2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Control of Manufacturing Processes

Subject 2.830/6.780/ESD.63 Spring 2008 Lecture #1

Introduction

February 5, 2008

Background

- Pre-requisites
- Your Background and Interests
- Relevant Experience
- Course Schedule

Expectations

- Assignments ~ Weekly
- 2 Quizzes in Class
- Group Project
 - End of term presentation
 - Report

Syllabus Details

- Lecturers
 - Duane Boning
 - David Hardt
- Course Secretary: Sharlene Blake

Syllabus Details

- Prerequisites: One of the following :
 - 2.008 or 2.810 Manufacturing
 - 2.751J or 6.152J or 6.041 or 15.064J
- Required Texts:
 - Montgomery, D.C., Introduction to Statistical Quality Control, 5th Ed. Wiley, 2005
 - May and Spanos, Fundamentals of Semiconductor Manufacturing and Process Control, John Wiley, 2006.

• Grading:

- Problem sets 40%
- Quizzes 40%
- Team Projects 20%
- Assignments: All except project are to be individual efforts

No final exam

- Final exam:
 - **Course URL:** (Registration and Certificate Required)

Team Projects

- Topics:
 - Process Diagnosis
 - Process Improvement
 - Process Optimization / Robustness
 - Advanced Applications

Expectations

- Background research on process and problem
- Use of existing data or generation of new data
- Oral presentation of results
- Project report from group

Main Topics

- Physical Origins of Variation
 - Process Sensitivities
- Statistical Models and Interpretation
 - Process as a Random Variable(s)
 - Diagnosis of Problems
- Effects Models and Designed Experiments
 - Input Output Empirical Models
- Process Optimization (Robustness)
 - Ideal Operating Points

Manufacturing Process Control

- Process Goals
 - Cost
 - Quality
 - Rate
 - Flexibility

Focus

- Unit Operations
- (1) Maximizing Quality
 - Conformance to Specifications
- (2) Improving Throughput
- (3) Improving Flexibility
- (4) Reducing Cost

Typical Process Control Problems

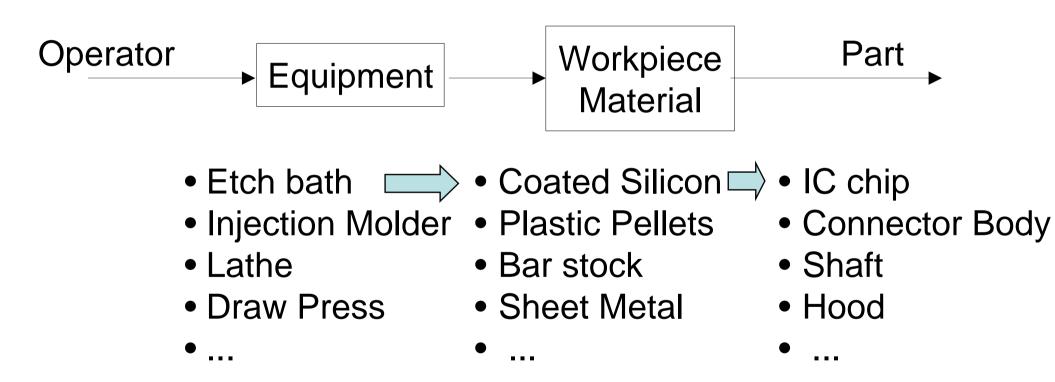
- Minimum feature size on a semiconductor chip has too much variability
- DNA diagnostic chip has uneven flow channels
- Toys never fit when assembled at home!
- Next generation high density electrical connector cannot be made reliably

Typical Process Control Problems

- Airframe skin needs trimming and bending to fit frame
- Web thickness of a machined panel is nonuniform
- Plastic throttle bodies for fuel injection are out of round
- Submarine hull welds need constant rework in production

Other Related Problems – Cost, Rate and Flexibility:

- 100% inspection with high scrap rates
 - low throughput
 - high costs
- 100% inspection with frequent rework
 - low throughput
 - high costs
- High variability at changeover
 - Reluctance to changeover
 - low flexibility



Manufacturing Processes

- How are they defined?
- How do they do their thing?
- How can they be categorized?
- Why don't they always get it right?

The Process Components

Process Definition

A Manufacturing Process is a <u>Change</u> in the Workpiece Material

- A change in geometry
- A change in constitutive properties

Conceptual Semiconductor Process Model

Image removed due to copyright restrictions. Please see Fig. 1 in Boning, D. S., et al. "A General Semiconductor Process Modeling Framework." *IEEE Transactions on Semiconductor Manufacturing* 5 (November 1992): 266-280.

Boning et al., *c.* 1990

Simplified Conceptual Semiconductor Process Model

Image removed due to copyright restrictions. Please see Fig. 15 in Boning, D. S., et al. "A General Semiconductor Process Modeling Framework." *IEEE Transactions on Semiconductor Manufacturing* 5 (November 1992): 266-280.

Example: Oxidation

Wafer states

Image removed due to copyright restrictions. Please see Fig. 17 in Boning, D. S., et al. "A General Semiconductor Process Modeling Framework." *IEEE Transactions on Semiconductor Manufacturing* 5 (November 1992): 266-280.

Example: Oxidation

Treatment (wafer environment)

Image removed due to copyright restrictions. Please see Fig. 18 in Boning, D. S., et al. "A General Semiconductor Process Modeling Framework." *IEEE Transactions on Semiconductor Manufacturing* 5 (November 1992): 266-280.

Oxidation Models

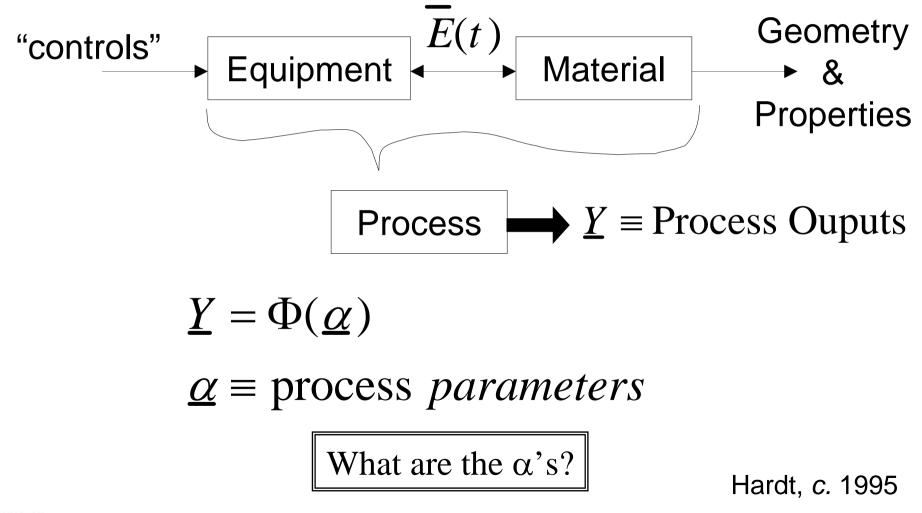
$$x_{ox} = \frac{A}{2} \left\{ \left[1 + \frac{(t+\tau)4B}{A^2} \right]^{1/2} - 1 \right\}$$
$$\tau = \frac{x_i^2 + Ax_i}{B}$$
Analytic: Deal-Grove

Images removed due to copyright restrictions. Please see Fig. 19 and 20 in Boning, D. S., et al. "A General Semiconductor Process Modeling Framework." *IEEE Transactions on Semiconductor Manufacturing* 5 (November 1992): 266-280.

Empirical: Change in wafer state

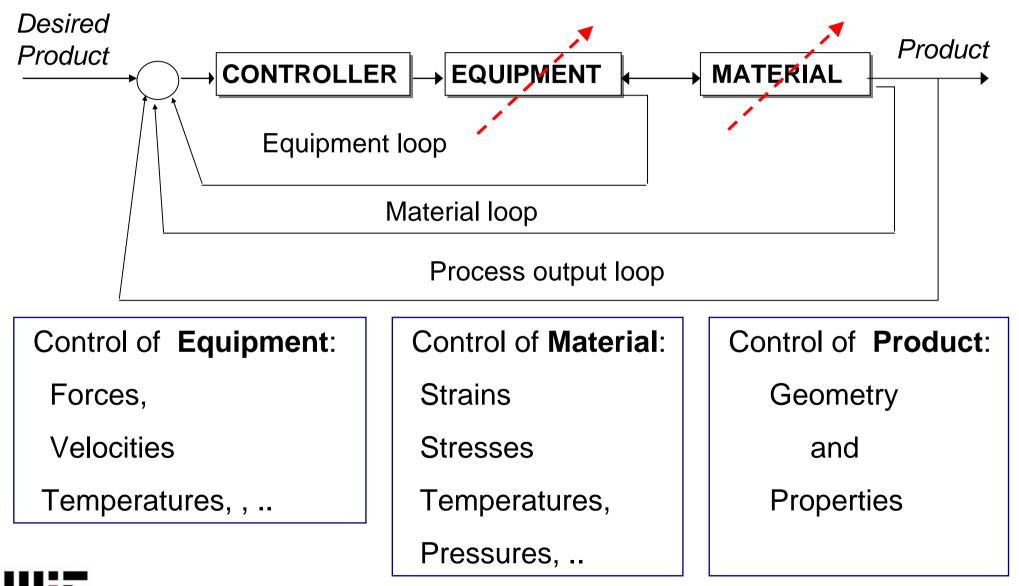
Empirical: Equipment model for mean and std. dev. of oxide thickness

20



(Semiconductor) Manufacturing Process Control

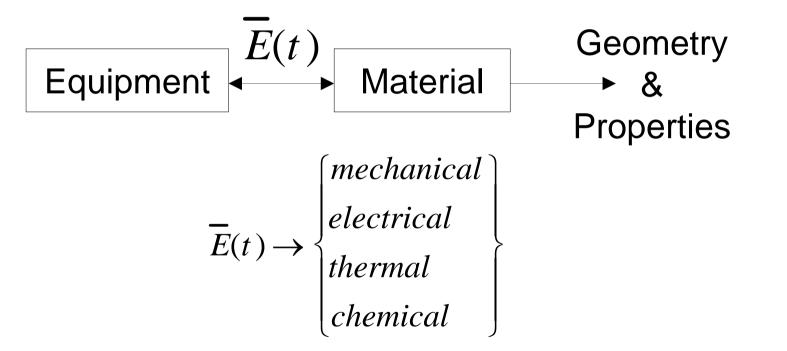
Image removed due to copyright restrictions. Please see Fig. 26 in Boning, D. S., et al. "A General Semiconductor Process Modeling Framework." *IEEE Transactions on Semiconductor Manufacturing* 5 (November 1992): 266-280.



Process Model for Control

The General Process Control Problem

Process Control Hierarchy


Reduce Disturbances

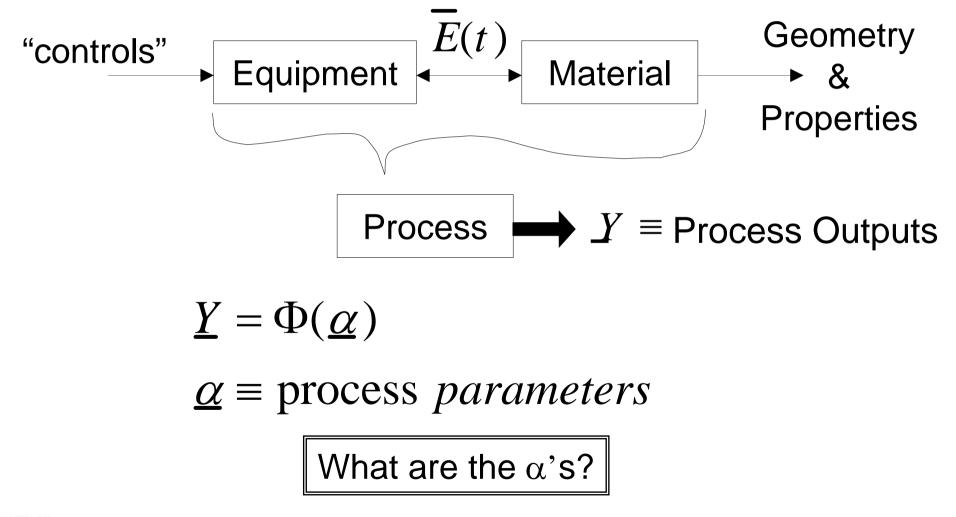
- Good Housekeeping (Ops Management)
- Standard Operations (SOP's)
- Statistical Analysis and Identification of Sources (SPC; 2.830J)
- Feedback Control of Machines (Automation and Control; 2.168)
- Reduce Sensitivity (Process Optimization or Robustness)
 - Measure Sensitivities via Designed Experiments (2.830J)
 - Adjust "free" parameters to minimize
- Measure output and manipulate inputs
 - Feedback control of Output(s) (2.830J)

Back to the Process: What Causes the Output Change?

• A Directed Energy Exchange with the Equipment

Modes of Geometry Change?

- Removal of Material
- Plastic **Deformation** of Material
- Addition of Material
- Formation of Material from a Gas or Liquid
- Any others???



What Causes Variation in the Process Output?

- Material Variations
 - Properties, Initial Geometry
- Equipment Variations
 - Non-repeatable, long term wear, deflections
- Operator Variations
 - Inconsistent control, excessive "tweaking"
- "Environment" Variations
 - Temperature and Handling inconsistencies

Process Model for Control

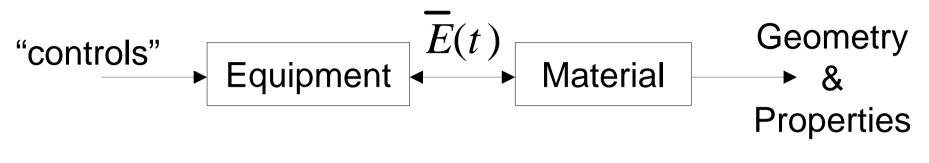
What are the Process Parameters?

- Equipment Energy "States"
- Equipment Constitutive "Properties"
- Material Energy "States"
- Material Constitutive "Properties"

Energy States

Energy Domain Mechanical Electrical Thermal Chemical

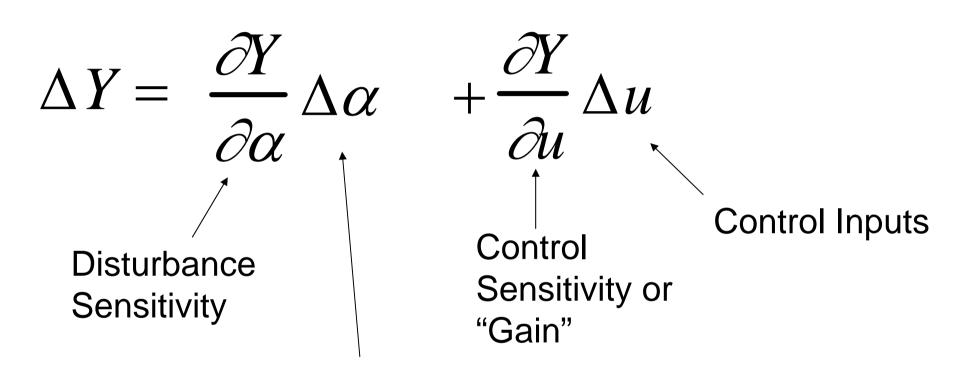
Energy or Power VariablesF, v; P, Q or F, d; σ, ε V,IT, ds/dt (or dq/dt)chemical potential, rate



Properties

- Extensive: <u>GEOMETRY</u>
- Intensive: Constitutive Properties
 - Modulus of Elasticity, damping, mass
 - Plastic Flow Properties
 - Viscosity
 - Resistance, Inductance, Capacitance
 - Chemical Reactivity
 - Heat Transfer Coefficient
- Which has the highest precision?

A Model for Process Variations


- Recall: $\underline{Y} = \Phi(\underline{\alpha})$
- One or more α 's "qualify" as inputs : <u>u</u>

 $\underline{Y} = \Phi(\underline{\alpha}, \underline{u}); \qquad \underline{u} = \text{vector of inputs}$

 The first order variation ∆Y gives the "Variation Equation"

The Variation Equation

Disturbances

Primary Process Control Goal: <u>Minimize ΔY </u>

How do we make $\Delta Y \rightarrow 0$?

$$\Delta Y = \frac{\partial Y}{\partial \alpha} \Delta \alpha + \frac{\partial Y}{\partial u} \Delta u$$

- hold *u* fixed ($\Delta \underline{u} = 0$)
 - operator training (SOP's)
 - good steady-state machine physics
- minimize disturbances

 $\Delta \alpha \rightarrow \Delta \alpha_{\min}$

This is the goal of Statistical Process Control (SPC)

OR

$$\Delta Y = \frac{\partial Y}{\partial \alpha} \Delta \alpha + \frac{\partial Y}{\partial u} \Delta u \qquad \Delta Y \to 0$$

- hold u fixed ($\Delta \underline{u} = 0$)
- minimize the term: $\frac{\partial Y}{\partial \alpha}$ the disturbance sensitivity

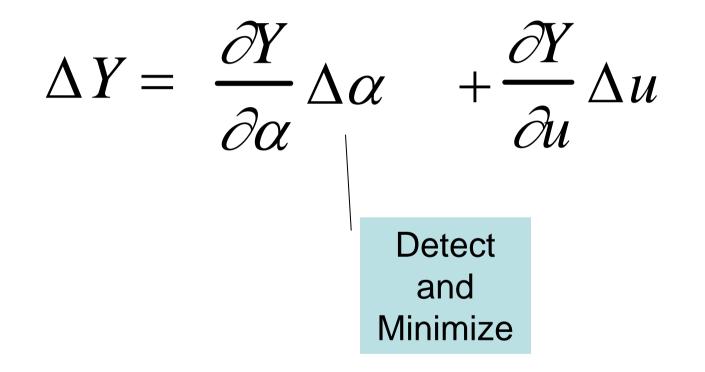
This is the goal of Process Optimization

• Assuming
$$\frac{\partial Y}{\partial \alpha} = \Phi(\underline{\alpha})$$
 $\underline{\alpha}$ = operating point

OR

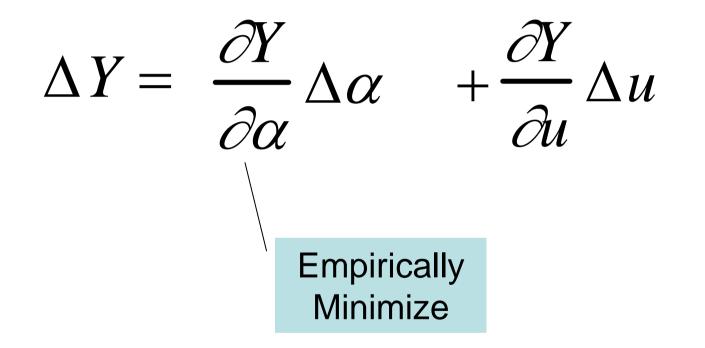
$$\Delta Y = \frac{\partial Y}{\partial \alpha} \Delta \alpha + \frac{\partial Y}{\partial u} \Delta u \qquad \Delta Y \to 0$$

• manipulate $\Delta \underline{u}$ by measuring ΔY such that

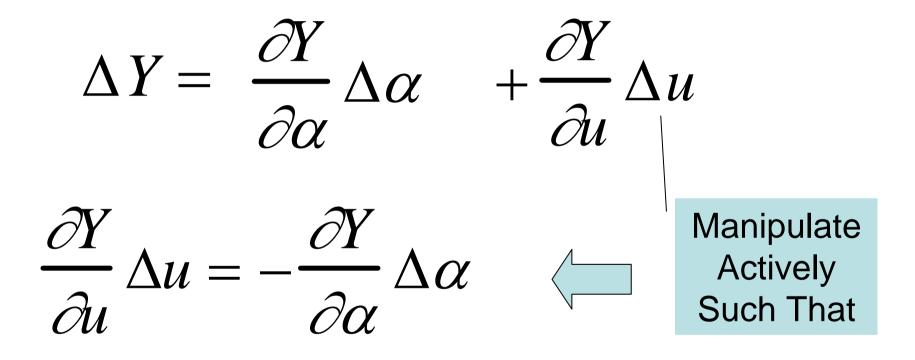

$$\Delta u \frac{\partial Y}{\partial u} = -\frac{\partial Y}{\partial \alpha} \Delta \alpha$$

This is the goal of Process Feedback Control

Compensating for (not eliminating) disturbances



Statistical Process Control



Process Optimization

Output Feedback Control

Compensate for Disturbances

Process Control Hierarchy

- Reduce Disturbances
 - Good Housekeeping
 - Standard Operations (SOP's)
 - Statistical Analysis and Identification of Sources (SPC)
 - Feedback Control of Machines
- Reduce Sensitivity (increase "Robustness")
 - Measure Sensitivities via Designed Experiments
 - Adjust "free" parameters to minimize
- Measure output and manipulate inputs
 - Feedback control of Output(s)

