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MAS160/510 Supplemental Notes

Basis functions and transforms


While it’s typical to concentrate on representing signals as weighted sums 
of complex exponential functions, here we’re going to examine the more 
general case of linear combinations of any basis functions. 

Let’s assume we have a set of N basis functions (where N may or may 
not be finite) φ0(t), φ1(t), ...φN−1(t). We will represent a function x(t): 

N�−1 

x(t) ≈ x̂(t) = aiφi(t). (1) 
i=0 

Note that for the moment we use the approximation symbol ≈ rather 
than the equal symbol because we haven’t spelled out the conditions under 
which the sum is exact rather than an approximation. 

For the moment, assume the basis functions φi are real-valued. They are 
said to be orthogonal over some interval (t1 ≤ t ≤ t2) if for all j 

t2 

φi(t)φj (t) = 
0, i =� j

. (2)
λj , i = jt1 

For complex-valued basis sets this complicates slightly to 

t2 0, i = j
φi(t)φ∗ 

j (t) = 
λj , 

�
. (3)

i = jt1 

If λj = 1 for all j, then the basis functions are said to be orthonormal. 
We can use the definition of orthogonality in (3) above to determine the 

transform coefficients. To compute ak for a particular basis function φk we 
multiply both sides of (1) by φ∗ 

k and integrate: � t2 
� t2 

�
N�−1 

� 

φk 
∗ x̂(t)dt = φk 

∗ aiφi(t) dt. (4) 
t1 t1 i=0 

Now we reverse the order of summation and integration: � t2 N�−1 � t2 

φk 
∗x̂(t)dt = ai φ∗ 

kφi(t)dt (5) 
t1 i=0 t1 

And by (3) we know that the right side is equal to akλk, since all other terms 
of the summation are zero. So the coefficient for the kth basis function is 
simply 

1 
� t2 

ak = 
λk t1 

φk 
∗x̂(t)dt. (6) 
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In the case where the basis functions are complex exponentials (which are 
orthonormal), this becomes 

1 
� t2 

ak = e−jkω0t x̂(t)dt. (7)
t2 − t1 t1 

A common measure of the degree to which the sum of weighted basis 
functions approximates the desired function x(t) is the mean squared error, 
or MSE: � � �2 

1 t2 N�−1 

MSE = x(t) − aiφi(t) dt. (8)
t2 − t1 t1 i=0 

Now if for all functions x(t) in some class the MSE goes to zero in the limit:


1 
� t2 

� 
N�−1 

�2 

lim x(t) − aiφi(t) dt = 0 (9)
N→∞ t2 − t1 t1 i=0 

we say that the series approximation converges in the mean to x(t), and that 
the set of {φi(t)} is complete for all the functions x(t) over that interval. 

Walsh Functions 

An interesting set of orthonormal basis functions is the Walsh functions. 
These are defined only on the range (0 ≤ t ≤ 1). 

There are a number of conventions for ordering the Walsh basis set. All 
give the same set of functions, but they generate them in differing orders. 
Here we will be using sequency order, where the index k gives the number 
of zero-crossings in the interval. 

The first sixteen Walsh functions are shown in sequency order in Figure 
1. Note that for even k the ends match in sign, while for odd k they are 
opposite. We can generate these by a recursion formula. First we define the 
zeroth-order basis function: 

φ0(t) = 1, 0 ≤ t ≤ 1 . (10) 

Now, if there isn’t a zero-crossing at 1/2 we can add one simply by inverting 
the second half of the interval. So for odd k, 

φk(t) = 
φk−1(t), 0 ≤ t < 2

1 
. (11)−φk−1(t), 1 < t ≤ 12 
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For even k, we can repeat a squeezed version of φk/2. But if k/2 is odd, we 
need to invert the second copy so the ends match up, or else there would be 
an extra, unwanted crossing in the middle: 

φk/2(2t), 0 ≤ t < 1 

φk(t) = 
(−1)k/2φk/2(2t − 1), 1 < t ≤ 1 

2 . (12) 
2 

Example: Represent the function 

x(t) = sin(πt) (13) 

with Walsh functions over the interval (0 ≤ t ≤ 1). Find the first four 
coefficients. 

To find the coefficient for each basis function φk(t) we solve (6): � 1 
ak = φk(t)sin(πt)dt. (14) 

0 

For k = 0, this is simply � 1 1 ��1 

a0 = (1) sin(πt)dt = − cos(πt)� = 0.637. (15) 
0 π � 

0 

Similarly, � 1/2 � 1 
a1 = (1) sin(πt)dt + (−1) sin(πt)dt = 0 (16) 

0 1/2 � 1/4 � 3/4 � 1 
a2 = (1) sin(πt)dt + (−1) sin(πt)dt + (1) sin(πt)dt = −0.264 

0 1/4 3/4 

(17)� 1/4 � 1/2 � 3/4 � 1 
a3 = (1) sin(πt)dt+ (−1) sin(πt)dt+ (1) sin(πt)dt+ (−1) sin(πt)dt = 0. 

0 1/4 1/2 3/4 

(18) 
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Figure 1: The first 16 Walsh basis functions on the interval from 0 to 1.


4



