC) $P = U = I^2 \cdot R$

Single phase alternating current (AC) $P(t) = U(t) \cdot I(t)$

typically sinusoidal ...

 $\mathbf{U}(t) := \mathbf{U}_{\mathbf{m}} \cdot \cos(\omega \cdot t) \qquad \qquad \mathbf{I}(t) := \mathbf{I}_{\mathbf{m}} \cdot \cos(\omega \cdot t - \phi)$

lag phase angle used

average power ...
$$\mathbf{P}_{\mathbf{a}} \coloneqq \lim_{T \to \infty} \left(\frac{1}{T} \cdot \int_{0}^{T} U(t) \cdot I(t) \, dt \right) \to \frac{1}{2} \cdot U_{\mathbf{m}} \cdot I_{\mathbf{m}} \cdot \cos(\phi)$$

in practice effective values are used

$$\begin{aligned} \mathbf{U}_{\mathbf{e}} &\coloneqq \lim_{\mathbf{T} \to \infty} \sqrt{\frac{1}{\mathbf{T}} \cdot \int_{0}^{\mathbf{T}} \left(\mathbf{U}_{\mathbf{m}} \cdot \cos(\omega \cdot \mathbf{t}) \right)^{2} d\mathbf{t}} \rightarrow \frac{1}{2} \cdot 2^{\frac{1}{2}} \cdot \left(\mathbf{U}_{\mathbf{m}}^{2} \right)^{\frac{1}{2}} & \mathbf{U}_{\mathbf{e}} &\coloneqq \frac{\mathbf{U}_{\mathbf{m}}}{\sqrt{2}} & \mathbf{U}_{\mathbf{e}} &\coloneqq \mathbf{U}_{\mathbf{e}} \\ \mathbf{I}_{\mathbf{e}} &\coloneqq \lim_{\mathbf{T} \to \infty} \sqrt{\frac{1}{\mathbf{T}} \cdot \int_{0}^{\mathbf{T}} \left(\mathbf{I}_{\mathbf{m}} \cdot \cos(\omega \cdot \mathbf{t} - \phi) \right)^{2} d\mathbf{t}} \rightarrow \frac{1}{2} \cdot 2^{\frac{1}{2}} \cdot \left(\mathbf{I}_{\mathbf{m}}^{2} \right)^{\frac{1}{2}} & \mathbf{I}_{\mathbf{e}} &\coloneqq \frac{\mathbf{I}_{\mathbf{m}}}{\sqrt{2}} & \mathbf{I}_{\mathbf{e}} &\coloneqq \frac{\mathbf{I}_{\mathbf{m}}}{\sqrt{2}} & \mathbf{I}_{\mathbf{e}} &\coloneqq \mathbf{I}_{\mathbf{e}} & = \text{effective_current} \\ &\text{so average power becomes } \dots & \mathbf{P}_{\mathbf{a}} &\coloneqq \mathbf{U}_{\mathbf{e}} \cdot \mathbf{I}_{\mathbf{e}} \cdot \cos(\phi) & \cos(\phi) &= \text{power_factor} \end{aligned}$$

what is current required in two systems with same effective voltage but larger phase lag?

here forward e subscript dropped and U == U_e, I == I_e

some power and current definitions

apparent_power = V·A = U·III = currentA = 1 ampreal_power = U· $\cos(\phi)$ W = 1 Wsame for currentload_current = I· $\cos(\phi)$ A = 1 ampreactive power = U·I· $\sin(\phi)$ V·Areactive current = I· $\sin(\phi)$ A = 1 amp

ORIGIN := 1

three phase alternating current

$$\alpha := \begin{pmatrix} 0 \\ 2 \cdot \frac{\pi}{3} \\ 4 \cdot \frac{\pi}{3} \end{pmatrix} \qquad phase angle for respective phases \\ and ... \\ I_{p_i} := I_m \cdot \cos(\omega \cdot t - \alpha_i) \\ I_{p_i} := I_m \cdot \cos(\omega \cdot t - \alpha_i - \phi) \\ \sum_{i=1}^{3} U_{p_i} \text{ expand } \rightarrow 0 \qquad \sum_{i=1}^{3} I_{p_i} \text{ expand } \rightarrow 0$$

star connection ... $I_{L_{1}} = I_{p_{1}} \qquad I_{L_{2}} = I_{p_{2}} \qquad I_{L_{3}} = I_{p_{3}}$ $i := 1 ... 2 \qquad U_{L_{i}} := U_{p_{i}} - U_{p_{i+1}} \qquad U_{L_{3}} := U_{p_{3}} - U_{p_{31}}$ $i := 1 ... 3 \qquad U_{z_{p_{i}}} := U_{m} \cdot \cos(\omega \cdot t - \alpha_{i}) + U_{m} \cdot \sin(\omega \cdot t - \alpha_{i}) \cdot i$ $i := 1 ... 2 \qquad U_{z_{L_{i}}} := U_{z_{p_{i}}} - U_{z_{p_{i+1}}} \qquad U_{z_{L_{3}}} := U_{z_{p_{3}}} - U_{z_{p_{1}}}$ $i := 1 ... 3 \qquad e.g. \qquad U_{z_{L_{1}}} simplify \rightarrow U_{m} \cdot \cos(\omega \cdot t) + i \cdot U_{m} \cdot \sin(\omega \cdot t) + U_{m} \cdot \cos(\omega \cdot t + \frac{1}{3} \cdot \pi) + i \cdot U_{m} \cdot \sin(\omega \cdot t + \frac{1}{3} \cdot \pi)$ magnitude is ... from trigonometry... $U_{m}^{\star} \qquad \sqrt{\left(\cos(\omega \cdot t) + \cos\left(\omega \cdot t + \frac{\pi}{3}\right)\right)^{2} + \left(\sin(\omega \cdot t) + \sin\left(\omega \cdot t + \frac{\pi}{3}\right)\right)^{2}} expand \rightarrow \left(3 \cdot \cos(\omega \cdot t)^{2} + 3 \cdot \sin(\omega \cdot t)^{2}\right)^{\frac{1}{2}}$ magnitude := $U_{m} \cdot \sqrt{3} \qquad (2.85)$

angle relative to ω^*t (set $\omega^*t = 0$)

for plotting ... i :=

$$\begin{array}{l} \text{simplify} \\ \text{substitute, t} = 0 \end{array} \rightarrow U_{\text{m}} \cdot \cos(0) + i \cdot U_{\text{m}} \cdot \sin(0) + U_{\text{m}} \cdot \cos\left(\frac{1}{3} \cdot \pi\right) + i \cdot U_{\text{m}} \cdot \sin\left(\frac{1}{3} \cdot \pi\right) \end{array}$$

$$\operatorname{angle}_{\omega t} = \operatorname{atan}\left(\frac{\sin\left(\frac{\pi}{3}\right)}{1 + \cos\left(\frac{\pi}{3}\right)}\right) \qquad \operatorname{atan}\left(\frac{\sin\left(\frac{\pi}{3}\right)}{1 + \cos\left(\frac{\pi}{3}\right)}\right) = 30 \deg$$

$$\oint_{\mathbf{m}} = 1 \qquad \underbrace{\mathrm{U1}}_{\mathbf{p}_{i}} = 1 \quad \underbrace{\mathrm{U1}}_{\mathbf{p}_{i}} = \underbrace{\mathrm{U1}}_{\mathbf{m}} \cdot \cos(\omega 1 \cdot t1 - \alpha_{i}) \qquad \underbrace{\mathrm{U1z}}_{\mathbf{p}_{i}} = \underbrace{\mathrm{U1}}_{\mathbf{m}} \cdot \cos(\omega 1 \cdot t1 - \alpha_{i}) + \underbrace{\mathrm{U1m}}_{\mathbf{m}} \cdot \sin(\omega 1 \cdot t1 - \alpha_{i}) \cdot i = \underbrace{\mathrm{U1m}}_{\mathbf{m}} \cdot \cos(\omega 1 \cdot t1 - \alpha_{i}) + \underbrace{\mathrm{U1m}}_{\mathbf{m}} \cdot \sin(\omega 1 \cdot t1 - \alpha_{i}) \cdot i = \underbrace{\mathrm{U1m}}_{\mathbf{m}} \cdot \cos(\omega 1 \cdot t1 - \alpha_{i}) + \underbrace{\mathrm{U1m}}_{\mathbf{m}} \cdot \sin(\omega 1 \cdot t1 - \alpha_{i}) \cdot i = \underbrace{\mathrm{U1m}}_{\mathbf{m}} \cdot \cos(\omega 1 \cdot t1 - \alpha_{i}) + \underbrace{\mathrm{U1m}}_{\mathbf{m}} \cdot \sin(\omega 1 \cdot t1 - \alpha_{i}) \cdot i = \underbrace{\mathrm{U1m}}_{\mathbf{m}} \cdot \cos(\omega 1 \cdot t1 - \alpha_{i}) + \underbrace{\mathrm{U1m}}_{\mathbf{m}} \cdot \sin(\omega 1 \cdot t1 - \alpha_{i}) \cdot i = \underbrace{\mathrm{U1m}}_{\mathbf{m}} \cdot \cos(\omega 1 \cdot t1 - \alpha_{i}) + \underbrace{\mathrm{U1m}}_{\mathbf{m}} \cdot \sin(\omega 1 \cdot t1 - \alpha_{i}) \cdot i = \underbrace{\mathrm{U1m}}_{\mathbf{m}} \cdot \cos(\omega 1 \cdot t1 - \alpha_{i}) + \underbrace{\mathrm{U1m}}_{\mathbf{m}} \cdot \sin(\omega 1 \cdot t1 - \alpha_{i}) \cdot i = \underbrace{\mathrm{U1m}}_{\mathbf{m}} \cdot \cos(\omega 1 \cdot t1 - \alpha_{i}) + \underbrace{\mathrm{U1m}}_{\mathbf{m}} \cdot \sin(\omega 1 \cdot t1 - \alpha_{i}) \cdot i = \underbrace{\mathrm{U1m}}_{\mathbf{m}} \cdot \cos(\omega 1 \cdot t1 - \alpha_{i}) + \underbrace{\mathrm{U1m}}_{\mathbf{m}} \cdot \sin(\omega 1 \cdot t1 - \alpha_{i}) \cdot i = \underbrace{\mathrm{U1m}}_{\mathbf{m}} \cdot \cos(\omega 1 \cdot t1 - \alpha_{i}) + \underbrace{\mathrm{U1m}}_{\mathbf{m}} \cdot \sin(\omega 1 \cdot t1 - \alpha_{i}) \cdot i = \underbrace{\mathrm{U1m}}_{\mathbf{m}} \cdot \cos(\omega 1 \cdot t1 - \alpha_{i}) + \underbrace{\mathrm{U1m}}_{\mathbf{m}} \cdot \sin(\omega 1 \cdot t1 - \alpha_{i}) \cdot i = \underbrace{\mathrm{U1m}}_{\mathbf{m}} \cdot \cos(\omega 1 \cdot t1 - \alpha_{i}) + \underbrace{\mathrm{U1m}}_{\mathbf{m}} \cdot \sin(\omega 1 \cdot t1 - \alpha_{i}) \cdot i = \underbrace{\mathrm{U1m}}_{\mathbf{m}} \cdot \sin(\omega 1 \cdot t1 - \alpha_{i}) \cdot i = \underbrace{\mathrm{U1m}}_{\mathbf{m}} \cdot \cos(\omega 1 \cdot t1 - \alpha_{i}) + \underbrace{\mathrm{U1m}}_{\mathbf{m}} \cdot \sin(\omega 1 \cdot t1 - \alpha_{i}) \cdot i = \underbrace{\mathrm{U1m}}_{\mathbf{m}} \cdot \sin(\omega 1 \cdot t1 - \alpha_{i}) \cdot i = \underbrace{\mathrm{U1m}}_{\mathbf{m}} \cdot \sin(\omega 1 \cdot t1 - \alpha_{i}) \cdot i = \underbrace{\mathrm{U1m}}_{\mathbf{m}} \cdot \sin(\omega 1 \cdot t1 - \alpha_{i}) \cdot i = \underbrace{\mathrm{U1m}}_{\mathbf{m}} \cdot \sin(\omega 1 \cdot t1 - \alpha_{i}) \cdot i = \underbrace{\mathrm{U1m}}_{\mathbf{m}} \cdot \cos(\omega 1 \cdot t1 - \alpha_{i}) \cdot i = \underbrace{\mathrm{U1m}}_{\mathbf{m}} \cdot \cos(\omega 1 \cdot t1 - \alpha_{i}) \cdot i = \underbrace{\mathrm{U1m}}_{\mathbf{m}} \cdot \cos(\omega 1 \cdot t1 - \alpha_{i}) \cdot i = \underbrace{\mathrm{U1m}}_{\mathbf{m}} \cdot \cos(\omega 1 \cdot t1 - \alpha_{i}) \cdot i = \underbrace{\mathrm{U1m}}_{\mathbf{m}} \cdot \cos(\omega 1 \cdot t1 - \alpha_{i}) \cdot i = \underbrace{\mathrm{U1m}}_{\mathbf{m}} \cdot \cos(\omega 1 \cdot t1 - \alpha_{i}) \cdot i = \underbrace{\mathrm{U1m}}_{\mathbf{m}} \cdot \cos(\omega 1 \cdot t1 - \alpha_{i}) \cdot i = \underbrace{\mathrm{U1m}}_{\mathbf{m}} \cdot \cos(\omega 1 \cdot t1 - \alpha_{i}) \cdot i = \underbrace{\mathrm{U1m}}_{\mathbf{m}} \cdot \cos(\omega 1 \cdot t1 - \alpha_{i}) \cdot i = \underbrace{\mathrm{U1m}}_{\mathbf{m}} \cdot \cos(\omega 1 \cdot t1 - \alpha_{i}) \cdot i = \underbrace{\mathrm{U1m}}_{\mathbf{m}} \cdot \cos(\omega 1 \cdot t1 - \alpha_{i}) \cdot i = \underbrace{\mathrm{U1m}}_{\mathbf{m}} \cdot \cos(\omega 1 \cdot t1 - \alpha_{i}) \cdot i = \underbrace{\mathrm{U1m}}_{\mathbf{m}} \cdot \cos(\omega 1 \cdot t1 - \alpha_{$$

$$U_L = U_p$$
 (2.86) $I_L = I_p \cdot \sqrt{3}$ (2.87)

2.3.5 Magnetic induction

$$B = \mu \cdot \frac{I}{2 \cdot \pi \cdot r} \quad B = \text{flux_density} \quad T = 1 \text{ tesla} \quad T = 1 \frac{Wb}{m^2} \quad T = 1 \frac{kg}{amp \cdot s^2}$$

$$\mu = \text{permeability_of_medium} \quad \frac{H}{m} = 1 \frac{m \cdot kg}{A^2 \cdot s^2} \quad \frac{H}{m} = 1 \frac{\text{henry}}{m}$$

$$\mu = \mu_0 \cdot \mu_R \qquad \mu_0 = \text{permeability_of_vacuum} \qquad \mu_0 = \text{permeability_of_vacuum} \qquad \mu_0 = 4 \cdot \pi \cdot 10^7 \frac{H}{m}$$

unitless

 μ_R = permeability_of_medium_relative_to_vacuum derived from Biot-Savart law

magnetic field around wire carrying current

e.g. magnetic field at point P results from motion of charged particle at velocity V in vacuum

$$B = \frac{\mu_0}{4 \cdot \pi} \cdot q \cdot \frac{\overrightarrow{v} \times \overrightarrow{a_r}}{r^2} \quad T \qquad B = flux_density \qquad T = 1 \text{ tesla} \qquad T = 1 \times 10^4 \text{ gauss} \qquad T = 1 \frac{1}{m^2} \text{ Wb}$$

$$\mu_0 = \text{permeability_in_vacuum} \qquad \mu_{\Theta V} = 4 \cdot \pi \cdot 10^{-7} \frac{H}{m} \qquad \frac{H}{m} = 1 \frac{N}{A^2} \qquad \frac{H}{m} = 1 \frac{n \text{ ewton}}{amp^2}$$

$$q = \text{charge} \qquad C = 1 \text{ coul} \quad C = 1 \text{ A} \cdot s$$

$$\overrightarrow{v} = \text{velocity_vector_of_charge} \qquad \frac{m}{s}$$

$$\overrightarrow{a_r} = \text{ unit_vector_from_charge_q_to_point_P} \qquad \text{units check}$$

$$r = \text{ distance_from_P_to_charge} \qquad m \qquad \frac{H}{m} \cdot C \cdot \frac{m}{s} \cdot \frac{1}{m^2} = 1 \text{ T}$$

$$differential \quad dB = \frac{\mu_0}{4 \cdot \pi} \cdot dq \cdot \frac{\overrightarrow{v} \times \overrightarrow{a_r}}{r^2}$$

$$line \text{ currents} \dots \qquad q \cdot \overrightarrow{v} = 1 \cdot \overrightarrow{d}$$

$$So \dots \qquad dB = \frac{\mu_0}{4 \cdot \pi} \cdot 1 \cdot \frac{\overrightarrow{d} \times \overrightarrow{a_r}}{r^2} \qquad B = \int \frac{\mu_0}{4 \cdot \pi} \cdot \frac{1}{r^2} \cdot d1 \times \overrightarrow{a_r}$$

e.g. long straight wire with current I

$$dB = \frac{\mu_0}{4 \cdot \pi} \cdot I \cdot \frac{\overrightarrow{dl} \times \overrightarrow{a_r}}{r^2} = \frac{\mu_0}{4 \cdot \pi} \cdot I \cdot \frac{dl \cdot \sin(\theta)}{r^2}$$

see figure at right

$$dl \cdot \sin(\theta) = r \cdot d\alpha$$

 $d\boldsymbol{\alpha}$

geometry for solution set up

 $\sin(\theta) = \frac{r \cdot d\alpha}{dl}$ $\cos(\alpha) = \frac{R}{r}$

$$r = \frac{R}{\cos(\alpha)} \qquad \frac{d\alpha}{r} = \frac{\cos(\alpha) \cdot d\alpha}{R} \qquad \qquad dB = \frac{\mu_0}{4 \cdot \pi} \cdot I \cdot \frac{dI \cdot sin(\theta)}{r^2} = \frac{\mu_0}{4 \cdot \pi} \cdot I \cdot \frac{dI \cdot sin(\theta)}{r^2} = \frac{\mu_0}{4 \cdot \pi} \cdot I \cdot \frac{\cos(\alpha) \cdot d\alpha}{R}$$

$$B = \int 1 dB = \int \frac{\pi}{2} \frac{\mu_0}{4 \cdot \pi} \cdot I \cdot \frac{\cos(\alpha)}{R} d\alpha \qquad \int \frac{\pi}{2} \frac{\mu_0}{4 \cdot \pi} \cdot I \cdot \frac{\cos(\alpha)}{R} d\alpha \rightarrow \frac{1}{2} \cdot \frac{\mu_0}{\pi} \cdot \frac{I}{\Omega} \qquad B = \frac{\mu_0 \cdot I}{2 \cdot \pi \cdot R} \qquad Q.E.D.$$

if area not vacuum, substitute $\mu = \mu_r^* \mu_0 \dots$

magnetic flux density over an area AA

 $\Phi := \int \mathbf{B} \, dAA \qquad AA = \text{enclosed}_\text{area} \qquad \text{to distinguish from A} \qquad Wb = 1 \text{ weber} \qquad Wb = 1 \frac{\text{kg} \cdot \text{m}^2}{\text{A} \cdot \text{s}^2} \qquad A = 1 \text{ amp}$

Lorentz force

a force will act on a current carrying conductor when it is placed in a magnetic field

> F_L = Lorentz_force $F_{I} = B \cdot I \cdot len$ N = 1 newton $B = flux_density$ T = 1 tesla (2.92)I = current_thru_conductor A = 1 amplen = lengthm

> > $T \cdot A \cdot m = 1 N$

 $F_{I} = I \cdot len \times B$ where x is vector cross product and magnitude is right hand rule applies $B \cdot I \cdot sin(angle)$ view of single coil in magnetic field (B) with current (I) (slightly revised from text; $len*sin(\beta)$

N.B. I is perpendicular to B => $F = I \times B \cdot h$ $F = I \cdot B \cdot h$ force on one segment (h) of coil $M = F \cdot len \cdot sin(\beta)$ $len \cdot sin(\beta)$ = distance between couple of force F torque on coil depends on β $M = F \cdot \operatorname{len} \cdot \sin(\beta) = I \cdot B \cdot h \cdot \operatorname{len} \cdot \sin(\beta) = I \cdot B \cdot AA \cdot \sin(\beta) = I \cdot \Phi \cdot \sin(\beta)$ AA to distinguish AA = area_of_coil = enclosed_area from A (ampere) account for multiple windings (turns) (N) $M = N \cdot I \cdot \Phi \cdot \sin(\beta)$ general relationship recognizing proportionality to $I^*\Phi$ M m m

$$I = K_m \cdot \Phi \cdot I$$
 $K_m = \text{constant}_{\text{for}_{\text{given}_{\text{motor}}}}$ (2.93)

Faraday's Law

Voltage is generated in conductor when moving in magnetic field

= 1 volt

$$\mathbf{E} = -\mathbf{B} \cdot \mathbf{len} \cdot \mathbf{v}$$

T = 1 tesla $B = flux_density$ m v = velocitys

len = length_of_conductor m

E as shown is positive value and direction minus sign is consistent with observation that E as shown would produce a current in the same direction which in turn would produce a force opposite to velocity.

vector form ... $E = -(B \times v) \cdot len$

units check

 $T \cdot \frac{m}{s} \cdot m = 1 V$

consistent with text ... multiply by $sin(\alpha)$ where α is angle between B and v

may also be expressed as ...
$$E = -\frac{d}{dt} \Phi$$
 for single turn and ... $E = -N\frac{d}{dt} \Phi$ $\frac{Wb}{s} = 1 V$ (2.95)
since ... $\Phi = B \cdot Area$ $E = \frac{d}{dt} \Phi = \frac{d}{dt} (B \cdot Area) = -B\frac{d}{dt} Area = -B \cdot len \frac{d}{dt}$ as ... Area = len $\cdot x$
in coil rotating in constant magnetic field B $\Phi = B \cdot Area \cdot cos(\beta) = B \cdot Area \cdot cos(\omega \cdot t)$ where ...
and with N turns ... $E = -N\frac{d}{dt} (B \cdot Area \cdot cos(\omega \cdot t)) \rightarrow E = N \cdot B \cdot Area \cdot sin(\omega \cdot t) \cdot \omega$
substituting ... $\omega = 2 \cdot \pi \cdot n$ $n = rpm$ $rpm = 6.283 \frac{rad}{min}$ $E = N \cdot 2 \cdot \pi \cdot n \cdot B \cdot Area \cdot sin(\omega \cdot t)$
as abve for motor constant ... express ... $E = K_E \cdot \Phi \cdot n$ $K_E = constant_for_given_motor$
 $E = induced_electromotive_force$ $V = 1 volt$
 $\Phi = magnetic_flux$ $Wb = 1$ weber
 $n = rotation_speed$ $rpm = 0.105 \frac{1}{sec}$ $1Wb \cdot 60rpm = 6.283 V$

11/13/2006

n = rotation_speed