MIT OpenCourseWare
http://ocw.mit.edu

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303)

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Control of
 Manufacturing Processes

Subject 2.830/6.780/ESD. 63
Spring 2008
Lecture \#15

Response Surface Modeling and Process Optimization

April 8, 2008

Outline

- Last Time
- Fractional Factorial Designs
- Aliasing Patterns
- Implications for Model Construction
- Today

$$
\text { Reading: May \& Spanos, Ch. } 8.1 \text { - } 8.3
$$

- Response Surface Modeling (RSM)
- Regression analysis, confidence intervals
- Process Optimization using DOE and RSM

Regression Fundamentals

- Use least square error as measure of goodness to estimate coefficients in a model
- One parameter model:
- Model form
- Squared error
- Estimation using normal equations
- Estimate of experimental error
- Precision of estimate: variance in b
- Confidence interval for β
- Analysis of variance: significance of b
- Lack of fit vs. pure error
- Polynomial regression

Measures of Model Goodness - R^{2}

- Goodness of fit - R^{2}
- Question considered: how much better does the model do than just using the grand average?

$$
R^{2}=\frac{S S_{T}}{S S_{D}}
$$

- Think of this as the fraction of squared deviations (from the grand average) in the data which is captured by the model
- Adjusted R^{2}
- For "fair" comparison between models with different numbers of coefficients, an alternative is often used

$$
R_{\mathrm{adj}}^{2}=1-\frac{S S_{R} / \nu_{R}}{S S_{D} / \nu_{D}}=1-\frac{s_{R}^{2}}{s_{D}^{2}}
$$

- Think of this as (1 - variance remaining in the residual). Recall $v_{R}=v_{D}-v_{T}$

Least Squares Regression

- We use least-squares to estimate coefficients in typical regression models
- $y_{i}=\beta x_{i}+\epsilon_{i}, \quad i=1,2, \ldots, n ; \epsilon_{i} \sim N\left(0, \sigma^{2}\right)$ $\hat{y_{i}}=b x_{i}$

- Goal is to estimate β with "best" b
- How define "best"?
- That b which minimizes sum of squared error between prediction and data $S S(\hat{\beta})=\sum_{i=1}^{n}\left(y_{i}-\hat{y_{i}}\right)^{2}=\sum_{i=1}^{n}\left(y_{i}-\hat{\beta} x_{i}\right)^{2}$
- The residual sum of squares (for the best estimate) is

$$
S S_{\min }=\sum_{i=1}^{n}\left(y_{i}-b x_{i}\right)^{2}=S S_{R}
$$

Least Squares Regression, cont.

- Least squares estimation via normal equations
- For linear problems, we need not calculate $\operatorname{SS}(\beta)$; rather, direct solution for b is possible
- Recognize that vector of residuals will be normal to vector of x values at the least squares estimate

$$
\begin{aligned}
\sum(y-\hat{y}) x & =0 \\
\sum(y-b x) x & =0 \\
\sum x y & =\sum b x^{2} \\
& \Rightarrow b=\frac{\sum x y}{\sum x^{2}}
\end{aligned}
$$

- Estimate of experimental error
- Assuming model structure is adequate, estimate s^{2} of σ^{2} can be obtained:

$$
s^{2}=\frac{S S_{R}}{n-1}
$$

Precision of Estimate: Variance in b

- We can calculate the variance in our estimate of the slope, b :

$$
b=\frac{\sum x y}{\sum x^{2}} \quad \Rightarrow \quad \hat{V}(b)=\frac{s^{2}}{\sum x_{i}^{2}}
$$

$$
\text { s.e. }(b)=\sqrt{\hat{V}(b)}
$$

$$
b \pm \text { s.e. }(b)
$$

- Why? $\quad b=\frac{x_{1}}{\sum x^{2}} \cdot y_{1}+\frac{x_{2}}{\sum x^{2}} \cdot y_{2}+\cdots \frac{x_{n}}{\sum x^{2}} \cdot y_{n}$

$$
=a_{1} y_{1}+a_{2} y_{2}+\cdots+a_{n} y_{n}
$$

$$
\begin{aligned}
V(b) & =\left(a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}\right) \sigma^{2} \\
& =\left[\left(\frac{x_{1}}{\sum x^{2}}\right)^{2}+\cdots+\left(\frac{x_{n}}{\sum x^{2}}\right)^{2}\right] \sigma^{2} \\
& =\frac{\sum x^{2}}{\left(\sum_{\sigma^{2}} x^{2}\right)^{2}} \sigma^{2} \\
& =\frac{x^{2} x^{2}}{2}
\end{aligned}
$$

Confidence Interval for β

- Once we have the standard error in b, we can calculate confidence intervals to some desired (1- α) 100% level of confidence

$$
\frac{b-\beta}{\text { s.e.(b) }} \sim t \quad \Rightarrow \quad \beta=b \pm t_{\alpha / 2} \cdot \text { s.e. }(b)
$$

- Analysis of variance
- Test hypothesis: $H_{0}: \beta=b=0$
- If confidence interval for β includes 0 , then β not significant

$$
\begin{aligned}
\sum y_{i}^{2} & =\sum \hat{y}_{i}^{2}+\sum\left(y_{i}-\hat{y}_{i}\right)^{2} \\
n & =p+n-p
\end{aligned}
$$

- Degrees of freedom (need in order to use t distribution)
p = \# parameters estimated by least squares

Example Regression

Whole Model

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	8836.6440	8836.64	1093.146
Error	8	64.6695	8.08	Prob $>$ F
C. Total	9	8901.3135		$<.0001$

Tested against reduced model: $Y=0$

- Note that this simple model assumes an intercept of zero - model must go through origin
- We can relax this requirement

Lack of Fit Error vs. Pure Error

- Sometimes we have replicated data
- E.g. multiple runs at same x values in a designed experiment
- We can decompose the residual error contributions

$$
S S_{R}=S S_{L}+S S_{E}
$$

Where
$S S_{R}=$ residual sum of squares error
$S S_{L}=$ lack of fit squared error $S S_{E}=$ pure replicate error

- This allows us to TEST for lack of fit
- By "lack of fit" we mean evidence that the linear model form is inadequate

$$
\frac{s_{L}^{2}}{s_{E}^{2}} \sim F_{\nu_{L}, \nu_{E}}
$$

Regression: Mean Centered Models

- Model form $y=\alpha+\beta(x-\bar{x})$
- Estimate by $\hat{y}=a+b(x-\bar{x}), \quad\left(y_{i}-\hat{y}_{i}\right) \sim \mathrm{N}\left(0, \sigma^{2}\right)$

Minimize $S S_{R}=\sum\left(y_{i}-\hat{y}_{i}\right)^{2}$ to estimate α and β

$$
\begin{array}{cc}
a=\bar{y} & b=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}} \\
\mathrm{E}(a)=\alpha & \mathrm{E}(b)=\beta \\
\operatorname{Var}(a)=\operatorname{Var}\left[\frac{\sum y_{i}}{n}\right]=\frac{\sigma^{2}}{n} & \operatorname{Var}(b)=\frac{\sigma^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}
\end{array}
$$

Regression: Mean Centered Models

- Confidence Intervals

$$
\begin{aligned}
\hat{y}_{i} & =\bar{y}+b\left(x_{i}-\bar{x}\right) \\
\operatorname{Var}\left(\hat{y}_{i}\right) & =\operatorname{Var}(\bar{y})+\left(x_{i}-\bar{x}\right)^{2} \operatorname{Var}(b) \\
& =\frac{s^{2}}{n}+\frac{s^{2}\left(x_{i}-\bar{x}\right)^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}=s_{\hat{y}_{i}}^{2}
\end{aligned}
$$

- Our confidence interval on output y widens as we get further from the center of our data!

$$
\hat{y}_{i} \pm t_{\alpha / 2} \cdot s_{\hat{y}_{i}}
$$

Polynomial Regression

- We may believe that a higher order model structure applies. Polynomial forms are also linear in the coefficients and can be fit with least squares

$$
\eta=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}
$$

Curvature included through x^{2} term

- Example: Growth rate data

Regression Example: Growth Rate Data

Observation Number	Amount of Supplement (grams) \boldsymbol{x}	Growth Rate (coded units) \boldsymbol{y}
1	10	73
2	10	78
3	15	85
4	20	90
5	20	91
6	25	87
7	25	86
8	25	91
9	30	75
10	35	65

Growth rate data

Figures by MIT OpenCourseWare.

- Replicate data provides opportunity to check for lack of fit

Growth Rate - First Order Model

- Mean significant, but linear term not - Clear evidence of lack of fit

Source	Sum of Squares	Degrees of Freedom	Mean Square
Model	$\mathrm{S}_{\mathrm{M}}=67,428.6\left\{\begin{array}{l}\text { mean: } 67,404.1 \\ \text { extra for linear: } 24.5\end{array}\right.$	$2\left\{\begin{array}{l}1 \\ 1\end{array}\right.$	$\begin{array}{r} 67,404.1 \\ 24.5 \end{array}$
\rightarrow Residual $\left\{\begin{array}{l}\text { lack of fit } \\ \text { pure error }\end{array}\right.$	$\mathrm{S}_{\mathrm{R}}=686.4\left\{\begin{array}{l}\mathrm{S}_{\mathrm{L}}=659.40 \\ \mathrm{~S}_{\mathrm{E}}=27.0\end{array}\right.$	$8\left\{\begin{array}{l}4 \\ 4\end{array}\right.$	$85.8\left\{\begin{array}{r}164.85 \\ 6.75\end{array}\right.$ ratio $=24.42$
Total	$\mathrm{S}_{\mathrm{T}}=68,115.0$	10	

Analysis of variance for growth rate data: Straight line model
Figure by MIT OpenCourseWare.

Growth Rate - Second Order Model

- No evidence of lack of fit
- Quadratic term significant

Source	Sum of Squares	Degrees of Freedom	Mean Square
Model	$\mathrm{S}_{\mathrm{M}}=68,071.8$ ($\begin{aligned} & \text { mean } 67,404.1 \\ & \text { extra for linear } 24.5 \\ & \text { extra for quadratic } 643.2\end{aligned}$	$3\left\{\begin{array}{l}1 \\ 1 \\ 1\end{array}\right.$	$\begin{aligned} & 67,404.1 \\ & 24.5 \\ & 643.2 \end{aligned}$
\rightarrow Residual	$\mathrm{S}_{\mathrm{R}}=43.2\left\{\begin{array}{l}\mathrm{S}_{\mathrm{L}}=16.2 \\ \mathrm{~S}_{\mathrm{E}}=27.0\end{array}\right.$	$7\left\{\begin{array}{l}3 \\ 4\end{array}\right.$	$\left\{\begin{array}{l}5.40 \\ 6.75\end{array}\right.$ ratio $=0.80$
Total	$\mathrm{S}_{\mathrm{T}}=68,115.0$	10	

Analysis of variance for growth rate data: Quadratic model
Figure by MIT OpenCourseWare.

Polynomial Regression In Excel

- Create additional input columns for each input - Use "Data Analysis" and "Regression" tool

x		y
10	100	73
10	100	78
15	225	85
20	400	90
20	400	91
25	625	87
25	625	86
25	625	91
30	900	75
35	1225	65

Regression Statistics	
Multiple R	0.968
R Square	0.936
Adjusted R Square	0.918
Standard Error	2.541
Observations	10

ANOVA

	$d f$		SS	$M S$	F
Regression	2	665.706	332.853	51.555	Significance F
Residual	7	45.194	6.456		
Total	9	710.9			

	Standard				Lower	
	Coefficients	Error	Upper			
	35.657	5.618	6.347	P-value	95%	95%
Intercept	5.263	0.558	9.431	$3.1 \mathrm{E}-05$	22.373	48.942
x	-0.128	0.013	-9.966	$2.2 \mathrm{E}-05$	-0.158	6.582
$\mathrm{x}^{\wedge} 2$						

Manufacturing
2.830J/6.780J/ESD.63J

Polynomial Regression

Analysis of Variance

Source	DF	Sum of Square	Mean Squar	F Ratio
Model	2	665.70617	332.853	51.5551
Error	7	45.19383	$6.45\}$	Prob $>$ F
C. Total	9	710.90000		$<.0001$

Lack Of Fit

Source	DF	Sum of Square	Mean Squar	F Ratio
Lack Of Fit	3	18.193829	6.0646	0.8985
Pure Error	4	27.000000	6.7500	Prob $>$
Total Error	7	45.193829		0.5157
				Max RSq
				0.9620

Summary of Fit

RSquare	0.936427
RSquare Adj	0.918264
\quad Root Mean Sq Error	2.540917
Mean of Response	82.1
Observations (or Sum Wgts)	10

Parameter Estimates

Term	Estimat ϵ	Std Error	t Ratio	Prob $>\|\mathrm{t}\|$
\quad Intercept	35.657437	5.617927	6.35	0.0004
x	5.2628956	0.558022	9.43	$<.0001$
$\mathrm{x}^{*} \mathrm{x}$	-0.127674	0.012811	-9.97	$<.0001$

Effect Tests

Source	Nparm	DF	Sum of Squares	F Ratio	Prob $>$ F
x	1	1	574.28553	88.9502	$<.0001$
x$^{*} x$	1	1	641.20451	99.3151	$<.0001$

Manufacturing
2.830J/6.780J/ESD.63J

Outline

- Response Surface Modeling (RSM)
- Regression analysis, confidence intervals
- Process Optimization using DOE and RSM
- Off-line/iterative
- On-live/evolutionary

Process Optimization

- Multiple Goals in "Optimal" Process Output
- Target mean for output(s) Y
- Small variation/sensitivity $\quad \Delta Y=\frac{\partial Y}{\partial \alpha} \Delta \alpha+\frac{\partial Y}{\partial u} \Delta u$
- Can Combine in an Objective Function "J"
- Minimize or Maximize, e.g. min J max J $\underline{\mathrm{x}} \quad \underline{\mathrm{x}}$
- Such that $\mathrm{J}=\mathrm{J}$ (factors); might include $\mathrm{J}(\underline{\mathrm{x}})$; $\mathrm{J}(\alpha)$
- Adjust J via factors with constraints

Methods for Optimization

- Analytical Solutions
$-\partial y / \partial x=0$
- Gradient Searches
- Hill climbing (steepest ascent/descent)
- Local min or max problem
- Excel solver given a convex function
- Offline vs. Online

Basic Optimization Problem

3D Problem

Manufacturing
2.830J/6.780J/ESD.63J

Analytical

- Need Accurate $y(x)$
- Analytical Model
- Dense x increments in experiment
- Difficult with Sparse Experiments
- Easy to missing optimum

Sparse Data Procedure - Iterative Experiments/Model Construction

- Linear models with small increments
- Move along desired gradient
- Near zero slope change to quadratic model

Extension to 3D

Manufacturing
2.830J/6.780J/ESD.63J

Linear Model Gradient Following

X_{1}

$$
\hat{y}=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{12} x_{1} x_{2}
$$

Steepest Descent

$$
\begin{aligned}
& \hat{y}=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{12} x_{1} x_{2} \\
& g_{x_{1}}=\frac{\partial y}{\partial x_{1}}=\beta_{1}+\beta_{12} x_{2} \\
& g_{x_{2}}=\frac{\partial y}{\partial x_{2}}=\beta_{2}+\beta_{12} x_{1} \\
& \text { Make changes in } \mathrm{x}_{1} \text { and } \mathrm{x}_{2} \text { along G } \\
& \quad \Delta x_{2}=\frac{g_{x_{1}}}{g_{x_{2}}} \Delta x_{1}
\end{aligned}
$$

Various Surfaces

A Procedure for DOE/Optimization

- Study Physics of Process
- Define important inputs
- Intuition about model
- Limits on inputs
- DOE
- Factor screening experiments
- Further DOE as needed
- RSM Construction
- Define Optimization/Penalty Function
$-\mathrm{J}=\mathrm{f}(\mathrm{x}) \underset{\underline{\underline{x}}}{\max \mathrm{~J}} \underset{\underline{\underline{x}}}{\min \mathrm{~J}}$
For us, $\underline{x}=\underline{u}$ or $\underline{\alpha}$

(1) DOE Procedure

- Identify model (linear, quadratic, terms to include)
- Define inputs and ranges
- Identify "noise" parameters to vary if possible ($\Delta \alpha$'s)
- Perform experiment
- Appropriate order
- randomization
- blocking against nuisance or confounding effects

(2) RSM Procedure

- Solve for \underline{B} 's
- Apply ANOVA
- Data significant?
- Terms significant?
- Lack of Fit significant?
- Drop Insignificant Terms
- Add Higher Order Terms as needed

(3) Optimization Procedure

- Define Optimization/Penalty Function
- Search for Optimum
- Analytically
- Piecewise
- Continuously/evolutionary
- Confirm Optimum

Confirming Experiments

- Checking intermediate points

- Data only at corners
- Test at interior point
- Evaluate error
- Consider Central Composite?
- Rechecking the "optimum"

Optimization Confirmation Procedure

- Find optimum value x^{*}
- Perform confirming experiment
- Test model at x^{*}
- Evaluate error with respect to model
- Test hypothesis that $y\left(\underline{x}^{*}\right)=\hat{y}\left(\underline{x}^{*}\right)$
- If hypothesis fails
- Consider new ranges for inputs
- Consider higher order model as needed
- Boundary may be optimum!

Experimental Optimization

- WHY NOT JUST PICK BEST POINT?
- Why not optimize on-line?
- Skip the Modeling Step?
- Adaptive Methods
- Learn how best to model as you go
- e.g. Adaptive OFACT

On-Line Optimization

- Perform 2^{k} Experiment
- Calculate Gradient
- Re-center 2^{k} Experiment About Maximum Corner
- Repeat
- Near Maximum?
- Should detect quadratic error
- Do quadratic fit near maximum point
- Central Composite is good choice here
- Can also scale and rotate about principal axes

Continuous Optimization: EVOP

- Evolutionary Operation

- Pick "best" y_{i}
- Re-center process
- Do again

$$
\mathrm{x}_{1}
$$

Summary

- Response Surface Modeling (RSM)
- Regression analysis, confidence intervals
- Process Optimization using DOE and RSM
- Off-line/iterative
- On-live/evolutionary
- Next Time:
- Process Robustness
- Variation Modeling
- Taguchi Approach

