2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MIT 2.830/6.780/ESD.63 Control of Manufacturing Processes

Introduction to Analysis of Variance: a tool for assessing input-output relationships

Have focused so far on interpreting output

Review of tools for interpreting outputs

Also talked about yield modeling and process capability, but need ways of *modeling* and thus *improving* processes

Injection molding data

Want to start relating input(s) to output(s)

$$\underline{Y} = \Phi(\underline{\alpha})$$

$$\underline{\alpha} \equiv \text{process parameters} \qquad \Delta Y = \frac{\partial Y}{\partial \alpha} \Delta \alpha + \frac{\partial Y}{\partial u} \Delta u$$

What is our goal?

Developing a process model

- Relating inputs and disturbances to outputs
- Determining significance of the input effect
 - Does it really matter?
- Process optimization
 - Max (Cpk) or Min (QLF)
 - Models for mean shifting
 - Models for variance reduction

Empirical Modeling

- What is the objective?
- What is the output?
- What are the input(s)?
- What do we want to vary?
- What model form should we use?
 - $Y=\Phi(\alpha, \mathbf{u})$ is not specific!
- How many data can we take?

First step: determining which inputs matter

ΤοοΙ	# inputs	Levels per input	# samples	# outputs
t, F tests	?	? (2?)	2	1
control charts, cusum	?	? (2?)	many	1
χ ² , T ² charts	?	? (2?)	many	2
Analysis of variance	≥ 1	≥ 2	≥ 2	1

Agenda

1. Comparison of treatments (one variable)

- Fixed effects model
- Analysis of Variance (ANOVA) technique
- Example

2. Multivariate analysis of variance

- Model forms
- MANOVA technique

Comparison of Treatments

- Consider multiple conditions (treatments, settings for some variable)
 - There is an overall mean μ and real "effects" or deltas between conditions $\tau_i.$
 - We observe samples at each condition of interest
- Key question: are the **observed** differences in mean "significant"?
 - Typical assumption (should be checked): the underlying variances are all the same usually an unknown value (σ_0^2)

Copyright 2003-2007 © Duane S. Boning.

ANOVA – Fixed effects model

• The ANOVA approach assumes a simple mathematical model: $y_{ti} = \mu + \tau_t + \epsilon_{ti}$

$$= \mu_t + \epsilon_{ti}$$

- Where μ_t is the treatment mean (for treatment type t)
- And τ_t is the treatment effect
- With ε_{ti} being zero mean normal residuals ~N(0, σ_0^2)

Steps/Issues in Analysis of Variance

1. Within-group variation

Estimate underlying population variance

2. Between-group variation

Estimate group to group variance

3. Compare the two estimates of variance

- If there is a difference between the different treatments, then the between group variation estimate will be *inflated* compared to the within group estimate
- We will be able to establish confidence in whether or not observed differences between treatments are significant
 Hint: we'll be using *F* tests to look at ratios of variances

(1) Within Group Variation

- Assume that each group is normally distributed and shares a common variance ${\sigma_0}^2$
- $SS_t = \text{sum of square deviations within t}^{\text{th}}$ group (there are *k* groups) $SS_t = \sum_{i=1}^{n_t} (y_{ti} - \bar{y}_t)^2$ where n_t is number of samples in treatment *t*
- Estimate of within group variance in tth group (just variance formula)

$$s_t^2 = SS_t/\nu_t = \frac{SS_t}{n_t - 1}$$
 where ν_t is d.o.f. in treatment t

(2) Between Group Variation

- We will be testing hypothesis $\mu_1 = \mu_2 = \dots = \mu_k$
- If all the means are in fact equal, then a 2^{nd} estimate of σ^2 could be formed based on the observed differences between group means:

$$s_T^2 = \frac{\sum_{t=1}^k n_t (\bar{y}_t - \bar{y})^2}{k - 1} = \frac{SS_T}{k - 1}$$

where n_t is number of samples in treatment t, and k is the number of different treatments

Population A Population C Population B

Copyright 2003-2007 © Duane S. Boning.

(3) Compare Variance Estimates

- We now have two different possibilities for s_T², depending on whether the observed sample mean differences are "real" or are just occurring by chance (by sampling)
- Use *F* statistic to see if the ratios of these variances are likely to have occurred by chance!
- Formal test for significance:

Reject H_0 (H_0 : no mean difference) if $\frac{s_T^2}{s_R^2}$ is significantly greater than 1.

(4) Compute Significance Level

- Calculate observed F ratio (with appropriate degrees of freedom in numerator and denominator)
- Use *F* distribution to find how likely a ratio this large is to have occurred by chance alone
 - This is our "significance level"
 - Define observed ratio: $F_0 = s_T^2/s_R^2$
 - If $F_0 > F_{\alpha,k-1,N-k}$ then we say that the mean differences or treatment effects are significant to $(1-\alpha)100\%$ confidence or better

(5) Variance Due to Treatment Effects

• We also want to estimate the sum of squared deviations from the grand mean among all samples:

$$SS_D = \sum_{t=1}^k \sum_{i=1}^{n_t} (y_{ti} - \bar{y})^2$$

$$s_D^2 = SS_D / \nu_D = \frac{SS_D}{N-1} = MS_D$$

where N is the total number of measurements

(6) Results: The ANOVA Table

Example: Anova

Α	В	С
11	10	12
10	8	10
12	6	11

Excel: Data Analysis, One-Variation Anova

Anova: Single Facto	or					
SUMMARY						
Groups	Count	Sum	Average	Variance		
A	3	33	11	1		
В	3	24	8	4		
С	3	33	11	1		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	18	2	9	4.5	0.064	5.14
Within Groups	12	6	2	-		4
Total	30	8				
	F =	$= \frac{S_T^2}{S_R^2} =$	$\frac{9}{2} = 4.$	5 $F_{0.0}$	5,2,6 = 5	5.14 3.46

$$\begin{array}{rcl}
12 & & & & \\ & & & \\ 10 & & & \\ & & & \\ 10 & & & \\ 10 & & & \\ 10 & & & \\ 10 & & & \\ 10 & & & \\ \hline \end{array} \\
\begin{array}{rcl}
& & & & \\ & & & \\ \hline \end{array} \\
\begin{array}{rcl}
& & & \\ & & \\ \hline \end{array} \\
\begin{array}{rcl}
& & & \\ & & \\ \hline \end{array} \\
\begin{array}{rcl}
& & & \\ & & \\ \hline \end{array} \\
\begin{array}{rcl}
& & & \\ & & \\ \hline \end{array} \\
\begin{array}{rcl}
& & & \\ & & \\ \hline \end{array} \\
\begin{array}{rcl}
& & & \\ & & \\ \hline \end{array} \\
\begin{array}{rcl}
& & & \\ & & \\ \hline \end{array} \\
\begin{array}{rcl}
& & & \\ & & \\ \hline \end{array} \\
\begin{array}{rcl}
& & & \\ & & \\ \hline \end{array} \\
\begin{array}{rcl}
& & & \\ & & \\ \hline \end{array} \\
\begin{array}{rcl}
& & & \\ & & \\ \hline \end{array} \\
\begin{array}{rcl}
& & & \\ & & \\ \hline \end{array} \\
\begin{array}{rcl}
& & & \\ & & \\ \hline \end{array} \\
\begin{array}{rcl}
& & & \\ & & \\ & & \\ \hline \end{array} \\
\begin{array}{rcl}
& & & \\ & & \\ \hline \end{array} \\
\begin{array}{rcl}
& & & \\ & & \\ \hline \end{array} \\
\begin{array}{rcl}
& & & \\ & & \\ \hline \end{array} \\
\begin{array}{rcl}
& & & \\ & & \\ \hline \end{array} \\
\begin{array}{rcl}
& & & \\ & & \\ \hline \end{array} \\
\begin{array}{rcl}
& & & \\ & & \\ \hline \end{array} \\
\begin{array}{rcl}
& & & \\ & & \\ \hline \end{array} \\
\begin{array}{rcl}
& & & \\ & & \\ \hline \end{array} \\
\begin{array}{rcl}
& & & \\ & & \\ \hline \end{array} \\
\begin{array}{rcl}
& & & \\ & & \\ \hline \end{array} \\
\begin{array}{rcl}
& & & \\ & & \\ \hline \end{array} \\
\begin{array}{rcl}
& & & \\ & & \\ \hline \end{array} \\
\begin{array}{rcl}
& & & \\ & & \\ \hline \end{array} \\
\begin{array}{rcl}
& & & \\ & & \\ \hline \end{array} \\
\begin{array}{rcl}
& & & \\ & & \\ \hline \end{array} \\
\begin{array}{rcl}
& & & \\ & & \\ \hline \end{array} \\
\begin{array}{rcl}
& & & \\ & & \\ \hline \end{array} \\
\begin{array}{rcl}
& & & \\ & & \\ \hline \end{array} \\
\begin{array}{rcl}
& & & \\ & & \\ \hline \end{array} \\
\begin{array}{rcl}
& & & \\ & & \\ \hline \end{array} \\
\begin{array}{rcl}
& & & \\ & & \\ \hline \end{array} \\
\begin{array}{rcl}
& & & \\ & & \\ \hline \end{array} \\
\begin{array}{rcl}
& & & \\ & & \\ \hline \end{array} \\
\begin{array}{rcl}
& & & \\ & & \\ \hline \end{array} \\
\begin{array}{rcl}
& & & \\ & & \\ \hline \end{array} \\
\begin{array}{rcl}
& & & \\ & & \\ \hline \end{array} \\
\begin{array}{rcl}
& & & \\ & & \\ \end{array} \\
\begin{array}{rcl}
& & & \\ & & \\ \end{array} \\
\begin{array}{rcl}
& & & \\ & & \\ \end{array} \\
\begin{array}{rcl}
& & & \\ & & \\ \end{array} \\
\begin{array}{rcl}
& & & \\ & & \\ \end{array} \\
\begin{array}{rcl}
& & & \\ \end{array} \\
\begin{array}{rcl}
& & & \\ & & \\ \end{array} \\
\begin{array}{rcl}
& & & \\ & & \\ \end{array} \\
\begin{array}{rcl}
& & & \\ & & \\ \end{array} \\
\begin{array}{rcl}
& & & \\ & & \\ \end{array} \\
\begin{array}{rcl}
& & & \\ \end{array} \\
\begin{array}{rcl}
& & \\ & & \\ \end{array} \\
\begin{array}{rcl}
& & & \\ \end{array} \\
\begin{array}{rcl}
& & & \\ & & \\ \end{array} \\
\begin{array}{rcl}
& & & \\ & & \\ \end{array} \\
\begin{array}{rcl}
& & & \\ & & \\ \end{array} \\
\begin{array}{rcl}
& & \\ \end{array} \\
\begin{array}{rcl}
& & & \\ \end{array} \\
\begin{array}{rcl}
& & \\ \end{array} \\
\begin{array}{rcl}
& & & \\ \end{array} \\
\begin{array}{rcl}
\end{array}$$

Copyright 2003-2007 © Duane S. Boning.

ANOVA – residuals assumed ~N(0, σ_0^2) for every treatment

Checks

- Plot residuals against time order
- Examine distribution of residuals: should be IID, Normal
- Plot residuals vs. estimates
- Plot residuals vs. other variables of interest

MANOVA – Two Dependencies

 Can extend to two (or more) variables of interest. MANOVA assumes a mathematical model, again simply capturing the means (or treatment offsets) for each discrete variable level:

$$y_{tqi} = \mu + \tau_t + \beta_q + \epsilon_{tqi}$$

$$\uparrow \text{ indicates estimates:} \quad \hat{y}_{tq} = \hat{\mu} + \hat{\tau}_t + \hat{\beta}_q$$

model coeffs = 1 +
$$k$$
 + n
 \uparrow \uparrow \uparrow
independent model coeffs = 1 + $(k-1)$ + $(n-1)$

Recall that our $\hat{\tau}_t$ are *not* all independent model coefficients, because $\sum \tau_t = 0$. Thus we really only have k-1 independent model coeffs, or $\nu_t = k-1$.

• Assumes that the effects from the two variables are *additive*

MANOVA – Two Factors with Interactions

 May be interaction: not simply additive – effects may depend synergistically on both factors:

$$y_{tqi} = \mu_{tq} + \epsilon_{tqi}$$
An effect that depends on both
t & q factors simultaneously
$$t = \text{first factor} = 1,2, \dots k \qquad (k = \# \text{ levels of first factor})$$

$$q = \text{second factor} = 1,2, \dots n \qquad (n = \# \text{ levels of second factor})$$

$$i = \text{replication} = 1,2, \dots m \qquad (m = \# \text{ replications at t, q}^{\text{th combination of factor levels}})$$

• Can split out the model more explicitly...

Estimate by:

$$\begin{aligned}
y_{tqi} &= \mu + \tau_t + \beta_q + \omega_{tq} + \epsilon_{tqi} \\
\bar{y}_{tq} &= \bar{y} + (\bar{y}_t - \bar{y}) + (\bar{y}_q - \bar{y}) + (\bar{y}_{tq} - \bar{y}_t - \bar{y}_q + \bar{y}) \\
\omega_{tq} &= \text{interaction effects} = (\bar{y}_{tq} - \bar{y}_t - \bar{y}_q + \bar{y}) \\
\tau_t, \beta_q &= \text{main effects}
\end{aligned}$$

Copyright 2003-2007 © Duane S. Boning.

MANOVA – Two Factors with Interactions

$$s_{T}^{2} = \frac{\sum_{t=1}^{k} m_{t} n_{t} (\overline{y}_{t} - \overline{y})^{2}}{k - 1}$$

$$s_{B}^{2} = \frac{\sum_{q=1}^{n} m_{q} k_{q} (\overline{y}_{q} - \overline{y})^{2}}{n - 1}$$

$$s_{I}^{2} = \frac{\sum_{q=1}^{n} \sum_{t=1}^{k} m_{tq} (\overline{y}_{tq} - \overline{y}_{t} - \overline{y}_{q} + \overline{y})^{2}}{(k - 1)(n - 1)}$$

$$s_{E}^{2} = \frac{\sum_{q=1}^{n} \sum_{i=1}^{m} \sum_{t=1}^{k} (y_{tqi} - \overline{y}_{tq})^{2}}{nk(m - 1)}$$

MANOVA Table – Two Way with Interactions

source of variation	sum of squares	degrees of freedom	mean square	F_0	Pr(<i>F</i> ₀)
Between levels of factor 1 (T)	SS_T	k-1	s_T^2	s_T^2/s_E^2	table
Between levels of factor 2 (B)	SS_B	n-1	s_B^2	s_B^2/s_E^2	table
Interaction	SS_I	(k-1)(n-1)	s_I^2	s_I^2/s_E^2	table
Within Groups (Error)	SS_E	nk(m-1)	s_E^2		
Total about the grand average	SS_D	nkm-1			

Example: plasma metal etch nonuniformity (lateral etch)

of all structures in a 'flash' (Ohms)

> Each flash has many copies of a feature set, with different 'padding' densities

Each feature set has a range of line/space widths; can be electrically probed

Relevant factors

• Geometry

- Position on wafer
- Locally averaged pattern density
- Feature size and pitch
- Physical perspective

Reactant fluxes in etch chamber

- ...

Pattern density dependency

Wafer-scale nonuniformity

Next time

• Building models based on effects