ref: Gear Drive Systems; Design and Application, Peter Lynwander
teeth are at angle to rotation, contact is a series of oblique lines with several lines in contact simultaneously. total length of contact varies as teeth mesh.
offset adjacent "strings" in involute generator concept on base cylinder by angle ψ

$$
\begin{array}{cl}
\mathrm{L}=\frac{2 \cdot \pi \cdot \mathrm{R}_{\mathrm{B}}}{\tan \left(\psi_{\mathrm{B}}\right)} & \mathrm{L}=\text { lead } \\
\mathrm{R}_{\mathrm{B}}=\text { base_radius } \\
\tan \left(\psi_{\mathrm{B}}\right)=\frac{2 \cdot \pi \cdot \mathrm{R}_{\mathrm{B}}}{\mathrm{~L}} & \psi_{\mathrm{B}}=\text { base_helix_angle }
\end{array}
$$

 advantages ...
 greater load capacity
 smoother operation
 less sensitivity to tooth errors
 advantages ...
greater load capacity less sensitivity to tooth errors
develop normal at any radius on tooth by considering transverse and normal planes intersecting tooth at that point \square geometry development

(Xn, Yn, Zn), (Xn1, Yn1, Zn1), (X_line, Y_line, Z_line), (Xg, Yg, Zg), (X, Y, Z)
point B... point on gear for normal with helix (shown off gear)
point $A \ldots$ point on radial line 0,0 to B perpendicular joining tangent
point D ... tangent point
point $E \ldots$ point on plane perpendicular to tooth at B, connecting with (transverse) tangent point along R_{B}

$$
\begin{gathered}
\tan \left(\phi_{\mathrm{N}}\right)=\frac{\mathrm{AB}}{\mathrm{AE}} \quad \tan \left(\phi_{\mathrm{T}}\right)=\frac{\mathrm{AB}}{\mathrm{AD}} \cos (\psi)=\frac{\mathrm{AD}}{\mathrm{AE}} \\
\frac{\mathrm{AD}}{\mathrm{AE}} \cdot \frac{\mathrm{AB}}{\mathrm{AD}}=\frac{\mathrm{AB}}{\mathrm{AE}}=\cos (\psi) \cdot \tan \left(\phi_{\mathrm{T}}\right)=\tan \left(\phi_{\mathrm{n}}\right) \quad \Rightarrow \quad \tan \left(\phi_{\mathrm{T}}\right)=\frac{\tan \left(\phi_{\mathrm{n}}\right)}{\cos (\psi)} \quad \text { or } \ldots \quad \phi_{\mathrm{T}}=\operatorname{atan}\left(\frac{\left.\tan \left(\phi_{\mathrm{n}}\right)\right)}{\cos (\psi)}\right)
\end{gathered}
$$

other parameters; as in general gear ...

$$
\begin{aligned}
& P_{t}=\text { circular_pitch_transverse }=\frac{\pi \cdot \mathrm{D}}{\mathrm{~N}_{\mathrm{g}}}=\frac{\pi \cdot \mathrm{d}}{\mathrm{~N}_{\mathrm{p}}} \\
& D=\text { diameter_gear } \quad N_{g}=\text { number_of_teeth_gear } \quad d=\text { diameter_pinion } \quad N_{p}=\text { number_of_teeth_pinion }
\end{aligned}
$$

considering an expanded view at any radius ...

gear geometry at pitch radius (diameter)
magnified

$$
\cos (\psi)=\frac{\mathrm{P}_{\mathrm{n}}}{\mathrm{P}_{\mathrm{t}}}
$$

$\mathrm{P}_{\mathrm{n}}=$ circular_pitch_normal $=\mathrm{P}_{\mathrm{t}} \cdot \cos (\psi)$
if radius were $R_{B} \ldots$
$\tan \left(\psi_{B}\right)=\frac{P_{b}}{P_{x}}$
$\mathrm{P}_{\mathrm{b}}=$ base_pitch_transverse
and $\ldots \quad \psi_{\mathrm{B}}=\operatorname{atan}\left(\frac{\mathrm{P}_{\mathrm{b}}}{\mathrm{P}_{\mathrm{x}}}\right)=\operatorname{atan}\left(\frac{\mathrm{P}_{\mathrm{b}}}{\mathrm{P}_{\mathrm{x}}}\right)$

$$
\mathrm{g}=\text { gear }
$$

3. Pitch $\quad P_{t}=$ circular_pitch_transverse $=\frac{\text { pitch_circumference }}{\text { number_of_teeth }}=\frac{\pi \cdot D}{N_{g}}=\frac{\pi \cdot d}{N_{p}}$
$\mathrm{p}=$ pinion
$\mathrm{P}_{\mathrm{n}}=$ circular_pitch_normal $=\mathrm{P}_{\mathrm{t}} \cdot \cos (\psi) \quad$ from geometry above
N.B. $P=$ diametral_pitch_transverse $=\frac{\text { number_of_teeth }}{\text { pitch_diameter }}=\frac{N_{g}}{D}=\frac{N_{p}}{d} \quad$ so $\ldots \quad P_{t}=\frac{\pi}{P} \quad$ and $\ldots \quad P_{n}=\frac{\pi}{P_{N}}$ above geometry $=>\quad \tan (\psi)=\frac{\mathrm{P}_{\mathrm{t}}}{\mathrm{P}_{\mathrm{x}}} \quad \Rightarrow \quad \mathrm{P}_{\mathrm{X}}=\frac{\mathrm{P}_{\mathrm{t}}}{\tan (\psi)}$

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{X}}=\text { axial_pitch }=\mathrm{P}_{\mathrm{t}} \cdot \cot (\psi) \\
& \mathrm{P}_{\mathrm{b}}=\text { base_pitch_transverse }=\frac{\text { base_circumference }}{\text { number_of_teeth }}=\frac{\pi \cdot 2 \cdot \mathrm{R}_{\mathrm{B}}}{\mathrm{~N}}=\frac{\pi \cdot 2 \cdot \mathrm{R}_{\mathrm{G}}}{\mathrm{~N}} \cdot \frac{\mathrm{R}_{\mathrm{B}}}{\mathrm{R}_{\mathrm{G}}} \quad \quad \mathrm{R}_{\mathrm{G}}=\text { pitch_radius }=\frac{\mathrm{D}}{2}
\end{aligned}
$$

from geometry way above ... $0.0, \mathrm{~A}, \mathrm{~B}, \mathrm{D}$

$$
\cos \left(\phi_{\mathrm{t}}\right)=\frac{\mathrm{R}_{\mathrm{B}}}{\mathrm{R}_{\mathrm{G}}} \quad \Rightarrow \quad \mathrm{P}_{\mathrm{b}}=\frac{\pi \cdot \mathrm{D}}{\mathrm{~N}_{\mathrm{g}}} \cdot \cos \left(\phi_{\mathrm{t}}\right)=\mathrm{P}_{\mathrm{t}} \cdot \cos \left(\phi_{\mathrm{t}}\right)
$$

$$
\mathrm{P}_{\mathrm{bN}}=\text { base_pitch_normal }
$$

consider geometry at left which is above brought down to base radius Px is common, not dependent on radius ... PbN forms altitude of triangle with sides Px and Pb and base sqrt(...) calculate area

$$
\text { area }=\frac{1}{2} \cdot \text { base } \cdot \text { altitude }=\frac{1}{2} \cdot \sqrt{\mathrm{P}_{\mathrm{b}}^{2}+\mathrm{P}_{\mathrm{x}}^{2}} \cdot \mathrm{P}_{\mathrm{bN}}
$$

$$
\text { and } \ldots \quad \text { area }=\frac{1}{2} \cdot \mathrm{P}_{\mathrm{x}} \cdot \mathrm{P}_{\mathrm{b}} \quad \text { as } \ldots \text { is right triangle } \ldots
$$

$$
\Rightarrow \sqrt{P_{b}^{2}+P_{x}^{2}} \cdot P_{b N}=P_{x} \cdot P_{b} \quad \text { and } \ldots \quad P_{b N}=\frac{P_{x} \cdot P_{b}}{\sqrt{P_{b}^{2}+P_{x}^{2}}}
$$

also ...

$$
\mathrm{P}_{\mathrm{bN}}=\frac{\mathrm{P}_{\mathrm{x}}}{\sqrt{\mathrm{P}_{\mathrm{b}}^{2}+\mathrm{P}_{\mathrm{x}}^{2}}} \cdot \mathrm{P}_{\mathrm{b}}=\cos \left(\psi_{\mathrm{B}}\right) \cdot \mathrm{P}_{\mathrm{t}} \cdot \cos \left(\phi_{\mathrm{t}}\right) \quad \text { from figure and above } . .
$$

$$
\text { also } \ldots \quad \mathrm{P}_{\mathrm{bN}}=\mathrm{P}_{\mathrm{t}} \cdot \cos (\psi) \cdot \cos \left(\phi_{\mathrm{n}}\right) \quad \text { not shown here } \ldots
$$

$$
\mathrm{P}=\text { diametral_pitch_transverse }=\frac{\mathrm{N}_{\mathrm{g}}}{\mathrm{D}} \quad \text { shown above } \ldots \quad \mathrm{P}_{\mathrm{t}}=\frac{\pi}{\mathrm{P}} \quad \text { and } \ldots \quad \mathrm{P}_{\mathrm{n}}=\frac{\pi}{\mathrm{P}_{\mathrm{N}}}
$$

$$
\mathrm{P}_{\mathrm{N}}=\text { diametral_pitch_normal }=\frac{\pi}{\mathrm{P}_{\mathrm{n}}}=\frac{\pi}{\mathrm{P}_{\mathrm{t}} \cdot \cos (\psi)}=\frac{\mathrm{P}}{\cos (\psi)}
$$

additional note on tooth loading ...

$$
\frac{\mathrm{hp}}{\left(\frac{2 \cdot \pi}{\mathrm{~min}}\right) \cdot \frac{1 \cdot \mathrm{in}}{2} \cdot 1 \cdot \mathrm{in}}=126051 \frac{\mathrm{lbf}}{\mathrm{in}}
$$

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{t}}=\text { tangential_tooth_load }=126050 \cdot \frac{\mathrm{HP}}{\mathrm{RPM}_{\mathrm{p}} \cdot \mathrm{~d}}=126050 \cdot \frac{\mathrm{HP}}{\mathrm{RPM}_{\mathrm{g}} \cdot \mathrm{D}} \\
& \mathrm{~W}_{\mathrm{T}}=\text { total_tooth_load_transverse_plane }=\frac{\mathrm{W}_{\mathrm{t}}}{\cos \left(\phi_{\mathrm{t}}\right)} \\
& \mathrm{W}_{\mathrm{n}}=\text { tangential_tooth_load_normal_plane }=\frac{\mathrm{W}_{\mathrm{t}}}{\cos (\psi)}
\end{aligned}
$$

$$
\mathrm{W}_{\mathrm{N}}=\text { total_tooth_load_normal_plane }=\frac{\mathrm{W}_{\mathrm{t}}}{\cos \left(\phi_{\mathrm{n}}\right) \cdot \cos (\psi)}
$$

