MIT OpenCourseWare
http://ocw.mit.edu

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303)

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Control of
 Manufacturing Processes

Subject 2.830/6.780/ESD. 63
Spring 2008
Lecture \#14

Aliasing and Higher Order Models

April 3, 2008

Outline

- Last Time
- Full Factorial Models
- Experimental Design
- Blocks and Confounding
- Single Replicate Designs
- Today
- Fractional Factorial Designs
- Aliasing Patterns
- Implications for Model Construction
- Process Optimization using DOE

Fractional Factorial Experiments

- What if we do less than full factorial 2^{k} ?
- Example: run $<2^{3}$ experiments for 3 inputs
- From regression model for 3 inputs:

$$
\begin{aligned}
& y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{12} x_{1} x_{2}+\beta_{3} x_{3} \\
& +\beta_{13} x_{1} x_{3}+\beta_{23} x_{2} x_{3}+\beta_{123 z} x_{1} x_{2} x_{3}+\varepsilon
\end{aligned}
$$

- We will not be able to find all 8 coefficients

2^{3-1} Experiment

- Consider doing 4 experiments instead of 8 ; e.g.:

$$
\begin{array}{ccccc}
& x_{1} & x_{2} & x_{1} x_{2} & \text { • This is a } 2^{2} \text { array } \\
1 & -1 & -1 & +1 & \\
2 & +1 & -1 & -1 & \\
3 & -1 & +1 & -1 & \text { - Could also be for } 3 \\
4 & +1 & +1 & +1 & \text { inputs if we define } \\
x_{3}=x_{1} x_{2}
\end{array}
$$

2^{3-1} Experiment

$$
\begin{array}{cccc}
& x_{1} & x_{2} & x_{3} \\
1 & -1 & -1 & +1 \\
2 & +1 & -1 & -1 \\
3 & -1 & +1 & -1 \\
4 & +1 & +1 & +1
\end{array}
$$

But now we can only define 4 coefficients in the model: e.g.:

$$
\widehat{y}=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}
$$

i.e. no interaction terms

2^{3-1} Experiment

Or we could choose other terms:

$$
\begin{aligned}
& \hat{y}=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{13} x_{1} x_{3} \\
& \quad \text { or: } \\
& \hat{y}=\beta_{0}+\beta_{1} x_{1}+\beta_{12} x_{1} x_{2}+\beta_{3} x_{3} \\
& \text { or: }
\end{aligned}
$$

Confounding / Aliasing

- We actually have the following:

$$
\widehat{y}=\beta_{0}+\beta_{1}^{\prime} z_{1}+\beta_{2}^{\prime} z_{2}+\beta_{3}^{\prime} z_{3}
$$

- where the z variable represent sums of the various input terms, e.g.

$$
\begin{aligned}
& z_{1}=x_{1} x_{2}+x_{3} \\
& z_{2}=x_{1}+x_{2} x_{3} \mathrm{~L}
\end{aligned}
$$

- where the specific choice of the experimental array determines what these sums are

Confounding / Aliasing

$$
2^{3} \text { Array: (Our X matrix) }
$$

Test	I	A	B	AB	C	AC	BC	ABC
(1)	1	-1	-1	1	-1	1	1	-1
a	1	1	-1	-1	-1	-1	1	1
b	1	-1	1	-1	-1	1	-1	1
ab	1	1	1	1	-1	-1	-1	-1
c	1	-1	-1	1	1	-1	-1	1
ac	1	1	-1	-1	1	1	-1	-1
bc	1	-1	1	-1	1	-1	1	-1
abc	1	1	1	1	1	1	1	1

Manufacturing
2.830J/6.780J/ESD.63J

Confounding / Aliasing

Consider upper half:

Test	I	A	B	AB	C	AC	BC	ABC
(1)	1	-1	-1	1	-1	1	1	-1
a	1	1	-1	-1	-1	-1	1	1
b	1	-1	1	-1	-1	1	-1	1
ab	1	1	1	1	-1	-1	-1	-1
c	1	-1	-1	1	1	-1	-1	1
ac	1	1	-1	-1	1	1	-1	-1
bc	1	-1	1	-1	1	-1	1	-1
abc	1	1	1	1	1	1	1	1

Look at columns for C - no change at all! or $\mathrm{C}=-\mathrm{I}$
Also $\mathrm{AC}=-\mathrm{A}$ and $\mathrm{BC}=-\mathrm{B}$, and $\mathrm{ABC}=-\mathrm{AB}$

Confounding / Aliasing

Test	I	A	B	AB	C	AC	BC	ABC
(1)	1	-1	-1	1	-1	1	1	-1
a	1	1	-1	-1	-1	-1	1	1
b	1	-1	1	-1	-1	1	-1	1
ab	1	1	1	1	-1	-1	-1	-1
c	1	-1	-1	1	1	-1	-1	1
ac	1	1	-1	-1	1	1	-1	-1
bc	1	-1	1	-1	1	-1	1	-1
abc	1	1	1	1	1	1	1	1

Contrast $_{A}=[-(1)+a-b+a b] \quad A C$ is an alias of A
Contrast $_{A C}=[(1)-a+b-a b] \quad$ Note that alias of $A=A *(-C)$
Defining Relation $\mathrm{I}=-\mathrm{C}$

Manufacturing

Choice of Design?

- Aliases
- Must have one of the pair assumed negligible ("sparsity of effects")
- Balance/Orthogonality
- Sufficient excitation of inputs
- Enable short-cut estimation of model effects and model coefficients

Balance and Orthogonality

Test	I	A	B	AB	C	AC	BC	ABC
(1)	1	-1	-1	1	-1	1	1	-1
a	1	1	-1	-1	-1	-1	1	1
b	1	-1	1	-1	-1	1	-1	1
ab	1	1	1	1	-1	-1	-1	-1
c	1	-1	-1	1	1	-1	-1	1
ac	1	1	-1	-1	1	1	-1	-1
bc	1	-1	1	-1	1	-1	1	-1
abc	1	1	1	1	1	1	1	1

Note: All columns have equal number of + and - signs (Balance) Sum of product of any two columns = 0 (Orthogonality)
-All combinations occur the same number of times

Balance/Orthogonality in 2^{3-1}

Test	I	A	B	C	AB	AC	BC	ABC
1	1	-1	-1	-1	1	1	1	-1
a	1	1	-1	-1	-1	-1	1	1
b	1	-1	1	-1	-1	1	-1	1
c	1	1	1	-1	1	-1	-1	-1
ab	1	-1	-1	1	1	-1	-1	1
ac	1	1	-1	1	-1	1	-1	-1
bc	1	-1	1	1	-1	-1	1	-1
abc	1	1	1	1	1	1	1	1

- A and B are balanced; C is not
- A, B and C are orthogonal

Manufacturing

Better Subset - Balanced/Orthogonal

Test	I	A	B	C	AB	AC	BC	ABC
1	1	-1	-1	-1	1	1	1	-1
a	1	1	-1	-1	-1	-1	1	1
b	1	-1	1	-1	-1	1	-1	1
c	1	1	1	-1	1	-1	-1	-1
ab	1	-1	-1	1	1	-1	-1	1
ac	1	1	-1	1	-1	1	-1	-1
bc	1	-1	1	1	-1	-1	1	-1
abc	1	1	1	1	1	1	1	1

With this array:

- balance for A, B, C
- all but ABC are orthogonal
- defining relation I=ABC

Aliases:
A BC
B AC
C AB
I $A B C$

Design Resolution

- Resolution III
- No main aliases with other main effects
- Main - interaction aliases
- Resolution IV
- No alias between main effects and 2 factor effects, but others exist
- Resolution V
- No main and no 2 factor aliases

Design Resolution

Test	I	A	B	C	AB	AC	BC	ABC
1	1	-1	-1	-1	1	1	1	-1
a	1	1	-1	-1	-1	-1	1	1
b	1	-1	1	-1	-1	1	-1	1
c	1	1	1	-1	1	-1	-1	-1
ab	1	-1	-1	1	1	-1	-1	1
ac	1	1	-1	1	-1	1	-1	-1
bc	1	-1	1	1	-1	-1	1	-1
abc	1	1	1	1	1	1	1	1

With this array:

- balance for A, B, C
- all but A B C are orthogonal
- defining relation I=ABC 2^{3-1} III

Smaller Fraction $\quad 2^{k-p}$

- $p=1 \quad 1 / 2$ fraction
- $p=2 \quad 1 / 4$ fraction
- p
$1 / 2^{\mathrm{p}}$

A Different Fraction

Consider I = AC

Test	I	A	B	AB	C	AC	BC	ABC
(1)	1	-1	-1	1	-1	1	1	-1
a	1	1	-1	-1	-1	-1	1	1
b	1	-1	1	-1	-1	1	-1	1
ab	1	1	1	1	-1	-1	-1	-1
c	1	-1	-1	1	1	-1	-1	1
ac	1	1	-1	-1	1	1	-1	-1
bc	1	-1	1	-1	1	-1	1	-1
abc	1	1	1	1	1	1	1	1

A Different Fraction

Consider I = AC

Test	I	A	B	AB	C	AC	BC	ABC
(1)	1	-1	-1	1	-1	1	1	-1
b	1	-1	1	-1	-1	1	-1	1
ac	1	1	-1	-1	1	1	-1	-1
abc	1	1	1	1	1	1	1	1

I=AC Aliases

Balance?
Orthogonality?

A with C
B with ABC
$A B$ with $B C$

How Decide What Aliasing To Choose?

- Prior knowledge of process
- Rules of thumb
- Sparsity of effects
- Hierarchy of effects
- Inheritance of effects

Sparsity of Effects

- An experimenter may list a large number of effects for consideration
- A small number of effects

C D usually explain the majority of the variance

Courtesy of Prof. Dan Frey

Hierarchy

- Main effects are usually more important than twofactor interactions
- Two-way interactions are usually more important than three-factor interactions

$A B \quad A C \quad A D \quad B C \quad B D \quad C D$
- And so on

$A B C$	$A B D$	$A C D$

Courtesy of Prof. Dan Frey

Inheritance

- Two-factor interactions are most likely when both participating factors (parents?) are strong
- Two-way interactions are least likely when neither parent is strong

- And so on
$A B C \quad \triangle A B D \quad \triangle C D \quad \triangle B C D$

Courtesy of Prof. Dan Frey

Design Resolution

- Resolution III

$$
2_{I I I}^{3-1} \quad I=A B C
$$

- No main aliases with other main effects
- Main - interaction aliases
- Resolution IV

$$
2^{4-1}{ }_{I V} \quad I=A B C D
$$

- No alias between main effects and 2 factor effects, but others exist
- Resolution V

$$
2_{V}^{5-1} \quad I=A B C D E
$$

- No main and no 2 factor aliases
2^{4-2}

	A	B	C	D
1	-1	-1	-1	-1
2	1	-1	-1	-1
3	-1	1	-1	-1
4	1	1	-1	-1
5	-1	-1	1	-1
6	1	-1	1	-1
7	-1	1	1	-1
8	1	1	-1	-1
9	-1	-1	-1	1
10	1	-1	-1	1
11	-1	1	-1	1
12	1	1	-1	1
13	-1	-1	1	1
14	1	-1	1	1
15	-1	1	1	1
16	1	1	1	1

Four Main Effects

 Four tests?Suppose we want to alias A with BCD and ABC

What are the defining relations?
2^{4-2}

Suppose we want to alias A with $B C D$ and $A B C$

	1	A	B	AB	C	AC	BC	ABC	D	AD	BD	CD	ABD	ACD	BCD	ABCD
-1	1	-1	-1	1	-1	1	1	-1	-1	1	1	1	-1	-1	-1	1
a	1	1	-1	-1	-1	-1	1	1	-1	-1	1	1	1	1	-1	-1
b	1	-1	1	-1	-1	1	-1	1	-1	1	-1	1	1	-1	1	-1
ab	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	1	-1	1	1	1
c	1	-1	-1	1	1	-1	-1	1	-1	1	1	-1	-1	1	1	-1
ac	1	1	-1	-1	1	1	-1	-1	-1	-1	1	-1	1	-1	1	1
bc	1	-1	1	-1	1	-1	1	-1	-1	1	-1	-1	1	1	-1	1
abc	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	1	-1	1	1	1
d	1	-1	-1	1	-1	1	1	-1	1	-1	-1	-1	1	1	1	-1
ad	1	1	-1	-1	-1	-1	1	1	1	1	-1	-1	-1	-1	1	1
bd	1	-1	1	-1	-1	1	-1	1	1	-1	1	-1	-1	1	-1	1
cd	1	1	1	1	-1	-1	-1	-1	1	1	1	-1	1	-1	-1	-1
abd	1	-1	-1	1	1	-1	-1	1	1	-1	-1	1	1	-1	-1	1
acd	1	1	-1	-1	1	1	-1	-1	1	1	-1	1	-1	1	-1	-1
bcd	1	-1	1	-1	1	-1	1	-1	1	-1	1	1	-1	-1	1	-1
abcd	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

$A B C D=1$
Run only (1), bc, ad and abcd
$A \mathrm{ABC}=\mathrm{BC}=\mathrm{I}$
2^{4-2}
Suppose we want to alias A with $B C D$ and $A B C$

	1	A	B	AB	C	AC	BC	ABC	D	AD	BD	$C D$	ABD	ACD	BCD	ABCD
(1)	1	-1	-1	1	-1	1	1	-1	-1	1	1	1	-1	-1	-1	1
bc	1	-1	1	-1	1	-1	1	-1	-1	1	-1	-1	1	1	-1	1
ad	1	1	-1	-1	-1	-1	1	1	1	1	-1	-1	-1	-1	1	1
abcd	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

$A B C D=1$
$A \mathrm{ABC}=\mathrm{BC}=\mathrm{I}(\mathrm{NB} A D=1$ also)
Aliases?
Defining Relations
I=BC
I=AD
I=ABCD

A - ABC
B - C
C - ABD
D - ABC
A-D
B - ABD
C - ACD
D - BCD
A-BCD
B - ACD

Outline

- Fractional Factorial Designs
- Aliasing Patterns
- Implications for Model Construction
- Process Optimization using DOE

Consider Higher Order Model

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{21} x_{1}^{2} \quad \text { Quadratic Model }
$$

Now we need all 3 tests

General Quadratic Equation

$$
\eta_{m}=\beta_{0}+\sum_{i=1}^{k} \beta_{i} x_{i m}+\sum_{i=1}^{k} \beta_{2 i} x_{i m}^{2}+\sum_{\substack{j=1 \\ j<i}}^{k} \sum_{i=1}^{k} \beta_{i j} x_{i m} x_{j_{m}}+\text { h.o.t. }+\varepsilon_{m}
$$

3^{2} Problem

$$
\begin{aligned}
\hat{y}= & \beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{12} x_{1} x_{2}+\beta_{11} x_{1}^{2}+\beta_{22} x_{2}^{2} \\
& +\beta_{21} x_{1}^{2} x_{2}+\beta_{12} x_{1} x_{2}^{2}+\beta_{222} x_{1}^{2} x_{2}^{2}
\end{aligned}
$$

- How many levels for each input?

Quadratic Solution

- Same as before with matrix equation: $\underline{\eta}=\mathbf{X} \underline{\beta}+\underline{\varepsilon}$
$\left|\begin{array}{c}\eta_{1} \\ \eta_{2} \\ \eta_{2} \\ \vdots \\ \eta_{N}\end{array}\right|=\left|\begin{array}{ccccccc|c}1 & x_{11} & x_{21} & x_{11}^{2} & x_{11}^{2} & x_{11} x_{21} & \ldots & \beta_{0} \\ 1 & x_{12} & x_{22} & x_{12}^{2} & x_{22}^{2} & x_{12} x_{22} & \ldots & \beta_{2} \\ 1 & x_{13} & x_{23} & x_{13}^{2} & x_{23}^{2} & x_{11} x_{21} & \ldots & \beta_{11} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \beta_{22} \\ 1 & x_{11} & x_{11} & x_{11}^{2} & x_{11}^{2} & x_{11} x_{21} & \ldots & \beta_{12} \\ \vdots\end{array}\right|+\left|\begin{array}{c}\varepsilon_{1} \\ \varepsilon_{2} \\ \varepsilon_{2} \\ \vdots \\ \varepsilon_{N}\end{array}\right|$

Experimental Design for Quadratic:

- Full factorial 3^{k}
- Three levels per test
- Central Composite Design
- adding to 2×2 design
- Partial Factorials and Aliases

Consider a Quadratic Model w/Interaction

- Includes linear terms, quadratic terms and all first and second-order interactions
- $=3^{k}$

	N	
k	No Interactions	Full Mbdel
1	3	3
2	5	9
3	7	27
4	9	81
5	11	243

3^{2} Full Factorial - Quadratic Model

$$
\hat{y}=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{12} x_{1} x_{2}+\beta_{11} x_{1}^{2}+\beta_{22} x_{2}^{2}+\beta_{21} x_{1}^{2} x_{2}+\beta_{12} x_{1} x_{2}^{2}+\beta_{222} x_{1}^{2} x_{2}^{2}
$$

	(1)	A	B	AB	A2	B2	A2B	B2A	A2B2
y1	1	-1	-1	1	1	1	-1	-1	1
$y 2$	1	0	-1	0	0	1	0	0	0
$y 3$	1	1	-1	-1	1	1	-1	1	1
y4	1	-1	0	0	1	0	0	0	0
y5	1	0	0	0	0	0	0	0	0
y6	1	1	0	0	1	0	0	0	0
y7	1	-1	1	-1	1	1	1	-1	1
y8	1	0	1	0	0	1	0	0	0
y9	1	1	1	1	1	1	1	1	1

Which Partial Fraction?

$$
\hat{y}=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{12} x_{1} x_{2}+\beta_{11} x_{1}^{2}+\beta_{22} x_{2}^{2}
$$

| | (1) | A | B | $A B$ | $A 2$ | B2 | A2B | B2A | A2B2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $y 1$ | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 |
| y 2 | 1 | 0 | -1 | 0 | 0 | 1 | 0 | 0 | 0 |
| y 3 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 |
| y 4 | 1 | -1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| y 5 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| y 6 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| y 7 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 |
| y 8 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| y 9 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

Manufacturing

Which Partial Fraction?

	(1)	A	B	AB	A2	B2	A21	B21	AB22
y1	1	-1	-1	1	1	1	-1	-1	1
y2	1	0	-1	0	0	1	0	0	0
y3	1	1	-1	-1	1	1	-1	1	1
y4	1	-1	0	0	1	0	0	0	0
y5	1	0	0	0	0	0	0	0	0
y6	1	1	0	0	1	0	0	0	0
y7	1	-1	1	-1	1	1	1	-1	1
y8	1	0	1	0	0	1	0	0	0
y9	1	1	1	1	1	1	1	1	1

Which Partial Fraction?

	(1)	A	B	$A B$	$A 2$	B2	A21	B21	AB22
y1	1	-1	-1	1	1	1	-1	-1	1
y2	1	0	-1	0	0	1	0	0	0
y3	1	1	-1	-1	1	1	-1	1	1
y4	1	-1	0	0	1	0	0	0	0
y5	1	0	0	0	0	0	0	0	0
y6	1	1	0	0	1	0	0	0	0
y7	1	-1	1	-1	1	1	1	-1	1
y8	1	0	1	0	0	1	0	0	0
y9	1	1	1	1	1	1	1	1	1

	(1)	A	B	AB	A2	B2	A21	B21	AB22
y1	1	-1	-1	1	1	1	-1	-1	1
y2	1	0	-1	0	0	1	0	0	0
y3	1	1	-1	-1	1	1	-1	1	1
y4	1	-1	0	0	1	0	0	0	0
y5	1	0	0	0	0	0	0	0	0
y6	1	1	0	0	1	0	0	0	0
y7	1	-1	1	-1	1	1	1	-1	1
y8	1	0	1	0	0	1	0	0	0
y9	1	1	1	1	1	1	1	1	1

Which Partial Fraction?

Quadratic Solution

$$
\hat{y}=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{11} x_{1}^{2}+\beta_{22} x_{2}^{2}+\beta_{12} x_{1} x_{2}
$$

$\left|\begin{array}{l}\bar{y}_{1} \\ \bar{y}_{2} \\ \bar{y}_{3} \\ \bar{y}_{4} \\ \bar{y}_{5} \\ \bar{y}_{6}\end{array}\right|=\left|\begin{array}{llllll}1 & x_{1} & x_{2} & x_{1}{ }^{2} & x_{2}{ }^{2} & x_{1} x_{2} \\ 1 & x_{1} & x_{2} & x_{1}{ }^{2} & x_{2}{ }^{2} & x_{1} x_{2} \\ 1 & x_{1} & x_{2} & x_{1}{ }^{2} & x_{2}{ }^{2} & x_{1} x_{2} \\ 1 & x_{1} & x_{2} & x_{1}{ }^{2} & x_{2}{ }^{2} & x_{1} x_{2} \\ 1 & x_{1} & x_{2} & x_{1}{ }^{2} & x_{2}{ }^{2} & x_{1} x_{2} \\ 1 & x_{1} & x_{2} & x_{1}{ }^{2} & x_{2}{ }^{2} & x_{1} x_{2}\end{array}\right|\left|\begin{array}{l}\beta_{0} \\ \beta_{1} \\ \beta_{2} \\ \beta_{11} \\ \beta_{11} \\ \beta_{22} \\ \beta_{12}\end{array}\right| \underline{y}=X \underline{\beta}$

A Quadratic Surface

A "Standard" 3^{2} Full Factorial Design

Test	x1	X2
1	-1	-1
2	0	-1
3	1	-1
4	-1	0
5	0	0
6	1	0
7	-1	1
8	0	1
9	1	1

Central Composite Design

- Consider the case:
- First Experiment is 2^{2} with 4 tests
- Model is shown to have poor fit
- High SS Quad $^{\text {for intermediate point }}$
- Decide to go to Quadratic
- Not Sure of Shape of Surface

Central Composite Design

- Add 5 additional points:
- One at center
- One equidistant from center along each axis

Central Composite

$\left.\begin{array}{|c|c|c|}\hline \text { Test } & \mathrm{x} 1 & \mathrm{X} 2 \\ \hline 1 & -1 & -1 \\ \hline 2 & +1 & -1 \\ \hline 3 & -1 & +1 \\ \hline 4 & +1 & +1 \\ \hline 5 & 0 & 0 \\ \hline 6 & 0 & 1.414 \\ \hline 7 & 1.414 & 0 \\ \hline 8 & 0 & -1.414 \\ \hline 9 & -1.414 & 0 \\ \hline\end{array}\right\}$ original tests

Outline

- Fractional Factorial Designs
- Aliasing Patterns
- Implications for Model Construction
- Process Optimization using DOE

Process Optimization

- Create an Objective Function "J" Minimize or Maximize

$\operatorname{max~}_{\underline{\underline{x}}}$	$\min _{\underline{\underline{x}} \mathrm{~J}} \mathrm{~J}=\mathrm{J}$ (factors $) ; \mathrm{J}(\underline{\mathrm{x}}) ; \mathrm{J}(\alpha)$

Adjust J via factors with constraints, such as....

Methods for Optimization

- Analytical Solutions
$-\partial y / \partial x=0$
- Gradient Searches
- Hill climbing (steepest ascent/descent)
- Local min or max problem
- Excel solver given a convex function

Basic Optimization Problem

3D Problem

Analytical

- Need Accurate $y(x)$
- Analytical Model
- Dense x increments in Experiment
- Difficult with Sparse Experiments
- Easy to missing optimum

Sparse Data Procedure

- Linear models with small increments
- Move along desired gradient
- Near zero slope change to quadratic model

Extension to 3D

Manufacturing
2.830J/6.780J/ESD.63J

Linear Model Gradient Following

X_{1}

$$
\hat{y}=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{12} x_{1} x_{2}
$$

Steepest Descent

$$
\begin{aligned}
& \hat{y}=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{12} x_{1} x_{2} \\
& g_{x_{1}}=\frac{\partial y}{\partial x_{1}}=\beta_{1}+\beta_{12} x_{2} \\
& g_{x_{2}}=\frac{\partial y}{\partial x_{2}}=\beta_{2}+\beta_{12} x_{1} \\
& \text { Make changes in } x_{1} \text { and } \mathrm{x}_{2} \text { along G } \\
& \quad \Delta x_{2}=\frac{g_{x_{1}}}{g_{x_{2}}} \Delta x_{1}
\end{aligned}
$$

Experimental Optimization

- WHY NOT JUST PICK BEST POINT?
- Why not optimize on-line?
- Skip the Modeling Step!
- Adaptive Methods
- Learn how best to model as you go.
- e.g. Adaptive OFACT

EVOP

- Evolutionary Operation

- Pick "best" y_{i}
- Re-center process
- Do again.
X_{1}

Confirming Experiments

- Checking Intermediate points

- Data only at corners
- Test at interior point
- Evaluate error
- Consider Central Composite?
- Rechecking the "optimum"

A Procedure for DOE/Optimization

- Study Physics of Process
- Define Important Inputs
- Intuition about model
- Limits on inputs
- Define Optimization Penalty Function
- J=f(x)
$\max _{\underline{\underline{x}}} \quad \operatorname{min~J}$

For us, $\underline{x}=\underline{u}$ or $\underline{\alpha}$

Procedure

- Identify model (linear, quadratic, terms to include)
- Define inputs and ranges
- Identify "noise" parameters to vary if possible ($\Delta \alpha$'s)
- Perform Experiment
- Appropriate order
- randomization
- blocking against nuisance or confounding effects

Procedure

- Solve for \underline{B} 's
- Apply ANOVA
- Data significant?
- Terms significant?
- Lack of Fit Significant?
- Drop Insignificant Terms
- Add Higher Order Terms as needed

Procedure

- Search for Optimum
- Analytically
- Piecewise
- Continuously

Procedure

- Find Optimum value x^{*}
- Perform Confirming experiment
- Test Model at x^{*}
- Evaluate error with respect to model
- Test hypothesis that $y\left(\underline{x}^{*}\right)=\hat{y}\left(\underline{x}^{*}\right)$

Procedure

- If hypothesis fails
- Consider new ranges for inputs
- Consider higher order model as needed
- Boundary may be optimum!

Summary

- Fractional Factorial Designs
- Aliasing Patterns
- Implications for Model Construction
- Process Optimization using DOE

