22.02 - Introduction to Applied Nuclear Physics
 Problem set \# 5
 Issued on Monday March. 26, 2012. Due on Wednesday April 4, 2012

Problem 1: Coupled representation (Solved Problem)

A nucleus consists of two spin $1 / 2$ nucleons, $s_{1}=\frac{1}{2}$, and, $s_{2}=\frac{1}{2}$. Both nucleons are in the orbital angular momentum $l=0$.
a) How many spin states are there for each nucleon?

Solution:

Each nucleon can be in two states $\left|\frac{1}{2},+\frac{1}{2}\right\rangle=|\uparrow\rangle$ and $\left|\frac{1}{2},-\frac{1}{2}\right\rangle=|\downarrow\rangle$, since $-s \leq m_{s} \leq s$.
b) How many spin states does the system have (based on the uncoupled representation)?

Solution:

In the uncoupled representation good quantum numbers correspond to the eigenvalues of the operators $\hat{S}_{1}^{2}, \hat{S}_{2}^{2}, \hat{S}_{1, z}, \hat{S}_{2, z}$. Since $s_{1,2}=\frac{1}{2}$ while m_{s} for each particle can take two values, we can list four possible states: $|\uparrow \uparrow\rangle,|\uparrow \downarrow\rangle,|\downarrow \uparrow\rangle,|\downarrow \downarrow\rangle$.
c) Which quantum numbers would you use to label the coupled representation states?

Solution:

In the coupled representation a complete set of commuting observables is given by $S^{2} S_{z}, S_{1}^{2}$ and S_{2}^{2}, thus good quantum numbers are s, m_{s}, s_{1}, s_{2} (in this case, we can omit s_{1} and s_{2} since they're always $\frac{1}{2}$ and write a state as $\left|s, m_{s}\right\rangle$.)

Problem 2: Commutation of angular momentum

a) (Solved question) Prove the commutation relation,

$$
\left[\widehat{L}_{1}^{2}, \widehat{L}^{2}\right]=0
$$

and

$$
\left[\widehat{L}_{1, z}, \widehat{L}^{2}\right] \neq 0
$$

where $\hat{\vec{L}}=\hat{\vec{L}}_{1}+\hat{\vec{L}}_{2}$.

Solution:

From the definition of $\hat{\vec{L}}$, we have that the norm of the total angular momentum is $\hat{L}^{2}=\hat{L}_{1}^{2}+\hat{L}_{2}^{2}+2 \hat{\vec{L}}_{1} \cdot \hat{\vec{L}}_{2}$. Also, operators acting on different particles always commute, e.g., $\left[\hat{L}_{1}^{2}, \hat{L}_{2}^{2}\right]=0,\left[\hat{L}_{1, x}, \hat{L}_{2, y}\right]=0$, since they are functions of different variables.
Then the first commutator is very easily evaluated:

$$
\left[\widehat{L}_{1}^{2}, \widehat{L}^{2}\right]=\left[\widehat{L}_{1}^{2}, \widehat{L}_{1}^{2}+2 \hat{\vec{L}}_{1} \cdot \hat{\vec{L}}_{2}\right]=0
$$

For the second commutator, we use the fact that $\left[\hat{L}^{2}, \hat{L}_{z}\right]=0$ to simplify the result:

$$
\begin{gathered}
{\left[\widehat{L}_{1, z}, \widehat{L}^{2}\right]=\left[\widehat{L}_{1, z}, \hat{L}_{1}^{2}+\hat{L}_{2}^{2}+2 \hat{\vec{L}}_{1} \cdot \hat{\vec{L}}_{2}\right]=\left[\widehat{L}_{1, z}, \hat{L}_{1}^{2}+2 \hat{\vec{L}}_{1} \cdot \hat{\vec{L}}_{2}\right]} \\
=\left[\widehat{L}_{1, z}, 2 \hat{\vec{L}}_{1} \cdot \hat{\vec{L}}_{2}\right]=2\left[\widehat{L}_{1, z}, \hat{L}_{1, x} \hat{L}_{2 x}+\hat{L}_{1, y} \hat{L}_{2 y}+\hat{L}_{1, z} \hat{L}_{2 z}\right]=2\left[\widehat{L}_{1, z}, \hat{L}_{1, x} \hat{L}_{2 x}\right]+2\left[\widehat{L}_{1, z}, \hat{L}_{1, y} \hat{L}_{2 y}\right]
\end{gathered}
$$

We finally also use the formula $[A, B C]=B[A, C]+[A, B] C$ to find the final result:

$$
\left[\widehat{L}_{1, z}, \widehat{L}^{2}\right]=2\left[\widehat{L}_{1, z}, \hat{L}_{1, x}\right] \hat{L}_{2 x}+2\left[\widehat{L}_{1, z}, \hat{L}_{1, y}\right] \hat{L}_{2 y}=2 i \hbar\left(\hat{L}_{1 y} \hat{L}_{2 x}-\hat{L}_{1 x} \hat{L}_{2 y}\right)
$$

b) Prove the commutation relation,

$$
\left[\widehat{L}_{x}, \widehat{L}^{2}\right]=0
$$

and discuss why the same relation holds for the other, (y, z), components of the angular momentum.

Problem 3: Angular momentum operator

Suppose a system is in the angular momentum state $|7,4\rangle$, with $l=7$ and $m_{x}=4$.
a) What are the possible measurement results for the x component of angular momentum?
b) What are the possible measurement values for the y component of the angular momentum?
c) Given the uncertainty relationship for angular momentum, $\Delta L_{a} \Delta L_{b} \leq \frac{\hbar}{2}\left\langle L_{c}\right\rangle$ (with a, b, c permutations of x, y, z), what are $\left\langle L_{y}\right\rangle$ and $\left\langle L_{z}\right\rangle$ for the state $|7,4\rangle$? Is this consistent with the result you found above?
d) What is $\Delta L_{y}=\sqrt{\left\langle L_{y}^{2}\right\rangle-\left\langle L_{y}\right\rangle^{2}}$ for the state $|7,4\rangle$ if we assume $\Delta L_{y}=\Delta L_{z}$?

Problem 4: Ladder operators

Consider a system in the state $\left|l, m_{z}\right\rangle$, that is, in an eigenstate of the L_{z} angular momentum with eigenvalue $\hbar m_{z}$ and with total angular momentum quantum number is l [i.e. the state is also an eigenstate of L^{2} with eigenvalue $\left.\hbar^{2} l(l+1)\right]$.
a) Consider the Ladder operators $L_{+}=L_{x}+i L_{y}$ and $L_{-}=L_{x}-i L_{y}$. What is $L_{+}\left|l, m_{z}\right\rangle$? (see lecture notes and Griffiths).
What is then the expectation value of L_{+}and L_{-}for the state considered $\left(\left|l, m_{z}\right\rangle\right)$?
b) Using the result you found above, prove that the result you found in Problem 3:c (the value of $\left\langle L_{x}\right\rangle$) is in general true for any eigenstate of L_{z}, L^{2}.

Problem 5: Sum of angular momenta

The electron in an hydrogen atom is in the state $\psi(r, \vartheta, \varphi)=R_{21}(r)\left(\frac{1}{\sqrt{3}} Y_{1}^{0}(\vartheta, \varphi)|\downarrow\rangle+\sqrt{\frac{2}{3}} Y_{1}^{-1}(\vartheta, \varphi)|\uparrow\rangle\right)$, where $|\uparrow\rangle=\left|m_{s}=\frac{1}{2}\right\rangle$ and $|\downarrow\rangle=\left|m_{s}=-\frac{1}{2}\right\rangle$ are eigenstates of the intrinsic spin with eigenvalues $+\frac{\hbar}{2}$ and $-\frac{\hbar}{2}$ respectively, $Y_{l}^{m}(\vartheta, \varphi)=|l, m\rangle$ are eigenfunctions of L^{2} and L_{z}, with quantum numbers l and m and $R_{21}(r)$ is the radial part of the wavefunction .
a) (Solved question) Using the sum rules, find the possible values of the quantum number j (which sets the eigenvalue of \hat{J}^{2} to $\hbar^{2} j(j+1)$), where $\hat{\vec{J}}=\hat{\vec{L}}+\hat{\vec{S}}$ is the total angular momentum.

Solution:

The sum rules state that in the addition of two angular momentum operators, we have that $\left|l_{1}-l_{2}\right| \leq l \leq l_{1}+l_{2}$. In this case we have:

$$
l-s \leq j \leq l+s \quad \rightarrow \quad 1-\frac{1}{2} \leq j \leq 1+\frac{1}{2} \quad \rightarrow \quad \frac{1}{2} \leq j \leq \frac{3}{2}
$$

Since the angular momentum quantum number can only increase by integers between the minimum and the maximum value, we have that there are only two possible values for $j, j=\frac{1}{2}$ and $j=\frac{3}{2}$.
b) The wavefunction

$$
\psi(r, \vartheta, \varphi)=R_{21}(r)\left(\frac{1}{\sqrt{3}} Y_{1}^{0}(\vartheta, \varphi)|\downarrow\rangle+\sqrt{\frac{2}{3}} Y_{1}^{-1}(\vartheta, \varphi)|\uparrow\rangle\right)
$$

can also be written as:

$$
\psi(r, \vartheta, \varphi)=R_{21}(r)\left(\frac{2}{3} \sqrt{2}\left|j=\frac{3}{2}, m_{j}=-\frac{1}{2}, s=\frac{1}{2}, l=1\right\rangle-\frac{1}{3}\left|j=\frac{1}{2}, m_{j}=-\frac{1}{2}, s=\frac{1}{2}, l=1\right\rangle\right)
$$

Which one of these two expression is the coupled representation? Is the second expression consistent with what found in the previous question? How would you find the second expression for ψ from the first one?
c) What are the possible outcomes and probabilities of a measurement of $L^{2}, L_{z}, S_{z}, J^{2}$ and J_{z} ?
d) (Solved question) Two p electrons $\left(l_{1}=l_{2}=1\right)$ are in a state with angular momentum $\left|l, m, l_{1}, l_{2}\right\rangle=|2,-1,1,1\rangle$. What are the possible values of $m_{1 z}$ and $m_{2 z}$?

Solution:

From the state $|2,-1,1,1\rangle$ we know that $l_{1}=1$ and $l_{2}=1$. Thus $m_{1 z}=\{-1,0,1\}$ and $m_{2 z}=\{-1,0,1\}$. The values of $m_{1 z}$ and $m_{2 z}$ must add up to give $m=-1$. We can obtain this result in two ways: either $m_{1 z}=-1$ and $m_{2 z}=0$ or vice-versa, $m_{1 z}=0$ and $m_{2 z}=-1$. Thus notice that the eigenvalues of $L_{1 z}$ and $L_{2 z}$ are not known from the coupled representation state: indeed these two operators do not commute with the total angular momentum L^{2} so in general we cannot know the eigenvalue of L^{2} and of $L_{1 z}$ and $L_{2 z}$ with certainty at the same time.
e) Two p electrons $\left(l_{1}=l_{2}=1\right)$ are in a state with angular momentum $\left|l, m, l_{1}, l_{2}\right\rangle=|2,-2,1,1\rangle$. What are the possible outcomes of a measurement of L_{z}^{1} ? What are the probabilities of each of these outcomes? What is the joint probability of measuring for both electrons $L_{z}^{1}=L_{z}^{2}=-\hbar$?

MIT OpenCourseWare
http://ocw.mit.edu

22.02 Introduction to Applied Nuclear Physics

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

