2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Control of Manufacturing Processes Subject 2.830/6.780/ESD.63 Spring 2008 Lecture #9

Advanced and Multivariate SPC

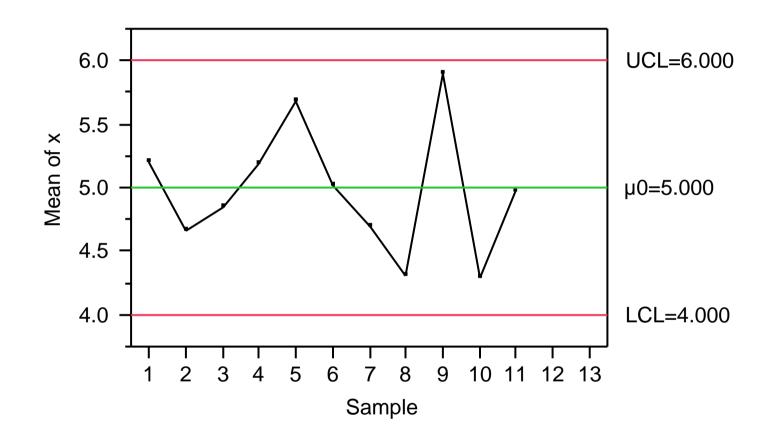
March 6, 2008

1

Agenda

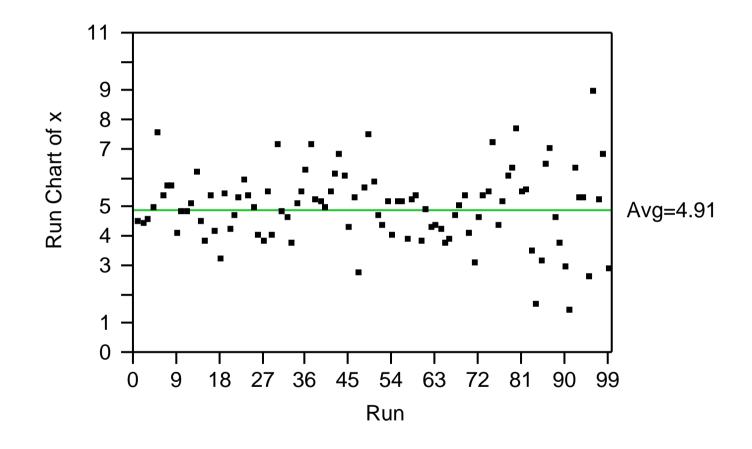
- Conventional Control Charts
 Xbar and S
- Alternative Control Charts
 - Moving average
 - EWMA
 - CUSUM
- Multivariate SPC

Xbar Chart Process Model: x ~ N(5,1), n = 9



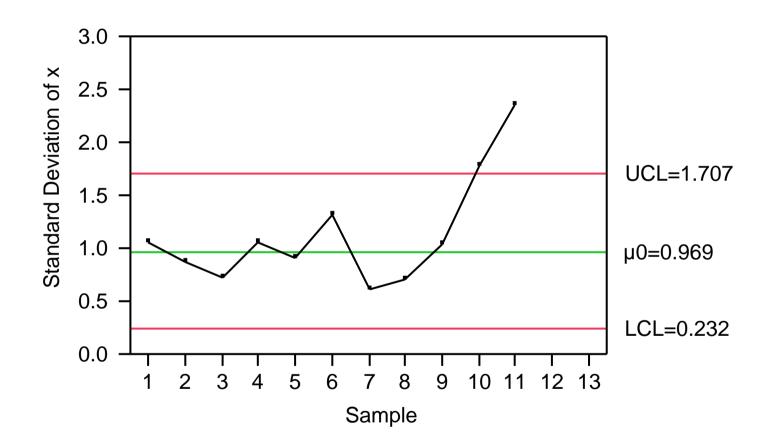
• Is process in control?

Run Data (n=9 sample size)



• Is process in control?

S Chart



• Is process in control?

Alternative Charts: Running Averages

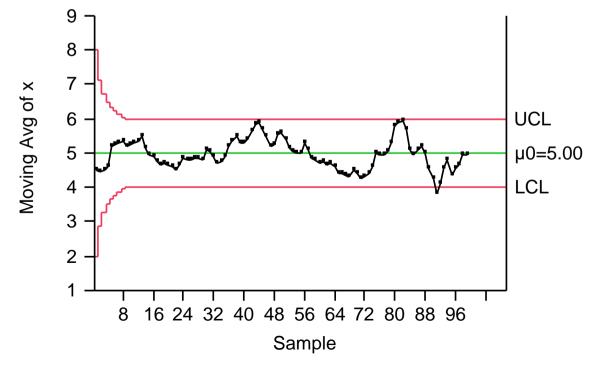
- More averages/Data
- Can use run data alone and average for S only
- Can use to improve resolution of mean shift

 $\begin{cases} \overline{x}_{Rj} = \frac{1}{n} \sum_{i=j}^{j+n} x_i & \text{Running Average} \\ S_{Rj}^{2} = \frac{1}{n-1} \sum_{i=j}^{j+n} (x_i - \overline{x}_{Rj})^2 \text{Running Variance} \end{cases}$

Simplest Case: Moving Average

• Pick window size (e.g., w = 9)

$$M_{i} = \frac{x_{i} + x_{i-1} + \dots + x_{i-w+1}}{w}$$
$$V(M_{i}) = \frac{1}{w^{2}} \sum_{j=i-w+1}^{i} V(x_{j}) = \frac{1}{w^{2}} \sum_{j=i-w+1}^{i} \sigma^{2} = \frac{\sigma^{2}}{w}$$

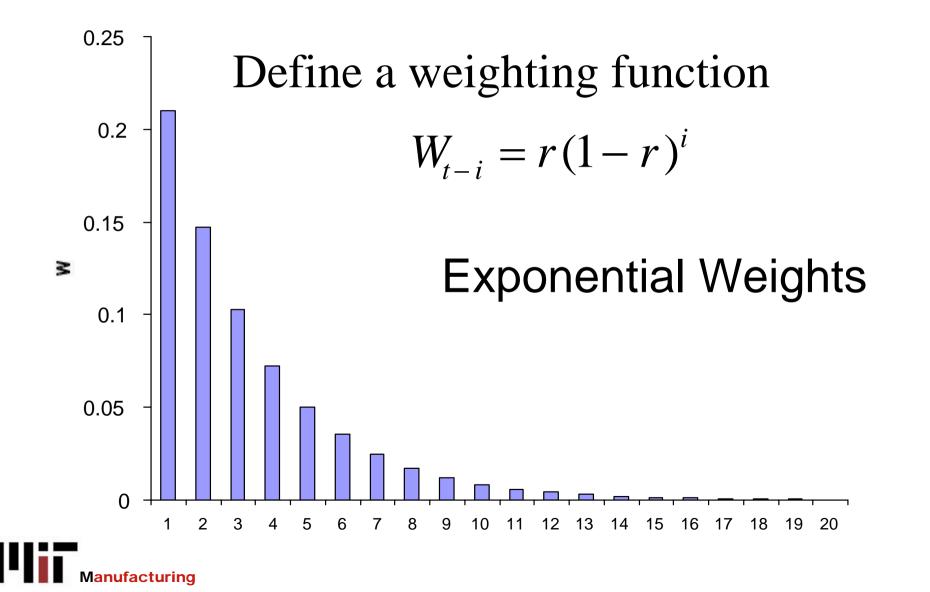


General Case: Weighted Averages

$$y_j = a_1 x_{j-1} + a_2 x_{j-2} + a_3 x_{j-3} + \dots$$

- How should we weight measurements?
 - All equally? (as with Moving Average)
 - Based on how recent?
 - e.g. Most recent are more relevant than less recent?

Consider an Exponential Weighted Average



Exponentially Weighted Moving Average: (EWMA)

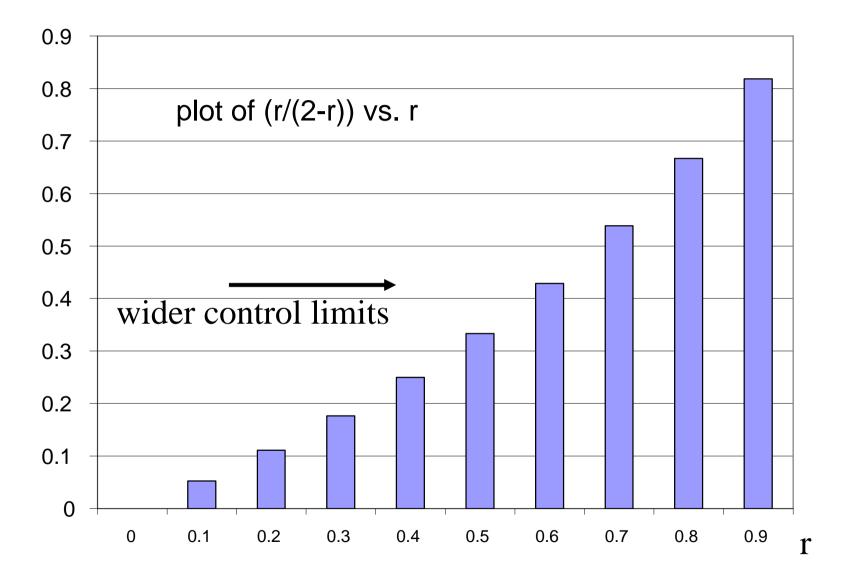
$$A_i = rx_i + (1 - r)A_{i-1}$$
 Recursive EWMA

$$\sigma_{A} = \sqrt{\left(\frac{\sigma_{x}^{2}}{n}\right)\left(\frac{r}{2-r}\right)\left[1-(1-r)^{2t}\right]} \qquad \text{time}$$

$$\sigma_{A} = \sqrt{\frac{\sigma_{x}^{2}}{n}\left(\frac{r}{2-r}\right)}$$

$$UCL, LCL = \bar{x} \pm 3\sigma_{A} \qquad \text{for large t}$$

Effect of r on σ multiplier



SO WHAT?

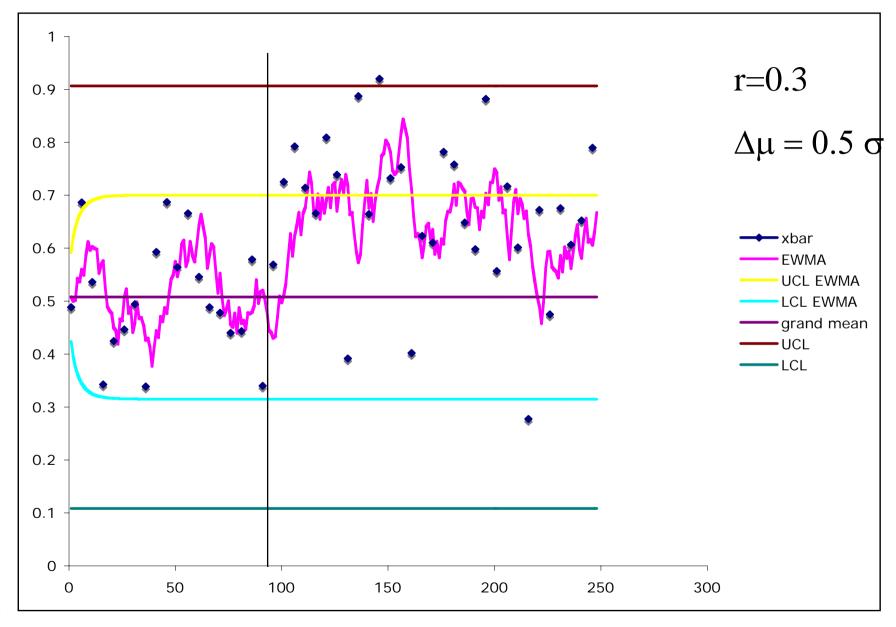
• The variance will be less than with xbar,

$$\sigma_A = \frac{\sigma_x}{\sqrt{n}} \sqrt{\left(\frac{r}{2-r}\right)} = \sigma_{\overline{x}} \sqrt{\left(\frac{r}{2-r}\right)}$$

- n=1 case is valid
- If r=1 we have "unfiltered" data
 - Run data stays run data
 - Sequential averages remain
- If r<<1 we get long weighting and long delays

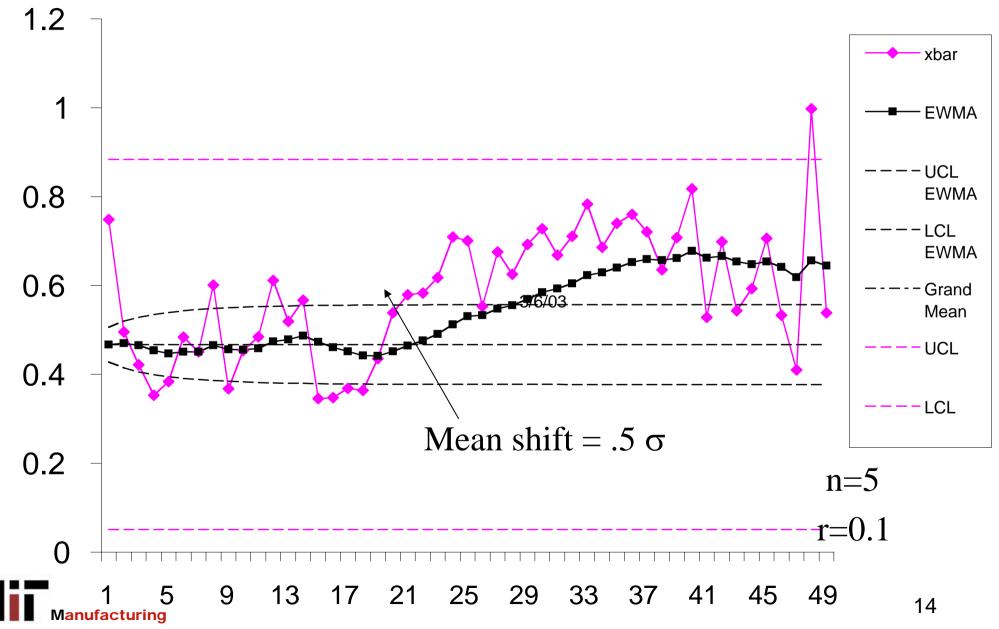
 "Stronger" filter; longer response time

EWMA vs. Xbar

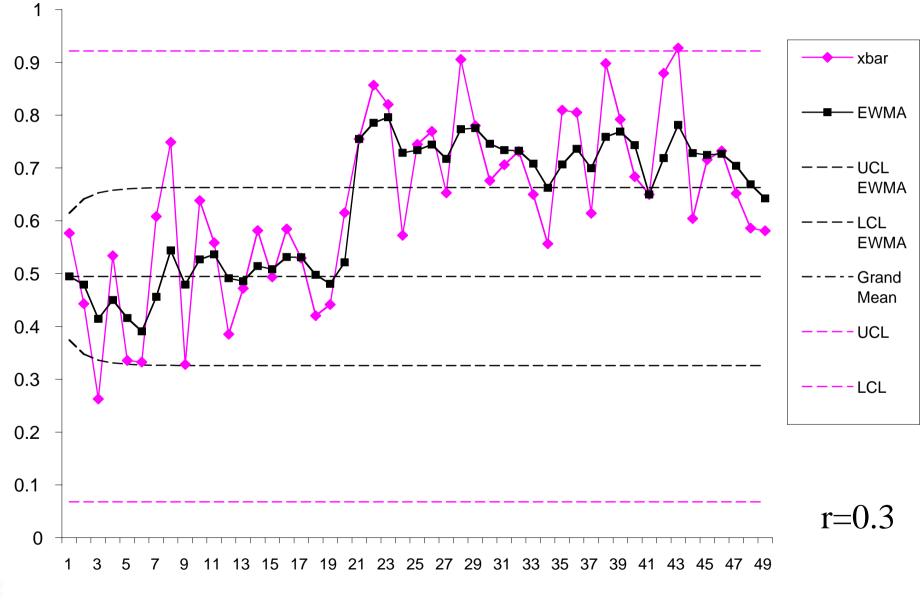


Manufacturing

Mean Shift Sensitivity EWMA and Xbar comparison



Effect of r



Manufacturing

Small Mean Shifts

- What if $\Delta \mu_x$ is small with respect to σ_x ?
- But it is "persistent"
- How could we detect?
 ARL for xbar would be too large

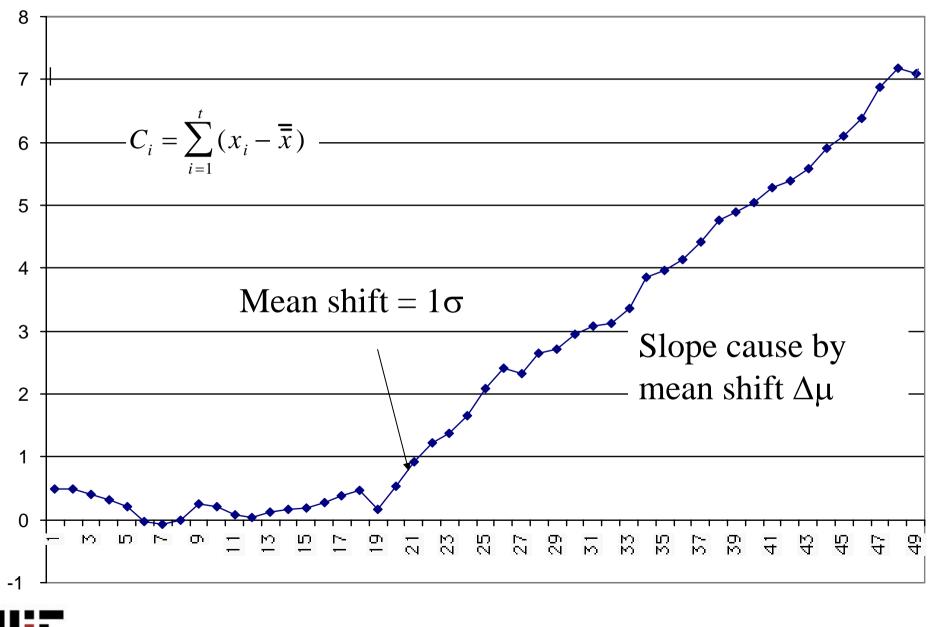
Another Approach: Cumulative Sums

- Add up deviations from mean
 - A Discrete Time Integrator

$$C_{j} = \sum_{i=1}^{j} (x_{i} - \overline{x})$$

- Since E{x-μ}=0 this sum should stay near zero when in control
- Any bias (mean shift) in x will show as a trend

Mean Shift Sensitivity: CUSUM

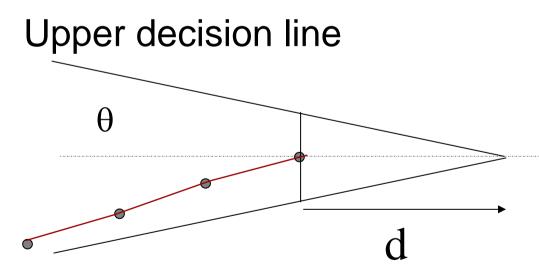


Manufacturing

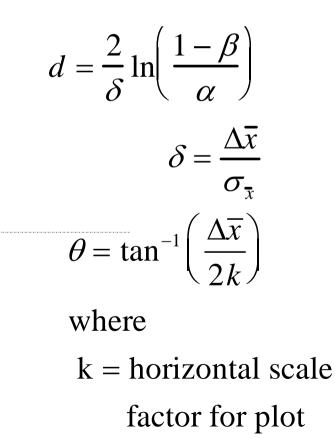
18

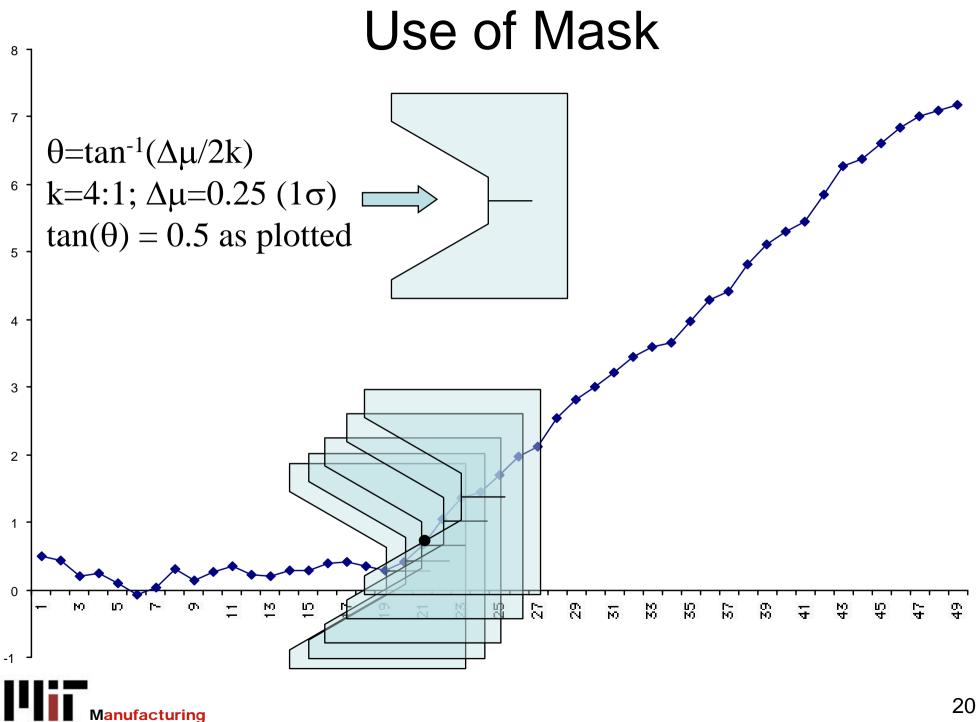
Control Limits for CUSUM

- Significance of Slope Changes?
 - Detecting Mean Shifts
- Use of v-mask
 - Slope Test with Deadband



Lower decision line





An Alternative

 $Z_i = \frac{X_i - \mu_x}{\sigma_x}$

Define the Normalized Statistic

And the CUSUM statistic

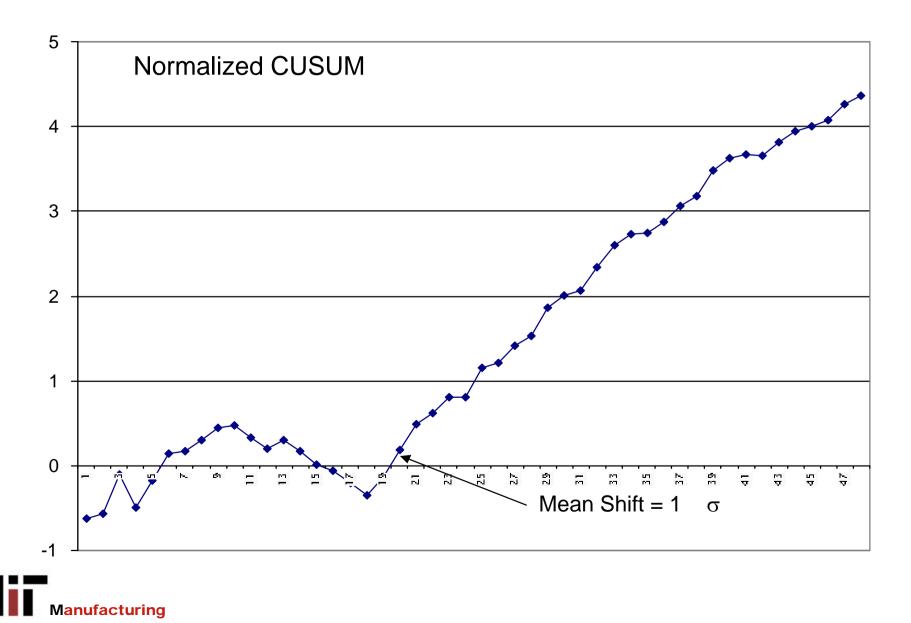
Which has an expected mean of 0 and variance of 1

$$S_i = \frac{\sum_{i=1}^{t} Z_i}{\sqrt{t}}$$

Which has an expected mean of 0 and variance of 1

Chart with Centerline =0 and Limits = ± 3

Example for Mean Shift = 1σ



Tabular CUSUM

• Create Threshold Variables:

$$C_{i}^{+} = \max[0, x_{i} - (\mu_{0} + K) + C_{i-1}^{+}] \text{ Accumulates}$$

$$C_{i}^{-} = \max[0, (\mu_{0} - K) - x_{i} + C_{i-1}^{-}] \text{ from the}$$

$$K = \text{ threshold or slack value for}$$

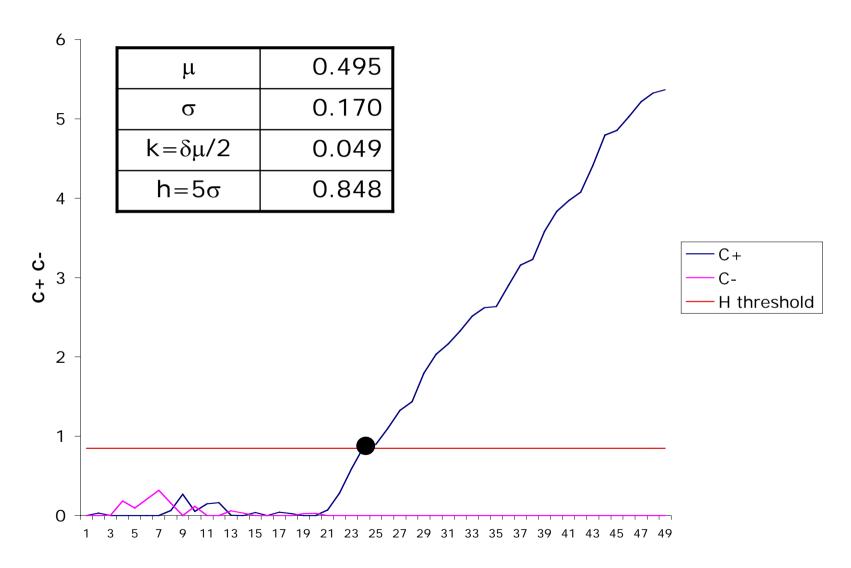
$$K = \text{ threshold or slack value for}$$

$$\Delta \mu = \text{ mean shift to detect}$$

$$\frac{K}{\text{typical}} = \frac{\Delta \mu}{2} \qquad \Delta \mu = \text{mean sh}$$

H : alarm level (typically 5σ)

Threshold Plot



Alternative Charts Summary

- Noisy data need some filtering
- Sampling strategy can guarantee independence
- Linear discrete filters been proposed
 - EWMA
 - Running Integrator
- Choice depends on nature of process
- Noisy data need some filtering, BUT
 - Should generally monitor variance too!

Motivation: Multivariate Process Control

- More than one output of concern
 - many univariate control charts
 - many false alarms if not designed properly
 - common mistake #1
- Outputs may be coupled
 - exhibit covariance
 - independent probability models may not be appropriate
 - common mistake #2

Mistake #1 – Multiple Charts

- Multiple (independent) parameters being monitored at a process step
 - set control limits based on acceptable $\alpha = \Pr(\text{false alarm})$
 - E.g., α = 0.0027 (typical 3σ control limits), so 1/370 runs will be a false alarm
 - Consider *p* separate control charts
 - What is aggregate false alarm probability?

$$\begin{array}{l} \alpha' = 1 - (1 - \alpha)^p \\ \alpha' \approx p\alpha \end{array}$$

Mistake #1 – Multiple Tests for Significant Effects

- Multiple control charts are just a running hypothesis test – is process "in control" or has something statistically significant occurred (i.e., "unlikely to have occurred by chance")?
- Same common mistake (testing for multiple significant effects and misinterpreting significance) applies to many uses of statistics – such as medical research!

The Economist (Feb. 22, 2007)

Text removed due to copyright restrictions. Please see *The Economist*, Science and Technology. "Signs of the times." February 22, 2007.

Approximate Corrections for Multiple (Independent) Charts

- Approach: fixed α '
 - Decide aggregate acceptable false alarm rate, α^{\prime}
 - Set individual chart α to compensate

$$\alpha = \alpha'/p$$

- Expand individual control chart limits to match

$$UCL, LCL = \mu \pm z_{\alpha/2} \cdot \sigma_n$$

Mistake #2: Assuming Independent Parameters

- Performance related to many variables
- Outputs are often interrelated
 - e.g., two dimensions that make up a fit
 - thickness and strength
 - depth and width of a feature (e.g., micro embossing)
 - multiple dimensions of body in white (BIW)
 - multiple characteristics on a wafer
- Why are independent charts deceiving?

Examples

- Body in White (BIW) assembly
 - Multiple individual dimensions measured
 - All could be OK and yet BIW be out of spec
- Injection molding part with multiple key dimensions
- Numerous critical dimensions on a semiconductor wafer or microfluidic chip

LFM Application

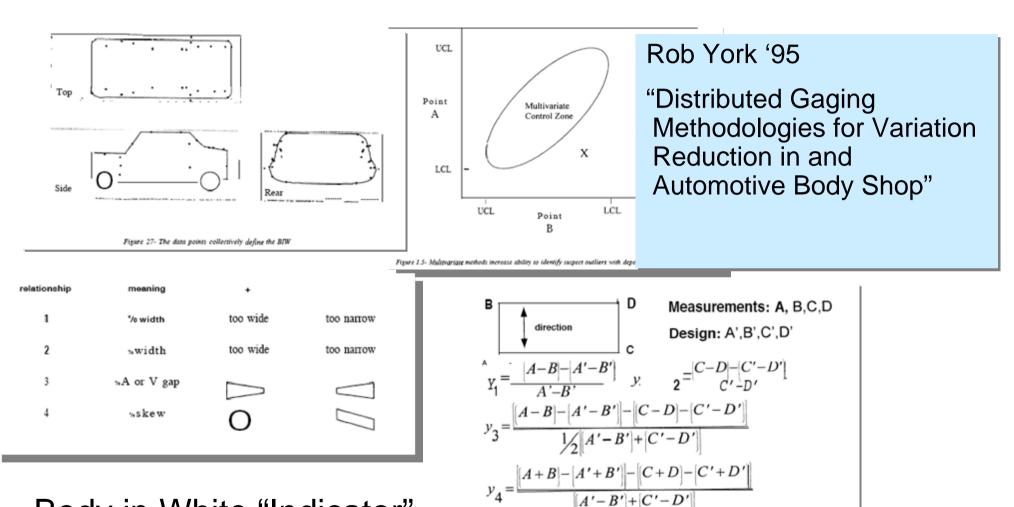


Figure 28- Four equations capture the fundamental relationships

Body in White "Indicator"

Manufacturing

33

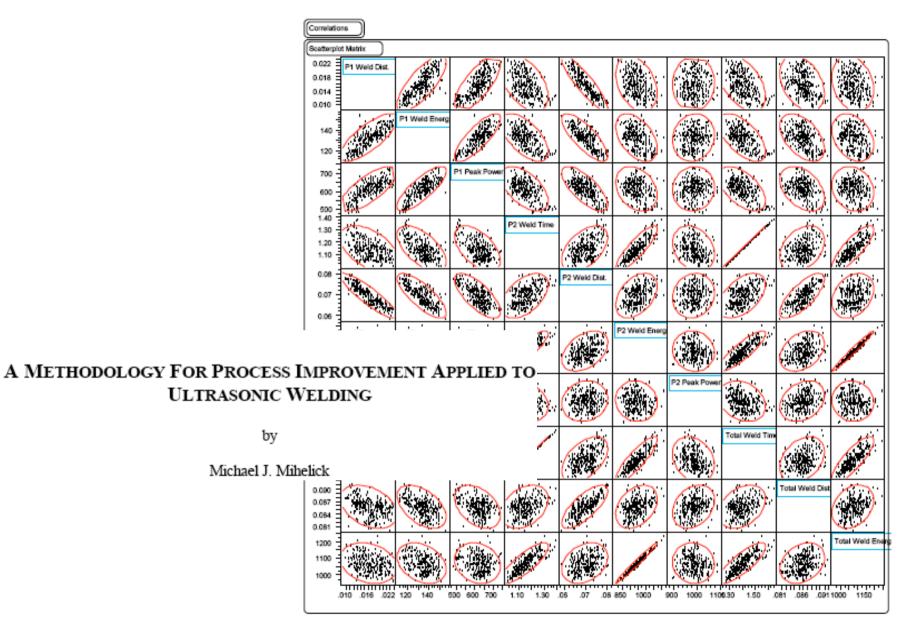
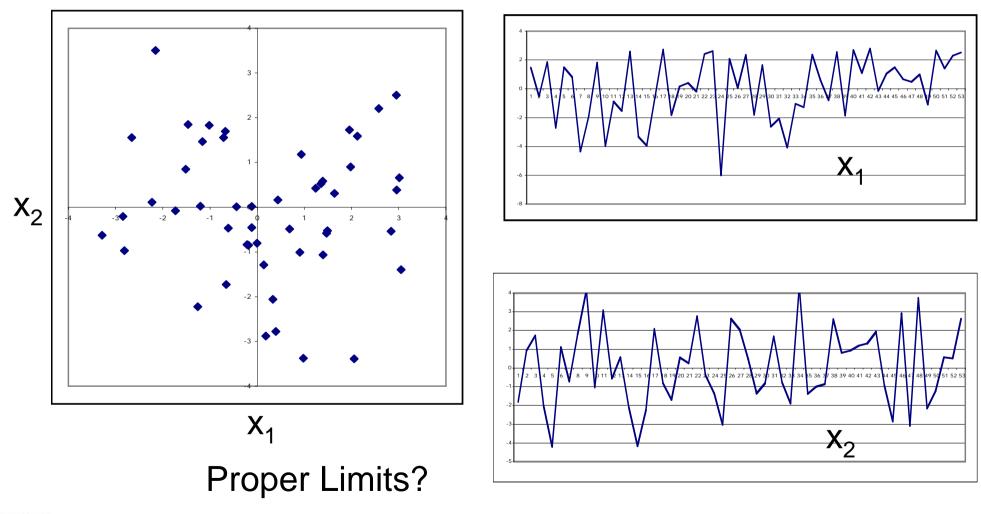
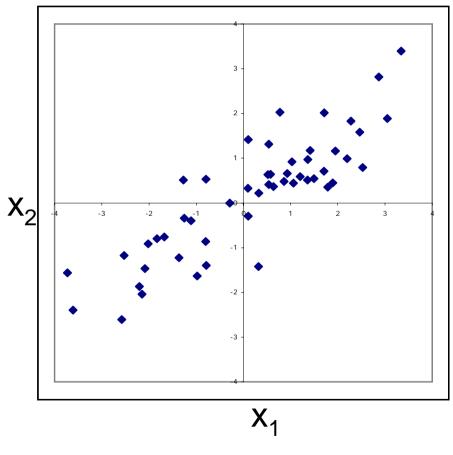


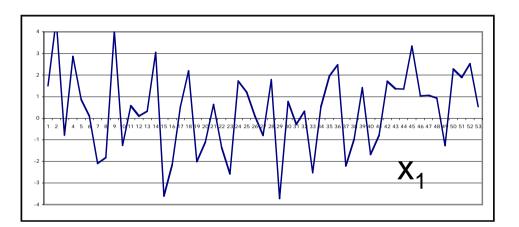
Figure 4.13 Scatterplot Matrix for Weld Parameters

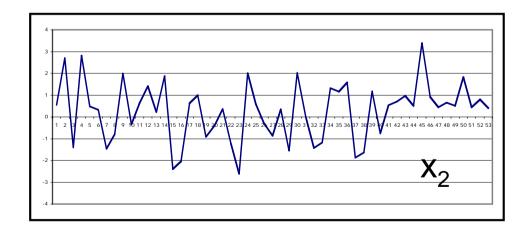
Independent Random Variables



Correlated Random Variables

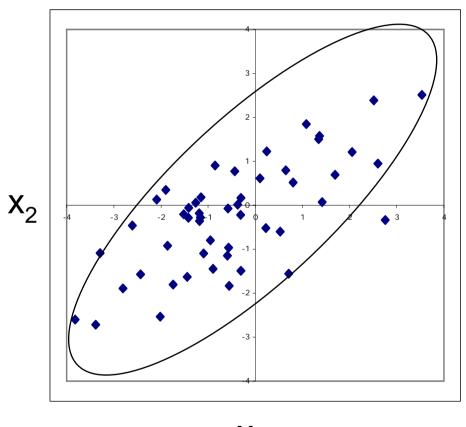


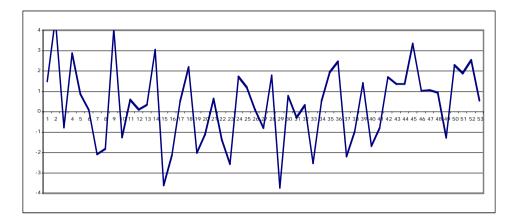


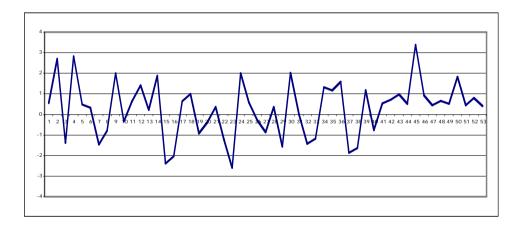


Proper Limits?

Outliers?







X₁

Multivariate Charts

 Create a single chart based on joint probability distribution

– Using sample statistics: Hotelling T^2

- Set limits to detect mean shift based on $\boldsymbol{\alpha}$
- Find a way to back out the underlying causes
- EWMA and CUSUM extensions
 - MEWMA and MCUSUM

Background

- Joint Probability Distributions
- Development of a single scale control chart – Hotelling T²
- Causality Detection

 Which characteristic likely caused a problem
- Reduction of Large Dimension Problems
 - Principal Component Analysis (PCA)

Multivariate Elements

• Given a vector of measurements

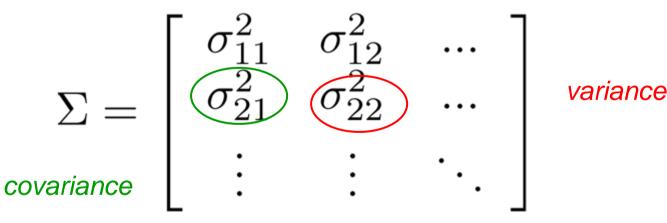
$$\underline{x} = [x_1, x_2, x_3, \dots, x_p]$$

• We can define vector of means:

$$\underline{\mu} = [\mu_1, \mu_2, \mu_3, ..., \mu_p]$$

where p = # parameters

• and covariance matrix:



Joint Probability Distributions

Single Variable Normal Distribution

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2} \underbrace{\text{squared standardized}}_{\substack{\text{distance from} \\ mean}}$$

Multivariable Normal Distribution

$$f(\underline{x}) = \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} e^{-\frac{1}{2} (\underbrace{\underline{x}} - \underline{\mu})^T \Sigma^{-1} (\underbrace{\underline{x}} - \underline{\mu})}}_{\text{squared standardized}}$$

Sample Statistics

• For a set of samples of the vector \underline{x}

$$X = [\underline{x}_1, \underline{x}_2, \underline{x}_3, \dots, \underline{x}_n]$$

Sample Mean

$$\underline{\bar{x}} = \frac{1}{n} \sum_{i=1}^{n} \underline{x}_i$$

• Sample Covariance

$$S = \frac{1}{n-1} \sum_{i=1}^{n} (\underline{x}_i - \overline{\underline{x}}) (\underline{x}_i - \overline{\underline{x}})^T$$

Chi-Squared Example - True Distributions Known, Two Variables

• If we know $\underline{\mu}$ and Σ *a priori*:

$$\chi_0^2 = \frac{n}{\sigma_1^2 \sigma_2^2 - \sigma_{12}^2} \quad \begin{bmatrix} \sigma_2^2 (\bar{x}_1 - \mu_1)^2 + \sigma_1^2 (\bar{x}_2 - \mu_2)^2 \\ -2\sigma_{12} (\bar{x}_1 - \mu_1) (\bar{x}_2 - \mu_2) \end{bmatrix}$$

will be distributed as χ^2_2

- sum of squares of two unit normals
- More generally, for *p* variables:

$$\chi_0^2 = n(\underline{x} - \underline{\mu})^T \Sigma^{-1} (\underline{x} - \underline{\mu})$$

distributed as χ_p^2 (and n = # samples)

Control Chart for χ^2 ?

- Assume an acceptable probability of Type I errors (upper α)
- $UCL = \chi^2_{\alpha, p}$ - where p = order of the system
- If process means are μ_1 and μ_2 then $\chi^2_0 < UCL$

Univariate vs. χ^2 Chart

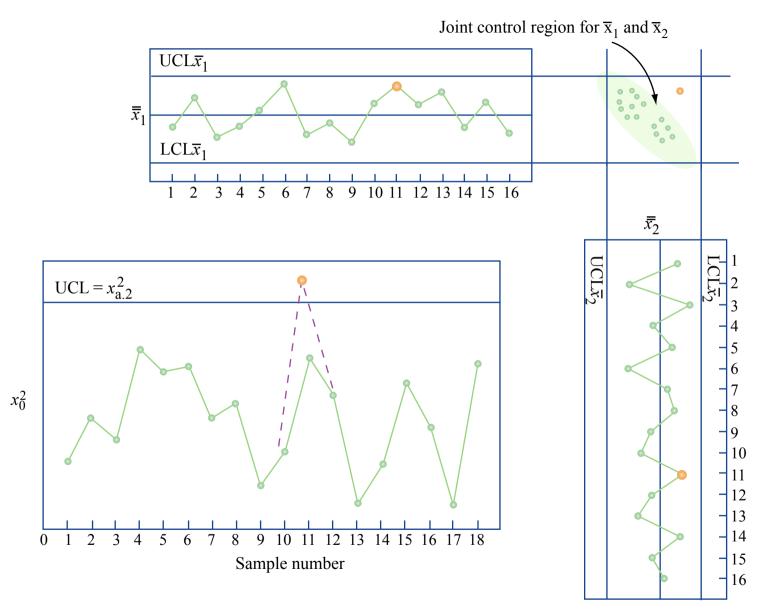


Figure by MIT OpenCourseWare.

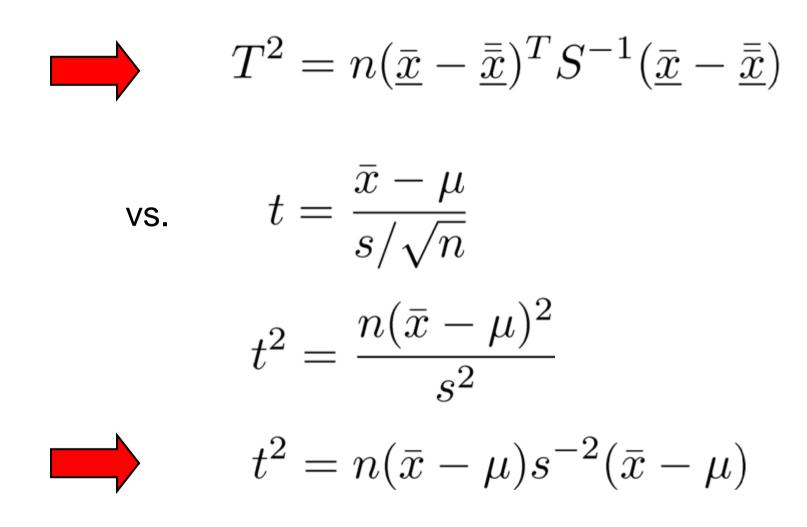
Multivariate Chart with No Prior Statistics: *T*²

- If we must use data to get \overline{x} and S
- Define a new statistic, Hotelling T^2

$$T^{2} = n(\underline{\bar{x}} - \underline{\bar{\bar{x}}})^{T} S^{-1}(\underline{\bar{x}} - \underline{\bar{\bar{x}}})$$

- Where $\overline{\underline{x}}$ is the vector of the averages for each variable over all measurements
- *S* is the matrix of sample *covariance* over all data

Similarity of T² and t²



Distribution for T^2

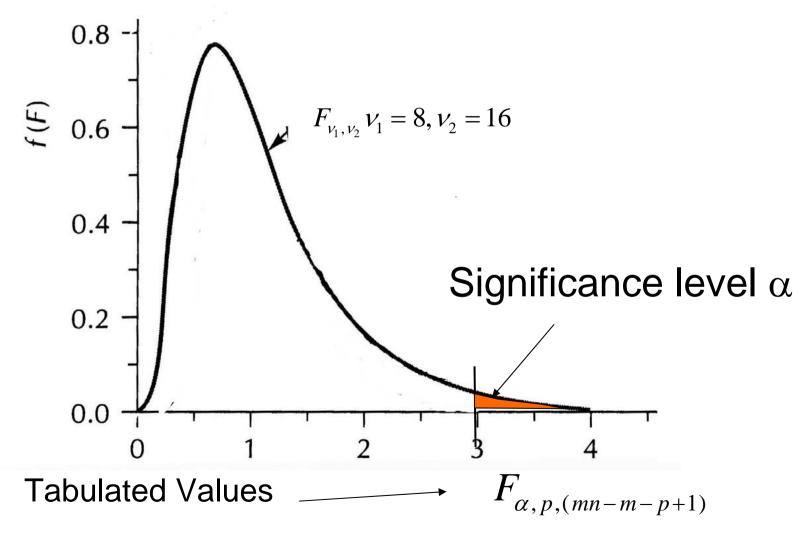
- Given by a scaled F distribution

$$LCL = 0$$

$$UCL = \frac{p(m-1)(n-1)}{mn - m - p + 1} F_{\alpha, p, (mn-m-p+1)}$$

 α is type I error probability p and (mn - m - p + 1) are d.o.f. for the *F* distribution n is the size of a given sample m is the number of samples taken p is the number of outputs

F - Distribution



Manufacturing

Phase I and II?

• Phase I - Establishing Limits

$$UCL = \frac{p(m-1)(n-1)}{mn - m - p + 1} F_{\alpha, p, (mn-m-p+1)}$$

• Phase II - Monitoring the Process

$$UCL = \frac{p(m+1)(n-1)}{mn - m - p + 1} F_{\alpha, p, (mn - m - p + 1)}$$

NB if *m* used in phase 1 is large then they are nearly the same

Example

- Fiber production
- Outputs are strength and weight
- 20 samples of subgroups size 4
 m = 20, *n* = 4
- Compare *T*² result to individual control charts

Data Set

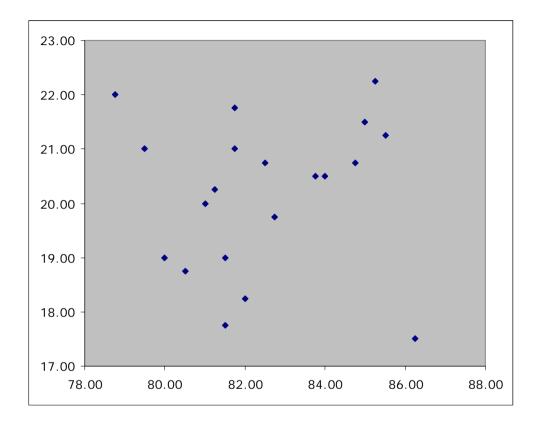
	Output x1						Output x2		
Sample		Subgroup n=4			R1		Subgroup n=4		
1	80	82	78	85	7	19	22	20	20
2	75	78	84	81	9	24	21	18	21
3	83	86	84	87	4	19	24	21	22
4	79	84	80	83	5	18	20	17	16
5	82	81	78	86	8	23	21	18	22
6	86	84	85	87	3	21	20	23	21
7	84	88	82	85	6	19	23	19	22
8	76	84	78	82	8	22	17	19	18
9	85	88	85	87	3	18	16	20	16
10	80	78	81	83	5	18	19	20	18
11	86	84	85	86	2	23	20	24	22
12	81	81	83	82	2	22	21	23	21
13	81	86	82	79	7	16	18	20	19
14	75	78	82	80	7	22	21	23	22
15	77	84	78	85	8	22	19	21	18
16	86	82	84	84	4	19	23	18	22
17	84	85	78	79	7	17	22	18	19
18	82	86	79	83	7	20	19	23	21
19	79	88	85	83	9	21	23	20	18
20	80	84	82	85	5	18	22	19	20

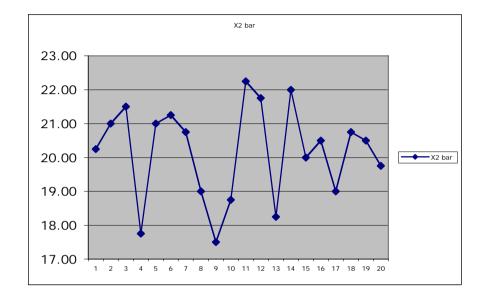
Mean Vector

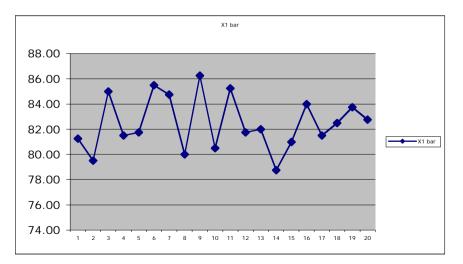
Covariance Matrix

82.46	7.51	-0.35
20.18	-0.35	3.29

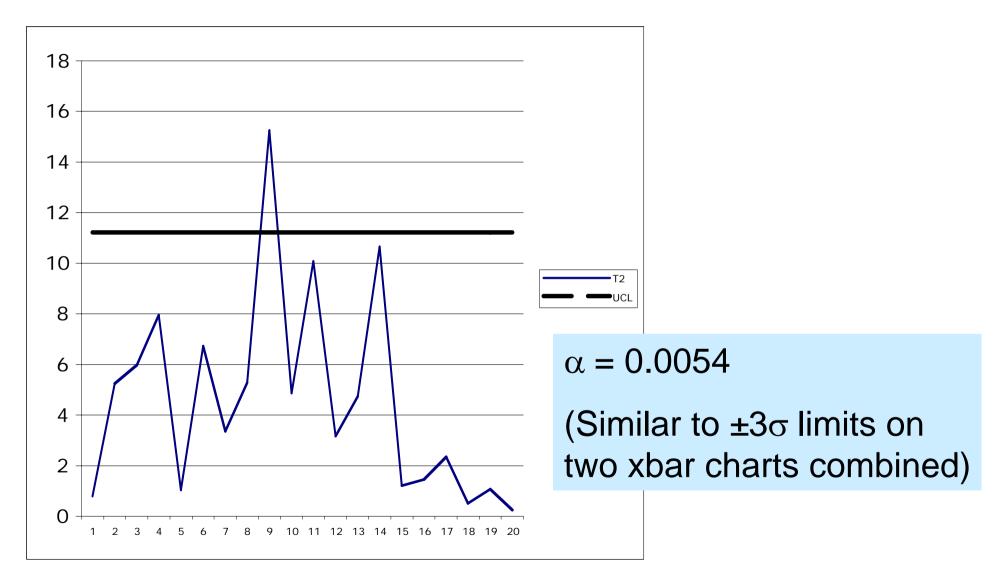
Cross Plot of Data



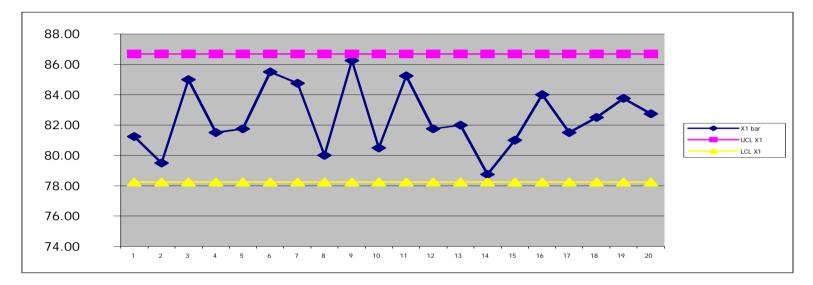


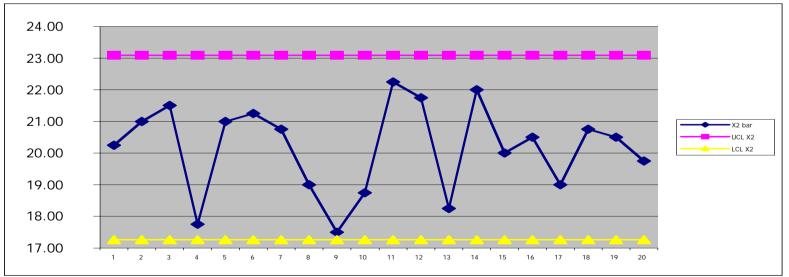


T² Chart



Individual Xbar Charts





Finding Cause of Alarms

- With only one variable to plot, which variable(s) caused an alarm?
- Montgomery
 - Compute T^2
 - Compute $T^{2}_{(i)}$ where the *i*th variable is not included
 - Define the relative contribution of each variable as

•
$$d_i = T^2 - T^2_{(i)}$$

Principal Component Analysis

- Some systems may have many measured variables p
 - Often, strong correlation among these variables: actual degrees of freedom are fewer
- Approach: reduce order of system to track only q << p variables
 - where each $z_1 \dots z_q$ is a linear combination of the measured $x_1 \dots x_p$ variables

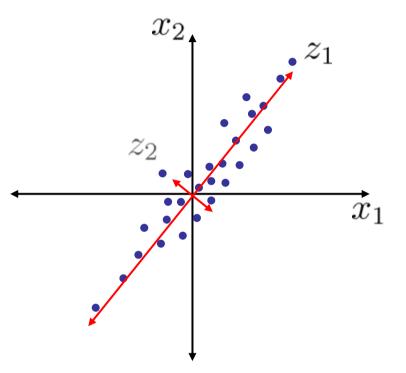
Principal Component Analysis

- x₁ and x₂ are highly correlated in the z₁ direction
- Can define new axes z_i in order of decreasing variance in the data
- The z_i are independent
- May choose to neglect dimensions with only small contributions to total variance ⇒ dimension reduction

$$z_1 = c_{11}x_1 + c_{12}x_2 + \dots + c_{1p}x_p$$

$$z_2 = c_{21}x_1 + c_{22}x_2 + \dots + c_{2p}x_p$$

:



Truncate at q < p

 $z_q = c_{q1}x_1 + c_{q2}x_2 + \dots + c_{qp}x_p$

Principal Component Analysis

- Finding the *c_{ij}* that define the principal components:
 - Find Σ covariance matrix for data x
 - Let eigenvalues of Σ be $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_p \ge 0$
 - Then constants c_{ij} are the elements of the ith eigenvector associated with eigenvalue λ_{is}
 - Let C be the matrix whose columns are the eigenvectors
 - Then $C^T \Sigma C = \Lambda$

where Λ is a $p \ge p$ diagonal matrix whose diagonals are the eigenvalues

- Can find C efficiently by singular value decomposition (SVD)
- The fraction of variability explained by the ith principal components is λ_i

$$\lambda_1 + \lambda_2 + \dots + \lambda_p$$

Extension to EWMA and CUSUM

• Define a vector EWMA

$$Z_i = r\underline{x}_i + (1+r)Z_{i-1}$$

• And for the control chart plot

where $T_i^2 = Z_i^T \Sigma_{Z_i}^{-1} Z_i$

$$\Sigma_{Z_i i} = \frac{r}{2 - r} [1 - (1 - r)^2] \Sigma$$

Conclusions

- Multivariate processes need multivariate statistical methods
- Complexity of approach mitigated by computer codes
- Requires understanding of underlying process to see if necessary
 - i.e. if there is correlation among the variables of interest

