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Outline

• Last Time
– Fractional Factorial Designs
– Aliasing Patterns
– Implications for Model Construction

• Today
– Response Surface Modeling (RSM)

• Regression analysis, confidence intervals
– Process Optimization using DOE and RSM

Reading: May & Spanos, Ch. 8.1 – 8.3
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Regression Fundamentals

• Use least square error as measure of goodness to 
estimate coefficients in a model

• One parameter model:
– Model form
– Squared error
– Estimation using normal equations
– Estimate of experimental error
– Precision of estimate: variance in b
– Confidence interval for β
– Analysis of variance: significance of b
– Lack of fit vs. pure error

• Polynomial regression
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Measures of Model Goodness – R2

• Goodness of fit – R2

– Question considered: how much better does the model do than just
using the grand average?

– Think of this as the fraction of squared deviations (from the grand 
average) in the data which is captured by the model

• Adjusted R2

– For “fair” comparison between models with different numbers of 
coefficients, an alternative is often used

– Think of this as (1 – variance remaining in the residual). 
Recall νR = νD - νT
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Least Squares Regression

• We use least-squares to estimate 
coefficients in typical regression 
models

• One-Parameter Model:

• Goal is to estimate β with “best” b
• How define “best”?

– That b which minimizes sum of squared 
error between prediction and data

– The residual sum of squares (for the 
best estimate) is
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Least Squares Regression, cont.

• Least squares estimation via normal 
equations
– For linear problems, we need not 

calculate SS(β); rather, direct solution 
for b is possible

– Recognize that vector of residuals will 
be normal to vector of x values at the 
least squares estimate

• Estimate of experimental error
– Assuming model structure is adequate, 

estimate s2 of σ2 can be obtained:
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Precision of Estimate: Variance in b

• We can calculate the variance in our estimate of the slope, b:

• Why?
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Confidence Interval for β

• Once we have the standard error in b, we can 
calculate confidence intervals to some desired
(1-α)100% level of confidence

• Analysis of variance
– Test hypothesis: 
– If confidence interval for β includes 0, then β not 

significant

– Degrees of freedom (need in order to use t distribution)
p = # parameters estimated by least squares
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Example Regression

Model
Error
C. Total

Source
1
8
9

DF
8836.6440

64.6695
8901.3135

Sum of Squares
8836.64

8.08

Mean Square
1093.146

F Ratio

<.0001
Prob > F

Tested against reduced model: Y=0

Analysis of Variance

Intercept
age

Term
Zeroed 0

0.500983

Estimate
0

0.015152

Std Error
.

33.06

t Ratio
.

<.0001

Prob>|t|
Parameter Estimates

age
Source

1
Nparm

1
DF

8836.6440
Sum of Squares

1093.146
F Ratio

<.0001
Prob > F

Effect Tests

Whole Model
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age Leverage, P<.0001

Age Income

8 6.16

22 9.88

35 14.35

40 24.06

57 30.34

73 32.17

78 42.18

87 43.23

98 48.76

• Note that this simple model assumes an 
intercept of zero – model must go through 
origin

• We can relax this requirement
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Lack of Fit Error vs. Pure Error

• Sometimes we have replicated data
– E.g. multiple runs at same x values in a designed experiment

• We can decompose the residual error contributions

• This allows us to TEST for lack of fit
– By “lack of fit” we mean evidence that the linear model form is 

inadequate

Where
SSR = residual sum of squares error
SSL = lack of fit squared error
SSE = pure replicate error
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Regression: Mean Centered Models

• Model form
• Estimate by
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Regression: Mean Centered Models

• Confidence Intervals

• Our confidence interval on output y widens as 
we get further from the center of our data!
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Polynomial Regression

• We may believe that a higher order model structure 
applies. Polynomial forms are also linear in the 
coefficients and can be fit with least squares

• Example: Growth rate data

Curvature included through x2 term
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Regression Example: Growth Rate Data

• Replicate data provides opportunity to check for lack of fit

Observation
Number

Amount of Supplement
(grams) x

1

2

3

4

5

6

7

8

9

10

Growth Rate
(coded units) y

15

30

35

85

75

65

Growth rate data

10

10

20

20

25

25

25

73

78

90

91

87

86

91

Figures by MIT OpenCourseWare.

95

90
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80
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70

65

60
5 10 15 20 25 30 35 40

y

x

Fit mean

Linear fit

Polynomial fit degree = 2

Bivariate fit of y by x



2.830J/6.780J/ESD.63J 15Manufacturing

Growth Rate – First Order Model

• Mean significant, but linear term not
• Clear evidence of lack of fit

Source Sum of Squares
Degrees of 
Freedom Mean Square

Model

Residual

Total

SM = 67,428.6

SR = 686.4

ST = 68,115.0

SL = 659.40
SE =   27.0

{

{ { {

mean: 67,404.1

extra for linear: 24.5

10

8 85.8
4

4

{
{

2
1

1

67,404.1

164.85
6.75

24.5

ratio = 24.42lack of fit
pure error

Analysis of variance for growth rate data: Straight line model
Figure by MIT OpenCourseWare.
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Growth Rate – Second Order Model

• No evidence of lack of fit
• Quadratic term significant

Source Sum of Squares
Degrees of 
Freedom Mean Square

Model

Residual

Total

SM = 68,071.8

SR = 43.2

ST = 68,115.0

SL = 16.2
SE = 27.0{ { {

{ {mean 67,404.1
extra for linear 24.5
extra for quadratic 643.2

10

7
3

4

3
1
1
1

67,404.1

5.40
6.75

643.2
24.5

ratio = 0.80

Analysis of variance for growth rate data: Quadratic model Figure by MIT OpenCourseWare.
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Polynomial Regression In Excel

• Create additional input columns for each input
• Use “Data Analysis” and “Regression” tool

x x 2̂ y
10 100 73
10 100 78
15 225 85
20 400 90
20 400 91
25 625 87
25 625 86
25 625 91
30 900 75
35 1225 65

-0.097-0.1582.2E-05-9.9660.013-0.128x^2
6.5823.9433.1E-059.4310.5585.263x

48.94222.3730.00046.3475.61835.657Intercept

Upper 
95%

Lower
95%P-valuet Stat

Standard 
ErrorCoefficients

710.99Total
6.45645.1947Residual

6.48E-0551.555332.853665.7062Regression
Significance FFMSSSdf

ANOVA

10Observations
2.541Standard Error
0.918Adjusted R Square
0.936R Square
0.968Multiple R

Regression Statistics
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Polynomial Regression

• Generated using JMP package

RSquare
RSquare Adj

Root Mean Sq Error

Mean of Response

Observations (or Sum Wgts)

0.936427
0.918264
2.540917

82.1
10

Summary of Fit

Model
Error
C. Total

Source
2
7
9

DF
665.70617
45.19383

710.90000

Sum of Squares
332.853

6.456

Mean Square
51.5551
F Ratio

<.0001
Prob > F

Analysis of Variance

Lack Of Fit
Pure Error
Total Error

Source
3
4
7

DF
18.193829
27.000000
45.193829

Sum of Squares
6.0646
6.7500

Mean Square
0.8985
F Ratio

0.5157
Prob > F

0.9620
Max RSq

Lack Of Fit

Intercept
x
x*x

Term
35.657437
5.2628956
-0.127674

Estimate
5.617927
0.558022
0.012811

Std Error
6.35
9.43

-9.97

t Ratio
0.0004
<.0001
<.0001

Prob>|t|
Parameter Estimates

x
x*x

Source
1
1

Nparm
1
1

DF
574.28553
641.20451

Sum of Squares
88.9502
99.3151

F Ratio
<.0001
<.0001

Prob > F
Effect Tests
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Outline

• Response Surface Modeling (RSM)
– Regression analysis, confidence intervals

• Process Optimization using DOE and RSM
– Off-line/iterative
– On-live/evolutionary
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Process Optimization

• Multiple Goals in “Optimal” Process Output
– Target mean for output(s) Y
– Small variation/sensitivity

• Can Combine in an Objective Function    “J”
– Minimize or Maximize, e.g.

– Such that J = J(factors); might include J(x); J(α)

• Adjust J via factors with constraints

max J
x

min J
x

ΔY =
∂Y
∂α

Δα +
∂Y
∂u

Δu
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Methods for Optimization

• Analytical Solutions
– ∂y/ ∂x = 0

• Gradient Searches
– Hill climbing (steepest ascent/descent)
– Local min or max problem
– Excel solver given a convex function

• Offline vs. Online
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Basic Optimization Problem

x

y (or J)

x0

y0 = J0
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3D Problem

-1
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Analytical
∂y(x)
∂x

= 0

x

y

• Need Accurate y(x)
– Analytical Model
– Dense x increments in experiment

• Difficult with Sparse Experiments
– Easy to missing optimum
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Sparse Data Procedure – Iterative 
Experiments/Model Construction

• Linear models with small increments
• Move along desired gradient
• Near zero slope change to quadratic model

x

y

x- x+

β1
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Extension to 3D
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Linear Model Gradient Following

x1

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

S13

S14

S15

S16

S17

S18

S19

S20

S21

 x1

 x2

 y

S1

S4

S7

S10

S13

S16

S19
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

 x1

 x2

 y

ˆ y = β0 + β1x1 + β 2x2 + β12 x1x2
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Steepest Descent

ˆ y = β0 + β1x1 + β 2x2 + β12 x1x2

x1

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

S13

S14

S15

S16

S17

S18

S19

S20

S21

 x1

 x2

 y

Make changes in x1and x2 along G

gx1
= ∂y
∂x1

= β1 + β12 x2

gx 2
= ∂y
∂x2

= β2 + β12 x1

g1

g2 G

Δx2 =
gx1

gx2

Δx1
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Various Surfaces
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• Study Physics of Process
– Define important inputs
– Intuition about model
– Limits on inputs

• DOE
– Factor screening experiments
– Further DOE as needed
– RSM Construction

• Define Optimization/Penalty Function
– J=f(x)

A Procedure for DOE/Optimization

For us,  x = u or αmax J
x

min J
x
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(1) DOE Procedure

• Identify model (linear, quadratic, terms to 
include)

• Define inputs and ranges
• Identify “noise” parameters to vary if possible 

(Δα’s)
• Perform experiment 

– Appropriate order
• randomization
• blocking against nuisance or confounding effects
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(2) RSM Procedure

• Solve for ß’s
• Apply ANOVA

– Data significant?
– Terms significant?
– Lack of Fit significant?

• Drop Insignificant Terms
• Add Higher Order Terms as needed
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(3) Optimization Procedure

• Define Optimization/Penalty Function
• Search for Optimum 

– Analytically
– Piecewise
– Continuously/evolutionary

• Confirm Optimum
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• Checking intermediate points

• Rechecking the “optimum”
-1

-0.2
0.6

-10

-5

0

5

10

15

Y

X1 X2-1
-1+1

+1

0

• Data only at corners
• Test at interior point
• Evaluate error
• Consider Central 

Composite?

Confirming Experiments
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• Find optimum value x*

• Perform confirming experiment
– Test model at x*

– Evaluate error with respect to model

– Test hypothesis that

• If hypothesis fails
– Consider new ranges for inputs
– Consider higher order model as needed
– Boundary may be optimum!

y(x*) = ˆ y (x*)

Optimization Confirmation Procedure
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Experimental Optimization

• WHY NOT JUST PICK BEST POINT?

• Why not optimize on-line?
– Skip the Modeling Step?

• Adaptive Methods
– Learn how best to model as you go

• e.g. Adaptive OFACT
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On-Line Optimization 

• Perform 2k Experiment
• Calculate Gradient
• Re-center 2k Experiment About 

Maximum Corner
• Repeat
• Near Maximum?

– Should detect quadratic error
– Do quadratic fit near maximum point 

• Central Composite is good choice here
– Can also scale and rotate about principal axes
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Continuous Optimization: EVOP

• Evolutionary Operation

x1

x2

y0

±δx1

±δx2

y2y3

y4
y1

• Pick “best” yi

• Re-center process

• Do again
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Summary
• Response Surface Modeling (RSM)

– Regression analysis, confidence intervals

• Process Optimization using DOE and RSM
– Off-line/iterative
– On-live/evolutionary

• Next Time:
– Process Robustness
– Variation Modeling
– Taguchi Approach
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