Electric Motors

from electrcal overview Lorentz force...

$$
\begin{array}{llll}
\mathrm{M}=\mathrm{K}_{\mathrm{m}} \cdot \Phi \cdot \mathrm{I} & \mathrm{~K}_{\mathrm{m}}=\text { constant_for_given_motor } & \text { (ref: 2.93) } \tag{ref:2.93}\\
& \mathrm{M}=\text { torque } & \mathrm{N} \cdot \mathrm{~m} & \\
& \Phi=\text { magnetic_flux } & \mathrm{Wb}=1 \text { weber } & \\
& \mathrm{I}=\text { current } & \mathrm{A}=1 \mathrm{amp} & 1 \mathrm{~Wb} \cdot 1 \mathrm{~A}=1 \mathrm{~N} .
\end{array}
$$

(ref: 2.96)

$$
\begin{array}{lll}
\mathrm{E}=\mathrm{K}_{\mathrm{E}} \cdot \Phi \cdot \mathrm{n} & \mathrm{~K}_{\mathrm{E}}=\text { constant_for_given_motor } \tag{9.2}\\
& \mathrm{E}=\text { induced_electromotive_force } \quad \mathrm{V}=1 \mathrm{volt} \\
& \Phi=\text { magnetic_flux } & \mathrm{Wb}=1 \mathrm{weber} \\
& \mathrm{n}=\text { rotation_speed } \quad \mathrm{rpm}=6.283 \frac{1}{\mathrm{~min}} \quad \mathrm{~Wb} \cdot \mathrm{rpm}=0.105 \mathrm{~V}
\end{array}
$$

model motor as resistance in series with EMF generator (opposing applied voltage)

$$
\mathrm{U}=\mathrm{E}+\mathrm{I} \cdot \mathrm{R}
$$

with ..

$$
\begin{equation*}
\mathrm{M}=\mathrm{K}_{\mathrm{m}} \cdot \Phi \cdot \mathrm{I} \tag{9.2}
\end{equation*}
$$

(9.1) and ...
$\mathrm{E}=\mathrm{K}_{\mathrm{E}} \cdot \Phi \cdot \mathrm{n}$

$$
\mathrm{I}:=\frac{\mathrm{M}}{\mathrm{~K}_{\mathrm{m}} \cdot \Phi} \quad \mathrm{E}:=(\mathrm{U}-\mathrm{I} \cdot \mathrm{R}) \quad \mathrm{n}:=\frac{\mathrm{E}}{\mathrm{~K}_{\mathrm{E}} \cdot \Phi}
$$

n collect, $\Phi \rightarrow \frac{\mathrm{U}}{\mathrm{K}_{\mathrm{E}} \cdot \Phi}-\frac{\mathrm{M}}{\mathrm{K}_{\mathrm{m}}} \cdot \frac{\mathrm{R}}{\mathrm{K}_{\mathrm{E}} \cdot \Phi^{2}} \quad \mathrm{n}=\frac{\mathrm{U}}{\mathrm{K}_{\mathrm{E}} \cdot \Phi}-\frac{\mathrm{M} \cdot \mathrm{R}}{\mathrm{K}_{\mathrm{E}} \cdot \mathrm{K}_{\mathrm{m}} \cdot \Phi^{2}}$
XXX
to see an example of DC motor behavior assume a set of reasonable parameters. Not all are independent.
for fixed magnetic field Φ and rpm at maximum power
, maximum current I_{m} and maximum torque M_{m}
set Φ, n, R and applied voltage U

$$
\mathrm{M}=\mathrm{K}_{\mathrm{m}} \cdot \Phi \cdot \mathrm{I}
$$

maximum current
Φ
derived $\quad \mathrm{U}=\mathrm{E}+\mathrm{I} \cdot \mathrm{R} \quad \mathrm{E}:=\mathrm{U}_{\mathrm{m}}-\mathrm{I}_{\mathrm{m}} \cdot \mathrm{R} \quad \mathrm{E}=380 \mathrm{~V}$

$$
\left.\begin{array}{lll}
\mathrm{E} \cdot \mathrm{I}_{\mathrm{m}}=\mathrm{M}_{\mathrm{m}} \cdot \mathrm{n} \cdot 2 \cdot \pi & \mathrm{M} & \mathrm{M}_{\mathrm{m}}:=\frac{\mathrm{E} \cdot \mathrm{I}_{\mathrm{m}}}{\mathrm{n} \cdot 2 \cdot \pi}
\end{array} \quad \mathrm{M}_{\mathrm{m}}=57.753 \mathrm{~N} \cdot \mathrm{~m} \text { assuming EMF*I converted } \begin{array}{c}
\text { into mechanical power }
\end{array}\right] \begin{array}{ll}
\mathrm{M}_{\mathrm{m}}=\mathrm{K}_{\mathrm{m}} \cdot \Phi \cdot \mathrm{I}_{\mathrm{m}} & \mathrm{~K}_{\mathrm{m}}
\end{array} \quad \mathrm{~K}_{\mathrm{m}}:=\frac{\mathrm{M}_{\mathrm{m}}}{\Phi \cdot \mathrm{I}_{\mathrm{m}}} \quad \mathrm{~K}_{\mathrm{m}}=5.775 \mathrm{P}=\mathrm{U} \cdot \mathrm{I}=\mathrm{E} \cdot \mathrm{I}+\mathrm{I}^{2} \cdot \mathrm{R}=\mathrm{M} \cdot \mathrm{n} \cdot 2 \cdot \pi+\mathrm{I}^{2} \cdot \mathrm{R}
$$

XXX

$$
\begin{aligned}
& M=U \cdot \frac{\mathrm{~K}_{\mathrm{m}} \cdot \Phi}{\mathrm{R}}-\mathrm{n} \cdot \frac{\mathrm{~K}_{\mathrm{E}} \cdot \mathrm{~K}_{\mathrm{m}} \cdot \Phi^{2}}{\mathrm{R}} \\
& \mathrm{U}_{\mathrm{m}} \cdot \frac{\mathrm{~K}_{\mathrm{m}} \cdot \Phi}{\mathrm{R}}-\mathrm{n} \cdot \frac{\mathrm{~K}_{\mathrm{E}} \cdot \mathrm{~K}_{\mathrm{m}} \cdot \Phi^{2}}{\mathrm{R}}=57.753 \mathrm{~N} \cdot \mathrm{~m} \\
& \mathrm{a}:=\frac{\mathrm{K}_{\mathrm{m}} \cdot \Phi}{\mathrm{R}} \quad \mathrm{~b}:=\frac{\mathrm{K}_{\mathrm{m}} \mathrm{~K}_{\mathrm{E}} \cdot \Phi^{2}}{\mathrm{R}} \quad \mathrm{M}(\mathrm{U}, \mathrm{n}):=(\mathrm{U} \cdot \mathrm{a}-\mathrm{b} \cdot \mathrm{n}) \quad \text { calculate } \mathrm{M} \text { when } \mathrm{U} \text { and } \mathrm{n} \text { known } \ldots \\
& n n(U, M):=\frac{U \cdot a-M}{b} \quad \begin{array}{l}
\text { calculate } n \text { when } U \text { and } M \text { known }- \\
\text { useful at ends of torque range } 0-M_{m}
\end{array} \\
& \mathrm{M}_{0}:=0 \mathrm{~N} \cdot \mathrm{~m} \quad \mathrm{M}_{\mathrm{m}}=57.753 \mathrm{~N} \cdot \mathrm{~m} \quad \mathrm{nn}\left(\mathrm{U}_{\mathrm{m}}, \mathrm{M}_{\mathrm{m}}\right)=100 \mathrm{rpm} \quad \text { derived check } \mathrm{nn}\left(\mathrm{U}_{\mathrm{m}}, 0\right)=105.26316 \mathrm{rpm} \\
& \text { for example at } U=0.25 U_{m} \text {, calculate } n \text { at } 0 \text { and maximum torque } \\
& \mathrm{n} 11:=\mathrm{nn}\left(\mathrm{U}_{\mathrm{m}} \cdot 0.25, \mathrm{M}_{\mathrm{m}}\right) \mathrm{n} 11=21.053 \mathrm{rpm} \quad \text { maximum torque } \\
& \mathrm{n} 12:=\mathrm{nn}\left(\mathrm{U}_{\mathrm{m}} \cdot 0.25, \mathrm{M}_{0}\right) \quad \mathrm{n} 12=26.316 \mathrm{rpm} \quad 0 \text { torque } \\
& \mathrm{n} 1:=\mathrm{n} 11, \mathrm{n} 11+0.1 \mathrm{rpm} . . \mathrm{n} 12 \\
& \text { plot } \mathrm{M} \text { vs } \mathrm{n} \text { for } \mathrm{U}=0.25 * \mathrm{U}_{\mathrm{m}}
\end{aligned}
$$

plot data

additional operating envelope is available beyond design rpm by reducing the field strength Φ. But the region is limited by the maximum power available
beyond a M limited by $P_{\max } \quad P_{\max }:=M_{m} \cdot 2 \cdot \pi \cdot n \quad P_{\max }=3.8 \times 10^{3} \mathrm{~W}$
above base sped and torque with power consatant at $P_{\max }$, torque is limited inversely with rpm

$$
\mathrm{M}_{\max } \cdot \mathrm{nn} \cdot 2 \cdot \pi=\mathrm{P}_{\max } \quad \mathrm{M}_{\max _{-} \mathrm{n}}(\mathrm{nn}):=\frac{\mathrm{P}_{\max }}{\mathrm{nn} \cdot 2 \cdot \pi}
$$

$\mathrm{nn} 1:=\mathrm{n}, \mathrm{n}+1 \mathrm{rpm} . .2 \cdot \mathrm{n}$

using .. again

$$
\begin{equation*}
\mathrm{n}=\frac{\mathrm{U}}{\mathrm{~K}_{\mathrm{E}} \cdot \Phi}-\frac{\mathrm{M} \cdot \mathrm{R}}{\mathrm{~K}_{\mathrm{E}} \cdot \mathrm{~K}_{\mathrm{m}} \cdot \Phi^{2}} \tag{9.5}
\end{equation*}
$$

$\mathrm{n}=\frac{\mathrm{U}}{\mathrm{K}_{\mathrm{E}} \cdot \Phi}-\frac{\mathrm{M} \cdot \mathrm{R}}{\mathrm{K}_{\mathrm{E}} \cdot \mathrm{K}_{\mathrm{m}} \cdot \Phi^{2}} \quad \mathrm{nn}=\frac{\mathrm{U}}{\mathrm{K}_{\mathrm{E}} \cdot \Phi}-\frac{\frac{\mathrm{P}_{\mathrm{max}}}{\mathrm{nn} \cdot 2 \cdot \pi} \cdot \mathrm{R}}{\mathrm{K}_{\mathrm{E}} \cdot \mathrm{K}_{\mathrm{m}} \cdot \Phi^{2}} \quad \quad \mathrm{nn}^{2}=\frac{\mathrm{U}}{\mathrm{K}_{\mathrm{E}} \cdot \Phi} \cdot \mathrm{nn}-\frac{\frac{\mathrm{P}_{\mathrm{max}}}{2 \cdot \pi} \cdot \mathrm{R}}{\mathrm{K}_{\mathrm{E}} \cdot \mathrm{K}_{\mathrm{m}} \cdot \Phi^{2}}$
solved symbolicly on blank sheet

$$
\mathrm{nn}_{\max }(\Phi):=\frac{1}{4 \cdot \pi \cdot \mathrm{~K}_{\mathrm{E}} \cdot \mathrm{~K}_{\mathrm{m}}} \cdot \frac{2 \cdot \mathrm{U}_{\mathrm{m}} \cdot \pi \cdot \mathrm{~K}_{\mathrm{m}}+2 \cdot\left(\mathrm{U}_{\mathrm{m}}{ }^{2} \cdot \pi^{2} \cdot \mathrm{~K}_{\mathrm{m}}{ }^{2}-2 \cdot \pi \cdot \mathrm{~K}_{\mathrm{E}} \cdot \mathrm{~K}_{\mathrm{m}} \cdot \mathrm{P}_{\mathrm{max}} \cdot \mathrm{R}\right)^{\frac{1}{2}}}{\Phi}
$$

calculate n when U and M known - useful at ends of torque range $0-M_{m}$ and in this application a and bare functions of Φ
$\underset{\mathrm{M}}{\mathrm{a}}(\Phi):=\frac{\mathrm{K}_{\mathrm{m}} \cdot \Phi}{\mathrm{R}} \quad \mathrm{b}(\Phi):=\frac{\mathrm{K}_{\mathrm{m}} \mathrm{K}_{\mathrm{E}} \cdot \Phi^{2}}{\mathrm{R}}$
$\mathrm{M}(\mathrm{U}, \mathrm{n})=\mathrm{U} \cdot \mathrm{a}-\mathrm{b} \cdot \mathrm{n} \quad$ calculate M when U and n known $\ldots \quad \operatorname{MM}(\Phi, \mathrm{n}):=\left(\mathrm{U}_{\mathrm{m}} \cdot \mathrm{a}(\Phi)-\mathrm{b}(\Phi) \cdot \mathrm{n}\right)$

$$
\mathrm{nn}_{\mathrm{nn}}(\Phi, \mathrm{M}):=\frac{\mathrm{U}_{\mathrm{m}} \cdot \mathrm{a}(\Phi)-\mathrm{M}}{\mathrm{~b}(\Phi)}
$$

$$
\operatorname{MM}(\Phi, \mathrm{n}):=\left(\mathrm{U}_{\mathrm{m}} \cdot \mathrm{a}(\Phi)-\mathrm{b}(\Phi) \cdot \mathrm{n}\right)
$$

$\mathrm{n} 51:=\mathrm{nn}_{\max }(\Phi \cdot 0.75) \quad \mathrm{n} 51=133.333 \mathrm{rpm}$
$\mathrm{n} 52:=\mathrm{nn}\left(0.75 \cdot \Phi, \mathrm{M}_{0}\right) \quad \mathrm{n} 52=140.351 \mathrm{rpm}$
$\mathrm{n} 5:=\mathrm{n} 51, \mathrm{n} 51+1 \mathrm{rpm} . . \mathrm{n} 52$
$\operatorname{MM}(\Phi \cdot 0.75, \mathrm{n} 51)=43.315 \mathrm{~N} \cdot \mathrm{~m}$
$\operatorname{MM}(\Phi \cdot 0.75, \mathrm{n} 52)=0 \mathrm{~N} \cdot \mathrm{~m}$
and $\Phi=0.6$ of Φ base

$$
\begin{aligned}
& \mathrm{n} 61:=\mathrm{nn}_{\max }(\Phi \cdot 0.6) \quad \mathrm{n} 61=166.667 \mathrm{rpm} \\
& \mathrm{n} 62:=\mathrm{nn}\left(0.6 \cdot \Phi, \mathrm{M}_{0}\right) \quad \mathrm{n} 62=175.439 \mathrm{rpm} \\
& \mathrm{n} 6:=\mathrm{n} 61, \mathrm{n} 61+0.1 \mathrm{rpm} . . \mathrm{n} 62 \\
& \operatorname{MM}(\Phi \cdot 0.6, \mathrm{n} 61)=34.652 \mathrm{~N} \cdot \mathrm{~m} \\
& \operatorname{MM}(\Phi \cdot 0.6, \mathrm{n} 62)=0 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

now if we plot this data in terms of power,
power $=$ torque $\cdot \mathrm{rpm} \cdot 2 \cdot \pi$
and superimpose a cubic load curve reaching max power at 1.5 base rpm

$$
\operatorname{load}(\mathrm{nrpm}):=\mathrm{P}_{\max }\left(\frac{\mathrm{nrpm}}{1.5 \cdot \mathrm{n}}\right)^{3} \quad \operatorname{nrpm}:=0 \mathrm{rpm}, 1 \mathrm{rpm} . .1 .5 \cdot \mathrm{n} \quad \quad \mathrm{P}_{\text {max_plot }}:=\left(\begin{array}{cc}
0 & 0 \\
\frac{\mathrm{n}}{\mathrm{rpm}} & \frac{\mathrm{P}_{\max }}{\mathrm{W}}
\end{array}\right)
$$

So ... as observed in the text: "The operational envelopes show that a DC motor is very suited to drive a propeller for ship propulsion."

practical aspects ...

shunt motor: field in parallel with armature
operates same as separate excitation ... field excitation constant

series motor: field in series with armature
now the field current and armature current is the same using the same relationships from above ...
$\mathrm{M}:=\mathrm{K}_{\mathrm{m}} \cdot \Phi \cdot \mathrm{I}$
$\mathrm{E}=\mathrm{K}_{\mathrm{E}} \cdot \Phi \cdot \mathrm{n}$
$\mathrm{U}=\mathrm{E}+\mathrm{I} \cdot \mathrm{R}$

$\Phi:=\mathrm{K}_{\mathrm{F}} \cdot \mathrm{I} \quad \mathrm{K}_{\mathrm{F}}=$ constant_for_given_motor $\quad \mathrm{I}=$ current

$$
\begin{equation*}
\mathrm{M}:=\mathrm{K}_{\mathrm{m}} \cdot \Phi \cdot \mathrm{I} \quad \mathrm{M} \rightarrow \mathrm{~K}_{\mathrm{m}} \cdot \mathrm{~K}_{\mathrm{F}} \cdot \mathrm{I}^{2} \quad \mathrm{M}:=\mathrm{K}_{\mathrm{m}} \cdot \mathrm{~K}_{\mathrm{F}} \cdot \mathrm{I}^{2} \tag{9.7}
\end{equation*}
$$

$$
\mathrm{E}:=\mathrm{K}_{\mathrm{E}} \cdot \mathrm{~K}_{\mathrm{F}} \cdot \mathrm{I} \cdot \mathrm{n}
$$

$$
\mathrm{U}=\mathrm{E}+\mathrm{I} \cdot \mathrm{R} \quad \mathrm{I}:=\frac{\mathrm{U}-\mathrm{E}}{\mathrm{R}} \quad \mathrm{I} \rightarrow \frac{\mathrm{U}-\mathrm{K}_{\mathrm{E}} \cdot \mathrm{~K}_{\mathrm{F}} \cdot \mathrm{I} \cdot \mathrm{n}}{\mathrm{R}} \quad \mathrm{I}=\frac{\mathrm{U}-\mathrm{K}_{\mathrm{E}} \cdot \mathrm{~K}_{\mathrm{F}} \cdot \mathrm{I} \cdot \mathrm{n}}{\mathrm{R}}
$$

$$
I \cdot R=U-K_{E} \cdot K_{F} \cdot I \cdot n \quad I \cdot\left(R+K_{E} \cdot K_{F} \cdot n\right)=U \quad I=\frac{U}{R+K_{E} \cdot K_{F} \cdot n} \quad I:=\frac{U}{R+K_{E} \cdot K_{F} \cdot n}
$$

$$
\begin{equation*}
M:=K_{m} \cdot K_{F} \cdot I^{2} \quad M \rightarrow K_{m} \cdot K_{F} \cdot \frac{U^{2}}{\left(R+K_{E} \cdot K_{F} \cdot n\right)^{2}} \quad M:=K_{m} \cdot K_{F} \cdot \frac{U^{2}}{\left(R+K_{E} \cdot K_{F} \cdot n\right)^{2}} \tag{9.8}
\end{equation*}
$$

some numerical values for a plot ...

$$
\begin{array}{cl}
\mathrm{Uman}_{\mathrm{m}}:=100 \mathrm{~V} \mathrm{~K}_{\mathrm{E}}:=1 \quad \mathrm{~K}_{\mathrm{m}}:=1 & \mathrm{R}:=4 \Omega \quad \mathrm{~K}_{\mathrm{F}}:=1 \frac{\mathrm{~Wb}}{\mathrm{~A}} \quad \mathrm{I}_{\max }:=9 \mathrm{~A} \\
\mathrm{M}(\mathrm{U}, \mathrm{n}):=\mathrm{K}_{\mathrm{m}} \cdot \mathrm{~K}_{\mathrm{F}} \cdot \frac{\mathrm{U}^{2}}{\left(\mathrm{R}+\mathrm{K}_{\mathrm{E}} \cdot \mathrm{~K}_{\mathrm{F}} \cdot \mathrm{n}\right)^{2}} \quad \mathrm{M}\left(\mathrm{U}_{\mathrm{m}}, 100 \mathrm{rpm}\right)=47.747 \mathrm{~N} \cdot \mathrm{~m} \quad \mathrm{M}_{\max }:=\mathrm{K}_{\mathrm{m}} \cdot \mathrm{~K}_{\mathrm{F}} \cdot \mathrm{I}_{\max }^{2} \\
\mathrm{M}_{\max }=81 \mathrm{~N} .
\end{array}
$$

$\mathrm{n}:=1 \mathrm{rpm}, 2 \mathrm{rpm} . .200 \mathrm{rpm}$

motor suitable for traction purposes - high torque at low rpm

Induction motors (AC) $\quad \mathrm{I}_{\mathrm{F}}:=1 \quad \omega:=\frac{1}{\mathrm{~s}} \quad \underset{\mathrm{w}}{\mathrm{N}}:=\mathrm{FRAME} \cdot \frac{4 \cdot \pi}{100} \cdot \mathrm{sec} \quad$| t to go from 0 to $4 \star \pi$ in |
| :--- |
| 100 steps | current sinusoidal (cos) with time

$\mathrm{I}_{\mathrm{a}}(\mathrm{t}):=\mathrm{I}_{\mathrm{F}} \cdot \cos (\omega \cdot \mathrm{t})$

$$
\mathrm{I}_{\mathrm{b}}(\mathrm{t}):=\mathrm{I}_{\mathrm{F}} \cdot \cos \left(\omega \cdot \mathrm{t}-2 \cdot \frac{\pi}{3}\right)
$$

$$
\mathrm{I}_{\mathrm{C}}(\mathrm{t}):=\mathrm{I}_{\mathrm{F}} \cdot \cos \left(\omega \cdot \mathrm{t}-4 \cdot \frac{\pi}{3}\right)
$$

field vector displaced by $2^{\star} \pi / 3$ and $4 * p / 3$, and current at appropriate phase shift applied

$$
\begin{aligned}
& \mathrm{Bz}_{\mathrm{a}}(\mathrm{t}):=\mathrm{I}_{\mathrm{F}} \cdot \cos (\omega \cdot \mathrm{t}) \\
& \mathrm{Bz}_{\mathrm{b}}(\mathrm{t}):=\mathrm{I}_{\mathrm{F}} \cdot \cos \left(\omega \cdot \mathrm{t}-2 \cdot \frac{\pi}{3}\right) \cdot\left(\cos \left(2 \cdot \frac{\pi}{3}\right)+\sin \left(2 \cdot \frac{\pi}{3}\right) \cdot \mathrm{i}\right) \quad \quad \mathrm{I}_{\mathrm{F}} \cdot \cos \left(\omega \cdot \mathrm{t}-2 \cdot \frac{\pi}{3}\right)=-0.5 \\
& \mathrm{Bz}_{\mathrm{C}}(\mathrm{t}):=\mathrm{I}_{\mathrm{F}} \cdot \cos \left(\omega \cdot \mathrm{t}-4 \cdot \frac{\pi}{3}\right) \cdot\left(\cos \left(4 \cdot \frac{\pi}{3}\right)+\sin \left(4 \cdot \frac{\pi}{3}\right) \cdot \mathrm{i}\right) \quad \quad \mathrm{I}_{\mathrm{F}} \cdot \cos \left(\omega \cdot \mathrm{t}-4 \cdot \frac{\pi}{3}\right)=-0.5 \\
& \operatorname{Re} _\operatorname{sum}(\mathrm{t}):=\operatorname{Re}\left(\mathrm{Bz}_{\mathrm{a}}(\mathrm{t})\right)+\operatorname{Re}\left(\mathrm{Bz}_{\mathrm{b}}(\mathrm{t})\right)+\operatorname{Re}\left(\mathrm{Bz}_{\mathrm{c}}(\mathrm{t})\right) \\
& \operatorname{Re} \text { _sum }(t)=1.5 \\
& \mathrm{I}_{\mathrm{F}} \cdot \cos (\omega \cdot \mathrm{t})=1 \\
& \operatorname{Im} _\operatorname{sum}():=\operatorname{Im}\left(\mathrm{Bz}_{\mathrm{a}}(\mathrm{t})\right)+\operatorname{Im}\left(\mathrm{Bz}_{\mathrm{b}}(\mathrm{t})\right)+\operatorname{Im}\left(\mathrm{Bz}_{\mathrm{c}}(\mathrm{t})\right) \\
& \operatorname{Im} _\operatorname{sum}(\mathrm{t})=0 \\
& \sqrt{\operatorname{Re} _ \text {sum }(t)^{2}+\operatorname{Im} _ \text {sum }(t)^{2}}=1.5
\end{aligned}
$$

$\mathrm{t} 1:=\frac{\pi}{3} \mathrm{sec}$

$$
\mathrm{I}_{\mathrm{F}} \cdot \cos (\omega \cdot \mathrm{t} 1)=0.5
$$

$$
\mathrm{I}_{\mathrm{F}} \cdot \cos \left(\omega \cdot \mathrm{t} 1-2 \cdot \frac{\pi}{3}\right)=0.5
$$

$$
\mathrm{I}_{\mathrm{F}} \cdot \cos \left(\omega \cdot \mathrm{t} 1-4 \cdot \frac{\pi}{3}\right)=-1
$$

$$
\begin{aligned}
& \sqrt{\operatorname{Re}\left(\mathrm{Bz}_{\mathrm{a}}(\mathrm{t} 1)\right)^{2}+\operatorname{Im}\left(\mathrm{Bz}_{\mathrm{a}}(\mathrm{t} 1)\right)^{2}}=0.5 \\
& \sqrt{\operatorname{Re}\left(\mathrm{Bz}_{\mathrm{b}}(\mathrm{t} 1)\right)^{2}+\operatorname{Im}\left(\mathrm{Bz}_{\mathrm{b}}(\mathrm{t} 1)\right)^{2}}=0.5 \\
& \sqrt{\operatorname{Re}\left(\mathrm{Bz}_{\mathrm{c}}(\mathrm{t} 1)\right)^{2}+\operatorname{Im}\left(\mathrm{Bz}_{\mathrm{c}}(\mathrm{t} 1)\right)^{2}}=1
\end{aligned}
$$

real part of field vector
speed of rotation of this machine = frequency of the supplied AC. as shown, there are two poles (one pair) $\mathrm{N}-\mathrm{S}$ with multiple pairs the speed of rotation is reduced proportional to the number of poles
with AC frequency ω and two poles

$$
\mathrm{n}_{\mathrm{s}}=\mathrm{f}=\frac{\omega}{2 \cdot \pi} \quad \mathrm{n}_{\mathrm{s}}=\text { rotation_speed } \quad \mathrm{rpm}
$$

$\mathrm{f}=$ frequency $\quad \mathrm{Hz}$
$\omega=$ frequency $\quad \frac{1}{\mathrm{~s}}$

$$
\mathrm{Hz}=1 \frac{1}{\mathrm{~s}} \quad \mathrm{~Hz}=9.549 \mathrm{rpm}
$$

Hz assumes radians
$2 \cdot \pi \cdot \mathrm{~Hz}=60 \mathrm{rpm}$
one stator winding ...

$$
\begin{array}{lclll}
\mathrm{E}=-\mathrm{N} \cdot \frac{\mathrm{~d}}{\mathrm{dt}} \Phi & \begin{array}{c}
(2.95) \\
\mathrm{small} \ldots
\end{array} & \frac{\mathrm{~d}}{\mathrm{dt}} \Phi=- \text { constant } \cdot \Phi \cdot \mathrm{f} & \Rightarrow & \mathrm{E}=\frac{\Phi \cdot \mathrm{f}}{\mathrm{~K}_{\mathrm{F}}} \\
\mathrm{U}=\mathrm{I}_{\mathrm{F}} \cdot \mathrm{R}+\mathrm{E} & \mathrm{R}<1 & \mathrm{U}=\mathrm{E}=\frac{\Phi \cdot \mathrm{f}}{\mathrm{~K}_{\mathrm{F}}} & \Rightarrow & \Phi=\mathrm{K}_{\mathrm{F}} \cdot \frac{\mathrm{U}}{\mathrm{f}} \quad
\end{array}
$$

$$
\begin{equation*}
n_{s}=\frac{2 \cdot f}{p} \tag{9.10}
\end{equation*}
$$

now consider the rotor, if it is turning at the same speed as the rotating magnetic field of the stator, there is no EMF the current induced in the rotor is strongly dependent on the relative speed
define $\ldots \quad \mathrm{s}=\frac{\mathrm{n}_{\mathrm{s}}-\mathrm{n}}{\mathrm{n}_{\mathrm{s}}}$
(9.14) $\mathrm{s}=$ slip
$\mathrm{n}_{\mathrm{S}}=$ rotation_speed_stator
$\mathrm{n}=$ rotation_speed_rotor
at low slip 0% to .. 10%
$\mathrm{f}_{\mathrm{R} _ \text {EMF }}=\mathrm{n}_{\mathrm{s}}-\mathrm{n}$
$\mathrm{f}_{\mathrm{R} _E M F}=$ frequency_of_rotor_EMF
because the rotor induced current will be at slip frequency, EMF is low so reactance (L) will be low. I_{A} depends primarily (only) on rotor (armature) resistance R_{A} and is in phase with the flux pattern. The net result is torque is ~ directly proportional to slip

$$
\begin{equation*}
\mathrm{M}=\mathrm{K} \cdot \mathrm{~s} \tag{9.16}
\end{equation*}
$$

starting has challenges and text reviews some alternatives

There is much more to this subject and text covers quite well. Next lecture will review ship applications.
One comment regarding opinion in text regarding DC motor drive. Dc drives not typical as commutation brushes require significant maintenance. DDX motor has innovative new brush technology.
see: http://www.globalsecurity.org/military/library/report/2002/mil-02-04-wavelengths02.htm

