Lecture 11 : Quantum Random Walks

Lecturer: Peter Shor
Scribe: Isaac Kim

1 Quantum Random Walks

- Exponential speedups on contrived problems \rightarrow Childs et al.
- $\sqrt{ }$ speedups on some applicable problems \rightarrow Ambainis's algorithm for element distinctness

2 Grover's Algorithm

- We have N elements
- One of the are 'marked' \rightarrow Find it!
* Classically : $O(N)$
* Quantum Mechanically : $O(\sqrt{N})$
- Strategy
- Use two operations
* $G|i\rangle=-|i\rangle$ where i is the marked one, $G|j\rangle=|j\rangle \forall i \neq j$
* $M:|\psi\rangle=\sum_{j=1}^{N} \frac{1}{\sqrt{N}}|j\rangle \rightarrow|\psi\rangle(M=2|\psi\rangle\langle\psi|-I)$
- Start in $|\psi\rangle$
- Perform $(M G)^{t}$ for $t=\frac{\pi}{4} \sqrt{N}$
- Why does it work?
- The state stays in a subspace generated by $|\psi\rangle,|i\rangle$.

3 Generalization

- Suppose you have a $\sqrt{N} \times \sqrt{N}$ grid.
- We will use following operations

1. Move to adjacent vertex
2. Ask "Is this vertex marked?"

- For $\sqrt{N} \times \sqrt{N}$ grid, there is $O(\sqrt{N} \log N)$ quantum algorithm.
- For $\operatorname{dim} \geq 3$ grids, $O(\sqrt{N})$ quantum algorithm exists.

4 Element Distinctness

- We have function $f[N] \rightarrow[M]$
$-\exists i, j \quad$ s.t. $\quad f(i)=f(j), i \neq j$
- Assume i and j are unique.
- Classically : Best way is to sort the elements, with time complexity $O(N \log N)$, $O(N)$ queries.
- Buhram $O\left(N^{3 / 4}\right)$ queries
- Ambainis $O\left(N^{2 / 3}\right)$ queries \rightarrow Proven to be the lower bound (Shi)

4.1 Several Definitions and Generic Settings

1. Define graph

- S : Set of r elements
- S^{\prime} : Set of r+1 elements (if $S \subseteq S^{\prime}$)

2. Mark a set if $f(i)=f(j), i, j \in S$
3. Start in a superposition of all sets. Perform walk, search until you find a marked set.

- Probability of a set being marked is $O\left(\frac{r^{2}}{N^{2}}\right)$.
- Each takes time r to check a set. $\rightarrow \frac{N^{2}}{r^{2}} \log r$

4. Keep $f(i) \forall i \in S$

- $A:|s\rangle|y\rangle \rightarrow|s\rangle\left(-1+\frac{2}{N-r}|y\rangle+\frac{2}{N-r} \sum_{y^{\prime} \in S, y^{\prime} \neq y}\left|y^{\prime}\right\rangle\right)$
- $B:|s\rangle|y\rangle \rightarrow|s\rangle\left(-1+\frac{2}{r+1}\right)|y\rangle+\frac{2}{r+1} \sum_{y^{\prime} \in S, y^{\prime} \neq y, S^{\prime}=(S-\{y\}) \cup\left\{y^{\prime}\right\}}\left|s^{\prime}\right\rangle\left|y^{\prime}\right\rangle$

4.2 Algorithm

1. Start in a superposition $\frac{1}{\sqrt{\binom{N}{r}(N-r)}} \sum_{|S|=r, y \notin S}|S\rangle|y\rangle$

- Number of elements in $S: r=O\left(N^{2 / 3}\right)$ (Why? \rightarrow Shown in the last part)

2. Query elements $f(i), i \in S \cup\{y\}$. Get $\sum|s\rangle|y\rangle \otimes_{i \in S} f(i) \times f(y)$
3. Repeat $\frac{N}{r}$ times

- Apply phase (-1) to marked states.
- Apply $(A B)^{t}, t=O(\sqrt{r})$
- Measure state. Find $f(i)=f(j)$ with probability $\epsilon>0$.

4.3 Proof

The walk stays in a 5 -dim subspace. Since

- $\frac{1}{\binom{N-2}{r}(N-2-r)} \sum|S, y\rangle: S \cup y$ contains no duplicated elements.
- $\frac{1}{\binom{N-2}{r}(N-2-r)} \sum|S, y\rangle: S$ contains 1, y not duplicated
- $\frac{1}{\binom{N-2}{r}(N-2-r)} \sum|S, y\rangle: S$ contains 2, y not duplicated
- $\frac{1}{\binom{N-2}{r}(N-2-r)} \sum|S, y\rangle: S$ contains 0, y duplicated
- $\frac{1}{\binom{N-2}{r}(N-2-r)} \sum|S, y\rangle: S$ contains 1, y duplicated

Lemma : Suppose U_{1}, U_{2} are unitaries on some $O(1)$-dimensional subspace, where U_{1} is a reflection.

$$
\begin{gathered}
U_{1}\left|\varphi_{\text {good }}\right\rangle=-\left|\varphi_{\text {good }}\right\rangle \\
U_{1}|\varphi\rangle=|\varphi\rangle\left(\left\langle\psi \mid \varphi_{\text {good }}\right\rangle=0\right)
\end{gathered}
$$

U_{2} is real and $U_{2}\left|\varphi_{\text {start }}\right\rangle=\left|\varphi_{\text {start }}\right\rangle$. Other eigenvalues $e^{i \theta}$, $e^{-i \theta}$, where $\epsilon<\theta<2 \pi-\epsilon$. Let $\left\langle\varphi_{\text {good }} \mid \varphi_{\text {start }}\right\rangle=\alpha$. Then, $\exists t, t=O\left(\frac{1}{\alpha}\right)$, so after t, iterations

$$
\left.\left|\left\langle\varphi_{\text {good }}\right|\left(U_{1} U_{2}\right)^{t}\right| \varphi_{\text {start }}\right\rangle \mid \leq \delta
$$

where $\delta>0$ depends on ϵ, not α.
$B A$ has eigenvalue $O\left(\frac{1}{\sqrt{r}}\right.$ and for $e^{i \theta}, \theta=O\left(\frac{1}{\sqrt{r}}\right)$. Therefore, $(B A)^{\sqrt{r}}$ has eigenvalue $e^{i \theta}$, where $\theta>\epsilon>0$.

Now we need to iterate $O\left(\frac{1}{\sqrt{\alpha}}\right.$ times, where $\alpha=\left\langle\varphi_{\text {good }} \mid \varphi_{\text {start }}\right\rangle$.

- $\varphi_{\text {start }}$: Superposition of all $|S\rangle$
- $\varphi_{\text {good }}$: Superposition of all marked $|S\rangle$

Since $\mid\left\langle\varphi_{\text {start }} \mid \varphi_{\text {good }}\right\rangle=$ portions of marked $|S\rangle_{\mathrm{S}}$ and $\alpha=\sqrt{r^{2} / N^{2}}=\frac{r}{N}$, total time is

$$
O\left(r+\frac{N}{r} \sqrt{r}\right)=O\left(r+\frac{N}{\sqrt{r}}\right)
$$

which is minimized by taking $r=O\left(N^{2 / 3}\right) . \rightarrow$ Running time becomes $O\left(N^{2 / 3}\right)$.

