Reduction Gears

need:
propellers 60-300 rpm
waterjet pump 300-1500 rpm
low speed diesels 70-250 rpm
medium speed diesels 350-1200 rpm
steam turbine
gas turbine
6000-9000 rpm
3600-15000 rpm (larger @ lower rpm)
reduction gears make conversion.
some history
ref: Marine Engineering Chapter IX Reduction Gears, by Gary P. Mowers, (SNAME) page 325 ff and
others

19th - 20th century (1890-1910) ships propelled by reciprocating steam engines - direct drive
1904 - study by consulting engineers George Melville Adm (Ret.) and John Alpine George Melville was Chief Bureau of Steam Engineering and in 1899 President of ASME see
study: - Problem - steam engine succeeding reciprocating engine:
"If one could devise a means of reconciling, in a practical manner, the necessary high speed of revolution of the turbine with the comparatively low rate of revolution required by an efficient propeller, the problem would be solved and the turbine would practically wipe out the reciprocating engine for the propulsion of ships. The solution of this problem would be a stroke of great genius." Ref: Mar. Eng.

First gear generally attributed to Pierre DeLaval in 1892. Parsons (cavitation) and George Westinghouse developed prototypes and installed gears:

1910-15,000 shp with geared turbine drive
1940-100,000 shp with geared turbine drive
1917 - double reduction introduced

Development has been evolutionary - few step advances

- single to double
- welding in construction of gear wheel as and casing
- higher hardness pinion and gear materials => higher tooth load

Many types of gears are used (defined) and there is an extensive nomenclature associated with gear definitions. One source: (formerly available free via registration via:

http://www.agma.org/Content/NavigationMenu/EducationTraining/OnlineEducation/default.htm

AGMA Gear Nomenclature, Definitions of Terms with Symbols
ANSUAGMA 1012-F90
(Revision of AGMA 112.05)
[Tables or other self-supporting sections may be quoted or extracted in their entirety. Credit lines should read: Extracted from AGMA 1012-F90, Gear Nomenclature Terms, Definitions, Symbols and Abbreviations, with the permission of the publisher, American Gear Manufacturers Association, 1500 King Street, Suite 201, Alexandria, Virginia 22314] Availability changed to require registration in course. I have copy from previous registration when it was free.

See: handout from Marine Engineering, (on web site)

Single Reduction

$$
\begin{aligned}
& \text { gear_ratio }=R=\frac{\text { diameter_of_gear }}{\text { diameter_of_pinion }} \\
& R=\frac{\text { number_teeth_gear }}{\text { number_teeth_pinion }}=\frac{\text { rpm_pinion }}{\text { rpm_gear }}=\frac{N_{P}}{N_{G}}
\end{aligned}
$$

Double Reduction (locked train 50\% each drive)

$\mathrm{R}_{1}=\frac{\mathrm{dg}_{1}}{\mathrm{dp}_{1}} \quad \mathrm{R}_{2}=\frac{\mathrm{dg}_{2}}{\mathrm{dp}_{2}} \quad \mathrm{R}=\mathrm{R}_{1} \cdot \mathrm{R}_{2}$

Epicyclic gear summary

various combinations can be used with this system

Type	Fixed	Input	Output		Ratio	Normal range
Planetary	ring	sun	cage		$R_{R} / R_{S}+1$	$3: 1-12: 1$
Star	cage	sun	ring		$(-) R_{R} / R_{S}$	$(-) 2: 1-11: 1$
Solar	sun	ring	cage		$R_{S} / R_{R}+1$	$1.2: 1-1.7: 1$

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{S}}=\text { radius_sun } \\
& \mathrm{R}_{\mathrm{R}}=\text { radius_ring } \\
& \mathrm{R}_{\mathrm{P}}=\text { radius_planet }
\end{aligned}
$$

Application: Planetary gears used in high speed as tooth loading reduced by multiplicity of planet gears. Also can provide counter-rotation.
to show above ratios consider:

$\mathrm{R}=$ pitch_diameter	subscripts \ldots
$\mathrm{W}=$ angular_velocity	$\mathrm{s}=$ sun
$\mathrm{W}_{\mathrm{T}}=$ tangential_load	$\mathrm{p}=$ planet
$\mathrm{n}=$ rpm	$\mathrm{r}=$ ring
	$\mathrm{c}=$ carrier(cage)
for compound systems	$1=$ primary
	$2=$ secondary

ref: Gear Drive Systems; Design and Application, P. Lynwander TJ184.L94 1983 N.B. in this development W_{s} and W_{c} are clockwise and W_{r} and W_{p} are ccw

$$
\mathrm{W}_{\mathrm{s}} \cdot \mathrm{R}_{\mathrm{s}}
$$

1. point on pitch diameter of sun gear has tangential velocity
2. point on sun gear pitch diameter meshing with planet gear pitch diameter has tangential velocity

$$
\mathrm{W}_{\mathrm{p}} \cdot \mathrm{R}_{\mathrm{p}}+\mathrm{W}_{\mathrm{c}} \cdot \mathrm{R}_{\mathrm{s}} \quad \begin{aligned}
& \text { first term from rotation of planet } \\
& \text { second from rotation of carrier al }
\end{aligned}
$$

second from rotation of carrier about center of carrier and sun
mesh =>

$$
\mathrm{W}_{\mathrm{s}} \cdot \mathrm{R}_{\mathrm{s}}=\mathrm{W}_{\mathrm{p}} \cdot \mathrm{R}_{\mathrm{p}}+\mathrm{W}_{\mathrm{c}} \cdot \mathrm{R}_{\mathrm{s}}
$$

3. similarly at ring ...

$$
\mathrm{W}_{\mathrm{r}} \cdot \mathrm{R}_{\mathrm{r}}=\mathrm{W}_{\mathrm{p}} \cdot \mathrm{R}_{\mathrm{p}}-\mathrm{W}_{\mathrm{c}} \cdot \mathrm{R}_{\mathrm{r}} \quad \text { or } \ldots \quad \mathrm{W}_{\mathrm{r}} \cdot \mathrm{R}_{\mathrm{r}}+\mathrm{W}_{\mathrm{c}} \cdot \mathrm{R}_{\mathrm{r}}=\mathrm{W}_{\mathrm{p}} \cdot \mathrm{R}_{\mathrm{p}}
$$

combining $\ldots \quad W_{s} \cdot R_{s}=W_{p} \cdot R_{p}+W_{C} \cdot R_{s}=W_{r} \cdot R_{r}+W_{C} \cdot R_{r}+W_{C} \cdot R_{s}=W_{r} \cdot R_{r}+W_{c} \cdot\left(R_{r}+R_{s}\right)$

$$
\mathrm{W}_{\mathrm{s}} \cdot \mathrm{R}_{\mathrm{s}}=\mathrm{W}_{\mathrm{r}} \cdot \mathrm{R}_{\mathrm{r}}+\mathrm{W}_{\mathrm{c}} \cdot\left(\mathrm{R}_{\mathrm{r}}+\mathrm{R}_{\mathrm{s}}\right) \quad \text { or .. for solving below } \ldots
$$

Planetary arrangement ... input sun, output carrier (cage), fixed ring

$$
\mathrm{W}_{\mathrm{r}}=0 \quad \mathrm{~W}_{\mathrm{s}} \cdot \mathrm{R}_{\mathrm{s}}=\mathrm{W}_{\mathrm{c}} \cdot\left(\mathrm{R}_{\mathrm{r}}+\mathrm{R}_{\mathrm{s}}\right)
$$

$$
\frac{\mathrm{W}_{\mathrm{s}}}{\mathrm{~W}_{\mathrm{C}}}=\frac{\mathrm{R}_{\mathrm{r}}+\mathrm{R}_{\mathrm{s}}}{\mathrm{R}_{\mathrm{s}}}=\frac{\mathrm{R}_{\mathrm{r}}}{\mathrm{R}_{\mathrm{s}}}+1
$$

Star arrangement ... input sun, output ring, fixed carrier (cage)

$$
\mathrm{W}_{\mathrm{C}}=0 \quad \mathrm{~W}_{\mathrm{s}} \cdot \mathrm{R}_{\mathrm{S}}=\mathrm{W}_{\mathrm{r}} \cdot \mathrm{R}_{\mathrm{r}} \quad \frac{\mathrm{~W}_{\mathrm{s}}}{\mathrm{~W}_{\mathrm{r}}}=\frac{\mathrm{R}_{\mathrm{r}}}{\mathrm{R}_{\mathrm{S}}} \quad \begin{aligned}
& \text { but these are in opposite directions } \\
& \text { can use for reversing }
\end{aligned}
$$

Solar arrangement ... input ring output carrier (cage) fixed sun
$\mathrm{W}_{\mathrm{s}}=0 \quad 0=\mathrm{W}_{\mathrm{r}} \cdot \mathrm{R}_{\mathrm{r}}+\mathrm{W}_{\mathrm{C}} \cdot\left(\mathrm{R}_{\mathrm{r}}+\mathrm{R}_{\mathrm{s}}\right) \quad \frac{\mathrm{W}_{\mathrm{r}}}{\mathrm{W}_{\mathrm{C}}}=-\frac{\mathrm{R}_{\mathrm{r}}+\mathrm{R}_{\mathrm{S}}}{\mathrm{R}_{\mathrm{r}}}=-\left(\frac{\mathrm{R}_{\mathrm{S}}}{\mathrm{R}_{\mathrm{r}}}+1\right)$
but in figure Wr and Wc are opposite rotation $=>$ this is the same actual rotation in result
defined mcd here for symbolic calculation, actually below

$$
\mathrm{k}_{1}:=\frac{1-\mathrm{v}_{1}^{2}}{\pi \cdot \mathrm{E}_{1}} \quad \mathrm{k}_{2}:=\frac{1-\mathrm{v}_{2}^{2}}{\pi \cdot \mathrm{E}_{2}}
$$

Hertz stress

Elasticity ... page 418 ff for more specifics It can be shown that the width of contact between two parallel cylinders given: elliptical loading, q_{o}, etc.

$$
\begin{align*}
& \mathrm{b}:=\sqrt{\frac{4 \cdot \mathrm{P} _\mathrm{p} \cdot\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right) \cdot \mathrm{R}_{1} \cdot \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}} \quad \begin{array}{l}
\text { this is the solution to the } \\
\text { width of contact given: } \\
\text { elliptical loading, } \mathrm{q}_{\mathrm{o}}, \text { etc. }
\end{array} \tag{236}\\
& \begin{aligned}
\text { where } \ldots \quad \text { P_pr }=\frac{1}{2} \cdot \pi \cdot \mathrm{~b} \cdot \mathrm{q}_{\mathrm{O}} & \mathrm{q}_{\mathrm{O}}=\text { max_pressure_elliptical_distribution } \\
& \mathrm{b}=\text { half_width_of_rectangular_contact_area }
\end{aligned} \\
& \mathrm{q}_{\mathrm{O}}:=\frac{2 \cdot \mathrm{P}_{-} \mathrm{pr}}{\pi \cdot \mathrm{~b}} \quad \quad \mathrm{P} _\mathrm{pr}=\mathrm{P}^{\prime}=\frac{\text { load }}{\text { length }} \\
& k_{n}=\frac{1-v_{n}^{2}}{\pi \cdot E_{n}} \quad \text { all } n
\end{align*}
$$

elliptical loading details
$\mathrm{b}:=2$ p_over_P $\max (\mathrm{x}):=\sqrt{1-\left(\frac{\mathrm{x}}{\mathrm{b}}\right)^{2}} \quad \mathrm{x}:=-\mathrm{b},-\mathrm{b}+0.01 . . \mathrm{b}$
symbolically

$$
\mathrm{p}(\mathrm{xx}):=\mathrm{P} _\max \cdot \sqrt{1-\left(\frac{\mathrm{xx}}{\mathrm{bb}}\right)^{2}}
$$

want

$$
\int_{-b b}^{b b} p(x x) d x x=l o a d
$$

let $\ldots \quad \mathrm{xx}(\theta, \mathrm{bb}):=\mathrm{bb} \cdot \cos (\theta) \quad \frac{\mathrm{d}}{\mathrm{d} \theta} \mathrm{xx}(\theta, \mathrm{bb}) \rightarrow(-\mathrm{bb}) \cdot \sin (\theta)$

then ...

$$
\mathrm{p}(\theta):=\mathrm{P}_{-} \max \cdot \sin (\theta) \quad \int_{-b b}^{b b} \mathrm{p}(\mathrm{xx}) \mathrm{dxx}=\int_{\pi}^{0} \mathrm{p}(\mathrm{xx}) \cdot(-\mathrm{bb} \cdot \sin (\theta)) \mathrm{d} \theta
$$

therefore ..

$$
\int_{\pi}^{0} \mathrm{p}(\theta) \cdot(-\mathrm{bb} \cdot \sin (\theta)) \mathrm{d} \theta \rightarrow \frac{1}{2} \cdot \pi \cdot \mathrm{P} _\max \cdot \mathrm{bb}
$$

and with interpretation on per unit length basis
$\mathrm{P}_{-} \mathrm{pr}=\frac{1}{2} \cdot \pi \cdot \mathrm{~b} \cdot \mathrm{q}_{\mathrm{O}}$

[^0]substitution for b and solve for q_{o} in terms of load per unit length P_pr...
\[

$$
\begin{align*}
& \text { or ... } \\
& \mathrm{q}_{\mathrm{o}}=\frac{2 \cdot \mathrm{P}_{-} \mathrm{pr}}{\pi \cdot \sqrt{\frac{4 \cdot \mathrm{P}_{-} \mathrm{pr} \cdot\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right) \cdot \mathrm{R}_{1} \cdot \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}}}=\frac{2}{\pi} \cdot \mathrm{P}_{-} \mathrm{pr} \cdot \sqrt{\frac{\mathrm{R}_{1}+\mathrm{R}_{2}}{4 \cdot \mathrm{P}_{-} \mathrm{pr} \cdot\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right) \cdot \mathrm{R}_{1} \cdot \mathrm{R}_{2}}}=\sqrt{\frac{\mathrm{P}_{-} \mathrm{pr}^{2} \cdot 4}{\pi^{2}} \cdot \frac{\mathrm{R}_{1}+\mathrm{R}_{2}}{4 \cdot \mathrm{P}_{-} \mathrm{pr} \cdot\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right) \cdot \mathrm{R}_{1} \cdot \mathrm{R}_{2}}} \\
& q_{0}=\sqrt{\frac{P_{-} p r}{\pi^{2}} \cdot \frac{R_{1}+R_{2}}{\left(k_{1}+k_{2}\right) \cdot R_{1} \cdot R_{2}}}=\sqrt{\frac{P_{-} p r}{\pi^{2}} \cdot \frac{R_{1}+R_{2}}{\left(\frac{1-v_{1}{ }^{2}}{\pi \cdot E_{1}}+\frac{1-v_{2}^{2}}{\pi \cdot E_{2}}\right) \cdot R_{1} \cdot R_{2}}}=\sqrt{\frac{P_{-} p r}{\pi} \cdot \frac{R_{1}+R_{2}}{\left(\frac{1-v_{1}{ }^{2}}{E_{1}}+\frac{1-v_{2}^{2}}{E_{2}}\right) \cdot R_{1} \cdot R_{2}}} \tag{240}
\end{align*}
$$
\]

same material E1 = E2, and $\ldots v=0.3 \ldots$

$$
\begin{aligned}
& \mathrm{q}_{\mathrm{O}}=\sqrt{\frac{\mathrm{P}_{-} \mathrm{pr}}{\pi} \cdot \frac{\mathrm{R}_{1}+\mathrm{R}_{2}}{2\left(\frac{1-v^{2}}{\mathrm{E}}\right) \cdot \mathrm{R}_{1} \cdot \mathrm{R}_{2}}}=\sqrt{\frac{\mathrm{P}_{-} \mathrm{pr} \cdot \mathrm{E}}{\pi} \cdot \frac{\mathrm{R}_{1}+\mathrm{R}_{2}}{2\left(1-v^{2}\right) \cdot \mathrm{R}_{1} \cdot \mathrm{R}_{2}}}=\left[\frac{1}{\pi \cdot 2\left(1-v^{2}\right)}\right]^{\frac{1}{2}} \sqrt{\frac{\mathrm{P}_{-} \mathrm{pr} \cdot \mathrm{E}}{\pi} \cdot \frac{\mathrm{R}_{1}+\mathrm{R}_{2}}{\mathrm{R}_{1} \cdot \mathrm{R}_{2}}} \\
& v:=0.3\left[\frac{1}{\pi \cdot 2\left(1-v^{2}\right)}\right]^{\frac{1}{2}}=0.418 \quad \mathrm{q}_{\mathrm{o}}=0.418 \cdot \sqrt{\frac{\mathrm{P} _\mathrm{pr} \cdot \mathrm{E}}{\pi} \cdot \frac{\mathrm{R}_{1}+\mathrm{R}_{2}}{\mathrm{R}_{1} \cdot \mathrm{R}_{2}}} \\
& \text { Marine Engineering ... } \quad S=\sqrt{0.175 \cdot \frac{P}{L} \cdot E \cdot \frac{r_{1}+r_{2}}{r_{1} \cdot r_{2}}} \\
& \text { page } 330 \text { between (10) and (11) } \\
& \text { S = maximum_compressive_stress•psi } \\
& \text { E, r straight forward } \\
& \frac{\mathrm{P}}{\mathrm{~L}}=\text { loading_per_inch_length }=\mathrm{P} _ \text {pr } \\
& \frac{1}{\pi} \cdot \frac{1}{2\left(1-v^{2}\right)}=0.175 \\
& \text { maximum stress } \sim \sqrt{\frac{\mathrm{P}}{\mathrm{~L}} \cdot \frac{\mathrm{~d}_{1}+\mathrm{d}_{2}}{\mathrm{~d}_{1} \cdot \mathrm{~d}_{2}}} \quad \frac{\mathrm{P}}{\mathrm{~L}}=\frac{\mathrm{W}_{\mathrm{t}}}{\mathrm{~F}_{\mathrm{e}}}=\frac{\text { tangential_tooth_load }}{\text { effective_face_width_at_pitch_diameter }} \cdot \frac{\text { lbf }}{\text { in }} \\
& \frac{\mathrm{W}_{\mathrm{t}}}{\mathrm{~F}_{\mathrm{e}}}=\frac{\mathrm{hp}}{\pi \cdot \mathrm{rpm}}{ }_{\text {pinion }} \cdot \mathrm{d}_{\text {pinion }} \cdot \mathrm{F}_{\mathrm{e}} \\
& \text { unit version } \\
& \frac{\mathrm{W}_{\mathrm{t}}}{\mathrm{~F}_{\mathrm{e}}}=126051 \frac{\mathrm{hp}}{\mathrm{rpm}} \frac{\text { pinion } \cdot \mathrm{d}_{\text {pinion }} \cdot \mathrm{F}_{\mathrm{e}}}{} \\
& \text { hp = horse_power_transmitted_per_mesh } \\
& \begin{array}{l}
\mathrm{hp} \text { in horsepowe } \\
\text { rpm in } \mathrm{min}^{-1} \\
\mathrm{~d}_{\text {pinion }} \text { in inches }
\end{array} \\
& \text { result ... } \\
& \frac{\text { lbf }}{\text { Fe_unit }}
\end{aligned}
$$

replace ... $\quad d_{1}=d_{g} \quad d_{2}=d_{p}$
maximum stress $\sim \sqrt{\frac{W_{t}}{F_{e}} \cdot \frac{d_{g}+d_{p}}{d_{g} \cdot d_{p}}}=\sqrt{\frac{W_{t}}{F_{e}} \cdot \frac{\frac{d_{g}}{d_{p}}+1}{d_{g}}}=\sqrt{\frac{W_{t}}{F_{e}} \cdot \frac{R+1}{d_{g}}}=\sqrt{\frac{W_{t}}{F_{e}} \cdot \frac{R+1}{d_{p} \cdot R}} \quad$ as $\ldots \quad R=\frac{d_{g}}{d_{p}}$
motivates parameter K factor

$$
\mathrm{K}=\frac{\mathrm{W}_{\mathrm{t}}}{\mathrm{~F}_{\mathrm{e}}} \cdot \frac{1}{\mathrm{~d}_{\mathrm{p}}} \cdot \frac{\mathrm{R}+1}{\mathrm{R}} \quad \text { units of pressure: kPa. psi, } \mathrm{N} / \mathrm{m}^{\wedge} 2 \text { etc. }
$$

maximum stress ~ $\quad \sqrt{\mathrm{K}}$
some observations $\ldots \quad \frac{W_{t}}{F_{e}}=\mathrm{K} \cdot \mathrm{d}_{\mathrm{p}} \cdot \frac{\mathrm{R}}{\mathrm{R}+1}=\frac{\mathrm{hp}}{\pi \cdot \mathrm{n}_{\mathrm{p}} \cdot \mathrm{d}_{\mathrm{p}} \cdot \mathrm{F}_{\mathrm{e}}} \quad \Rightarrow>\quad \mathrm{d}_{\mathrm{p}}{ }^{2}=\frac{\mathrm{hp}}{\pi \cdot \mathrm{K} \cdot \mathrm{n}_{\mathrm{p}} \cdot \mathrm{F}_{\mathrm{e}}} \cdot\left(\frac{\mathrm{R}+1}{\mathrm{R}}\right)$ for double helical pinion gear $\left(\frac{\mathrm{F}_{\mathrm{e}}}{\mathrm{d}_{\mathrm{p}}}\right)_{\max }=\mathrm{C} \quad 2 \leq \mathrm{C} \leq 2.5 \quad 1.5$ for epicyclic
substitute $F_{e}=C d_{p}$ into above ...

$$
\begin{array}{ll}
\mathrm{d}_{\mathrm{p}}^{3}=\frac{\mathrm{hp}}{\pi \cdot \mathrm{~K} \cdot \mathrm{C} \cdot \mathrm{n}_{\mathrm{p}}} \cdot\left(\frac{\mathrm{R}+1}{\mathrm{R}}\right) & \text { unit conversion }
\end{array} \frac{\frac{550}{\pi} \cdot 60 \cdot 12=126051}{} \begin{array}{ll}
\frac{\mathrm{lbf} \cdot \mathrm{ft}}{\frac{\mathrm{sec}}{\mathrm{hp}} \cdot \frac{60 \mathrm{sec}}{\mathrm{~min}} \cdot \frac{12 \mathrm{in}}{\mathrm{ft}}} \\
\mathrm{~d}_{\mathrm{p}}=\left[\frac{\mathrm{hp}}{-\frac{1}{\mathrm{~V}}} \cdot\left(\frac{\mathrm{R}+1}{\mathrm{D}}\right)\right]^{3} &
\end{array}
$$

K used in design 100-1000 psi
highest in hardened and ground aircraft engine gears

$$
100 \mathrm{psi}=689.5 \frac{\mathrm{kN}}{\mathrm{~m}^{2}} \quad 1000 \mathrm{psi}=6895 \frac{\mathrm{kN}}{\mathrm{~m}^{2}}
$$

classification societies limit to 300 psi

$$
300 \mathrm{psi}=2068 \frac{\mathrm{kN}}{\mathrm{~m}^{2}}
$$

Marine Engineering suggests the first approximation for the gear ratio for the second reduction be taken as ...

$$
\sqrt{\mathrm{R}_{\text {overall }}-1 \quad \text { articulated } \quad \sqrt{\mathrm{R}_{\text {overall }}}+3 \quad \text { locked train }}
$$

another Navy study (ref: Prof
Carmichael) suggests

$$
\sqrt{\mathrm{R}_{\text {overall }}} \quad \text { for double reduction } \quad \mathrm{R}_{\text {overall }}
$$

for triple reduction
volume ...

$$
\begin{aligned}
& \text { for solid gear } \quad \begin{array}{l}
\text { vol }=\frac{\pi}{4} \cdot \mathrm{~d}^{2} \cdot \mathrm{~F}_{\mathrm{e}} \\
\mathrm{~d}_{\mathrm{p}}{ }^{2} \cdot \mathrm{~F}_{\mathrm{e}}=\mathrm{d}_{\mathrm{p}}{ }^{3} \cdot \mathrm{C}=\frac{\mathrm{hp}}{\pi \cdot \mathrm{~K} \cdot \mathrm{n}_{\mathrm{p}}} \cdot\left(\frac{\mathrm{R}+1}{\mathrm{R}}\right)
\end{array}
\end{aligned}
$$

$$
\text { volume_bull_gear }=\frac{\pi}{4} \cdot \mathrm{~d}_{\mathrm{g}}^{2} \cdot \mathrm{~F}_{\mathrm{e}}=\frac{\pi}{4} \cdot \mathrm{R}^{2} \cdot \mathrm{~d}_{\mathrm{p}}^{2} \cdot \mathrm{~F}_{\mathrm{e}}=\frac{\pi}{4} \cdot \mathrm{R}^{2} \cdot \frac{\mathrm{hp}}{\pi \cdot \mathrm{~K} \cdot \mathrm{n}_{\mathrm{p}}} \cdot\left(\frac{\mathrm{R}+1}{\mathrm{R}}\right)
$$

$$
\text { total_volume }=\frac{\pi}{4} \cdot \mathrm{~d}_{\mathrm{p}}^{2} \cdot \mathrm{~F}_{\mathrm{e}} \cdot\left(\mathrm{R}^{2}+1\right)=\frac{\pi}{4} \cdot \frac{\mathrm{hp}}{\pi \cdot \mathrm{~K} \cdot \mathrm{n}_{\mathrm{p}}} \cdot\left(\frac{\mathrm{R}+1}{\mathrm{R}}\right) \cdot\left(\mathrm{R}^{2}+1\right) \quad \text { in terms of diameter of pinion }
$$

$$
\mathrm{n}_{\mathrm{p}}=\mathrm{R} \cdot \mathrm{n}_{\mathrm{g}}
$$

$$
\text { total_volume }=\frac{\pi}{4} \cdot \frac{\mathrm{hp}}{\pi \cdot \mathrm{~K} \cdot \mathrm{n}_{\mathrm{g}}} \cdot\left(\frac{\mathrm{R}+1}{\mathrm{R}^{2}}\right) \cdot\left(\mathrm{R}^{2}+1\right) \quad \text { in terms of diameter of bull gear }
$$

overall volume ... increases with

1. power increases (per torque path
2. $\mathrm{rpm}_{\text {gear }}$ decreases
3. K decreases
4. R increases
\square data for plot

[^0]: A elliptical loading details

