22.058, Principles of Medical Imaging

Fall 2002
Homework \#4

1. Write a complete system description for the instrument function of a planar x-ray imager (assume scanned fan beam). Include:

- Finite size source
- Heal effect on source intensity and energy spectrum
- Oblique angle effects
- Depth dependent magnification
- Quantum efficiency and PSF for the scintillator/photographic plate.
$I(x, y)=\frac{1}{4 \pi d^{2}} \iint S\left(x^{\prime}, y^{\prime}\right) e^{-\int \mu_{0}\left(\frac{x-m x^{\prime}}{M}, \frac{y-m y^{\prime}}{M}, z\right) d z} d x^{\prime} d y^{\prime}$
where
$d \equiv$ source- to- detector distance
$S\left(x^{\prime}, y^{\prime}\right) \equiv$ source
$\mu_{o} \equiv$ linear attenuation coefficient
$M=d / z$
$m=-(d-z) / z$
- To include energy effects, make:
i. $\quad S\left(x^{\prime}, y^{\prime}\right) \Rightarrow S\left(x^{\prime}, y^{\prime}, E\right)$
ii. is a function of E
iii. add integration of E to both integrals
- Quantum efficiency degrades I by η, a uniform effect
- $I\left(x_{D}, y_{D}\right)=I(x, y) \otimes P S F_{\text {detector }}$

2. For a cylindrical object (long axis perpendicular to the beam) calculate the profile of X -ray intensity in a fan beam geometry, assuming that the beam is mono-energetic.

QuickTime ${ }^{\text {TM }}$ and a
None decompressor are needed to see this picture.

$$
\begin{aligned}
& \mu(x, z)=\left\{\begin{array}{l}
1, \text { if }(z-a)^{2}+x^{2} \leq r \\
0, \text { otherwise }
\end{array}\right. \\
& I(x)=\frac{1}{4 \pi d^{2}} \int e^{-\int \mu\left(\frac{x-m x^{\prime}}{M}, z\right) d z} d x^{\prime} \\
& M=\frac{d}{z} \text { and } m=\frac{-(d-z)}{z} \\
& \therefore \frac{x-m x^{\prime}}{M}=\frac{z\left(x+\left(\frac{d-z}{z}\right) x^{\prime}\right)}{d}=\frac{z x}{d}+x^{\prime}-\frac{z}{d} x^{\prime} \\
& I(x)=\frac{1}{4 \pi d^{2}} \int e^{-\int \mu\left(\frac{z}{d}\left(x-x^{\prime}\right)+x^{\prime}\right) d z} d x^{\prime}
\end{aligned}
$$

3. Calculate the effect of beam hardening on the CT image of a disk.

The center is less attenuating than it should be, therefore the image is:

QuickTime ${ }^{\text {TM }}$ and a
 None decompressor are needed to see this picture.

4. For the following sample, show (a) the projections and (b) the filtered projections.
5. A sinusoidally modulated x-ray image is recorded by a one-sided screen film system as shown below. Find the recorded S / N as a function of frequency, where the signal is the sinusoidal component and the noise is the average background. On average the screen produces 1 photons per x -ray photon, t of which are transmitted to the emulsion where r is recorded. The pixel area of the film is much smaller than the system resolution. Neglect any critical angle effect between the screen and the film.

X-ray photon number as a function of $\mathrm{z}=\mathrm{n}_{0}(1+\cos (2 \pi \mathrm{kz}))$.

QuickTime ${ }^{\text {TM }}$ and a
 None decompressor are needed to see this picture.

$$
P S F=\int_{0}^{d} e^{-\mu x} \frac{M}{r^{2}} d x
$$

or in $1-\mathrm{D}$

$$
P S F=\int_{0}^{d} e^{-\mu x} \frac{M}{z^{2}} d x
$$

6. Write a program that calculates the Radon transform of an object function, then Fourier filters the projects, and finally reconstructs an image via back projection.

See Appendix A.

APPENDIX A: Mathematica File (Projection2.nb)

Projection reconstruction and the Radon Transform 2

The Radon Transform

The forward Radon transform is to convert a 2-D object into a set of projects within the plane.

```
Radon[object_, n_, fov_] :=
Table
[
    Integrate
    [
        object DiracDelta
        [
            m - x Cos[\[Theta]] - y Sin[\[Theta]]
            ],
            {x, -fov, fov},
            {y, -fov, fov}
    ],
    {m, -2 fov/(n - 1),
    +2 fov/(n - 1), 2 fov/n},
    {\[Theta], 0, Pi, Pi/(n - 1)}
];
```

The double integral on the previous page is very slow to evaluate, and so we reduce it to a line integral along the line defined by the delta function.

```
Radon2[object_, x_, y_, n_, fov_] :=
Table
[
    Nintegrate
    [
        object[x, y],
        {yp, -fov, fov},
        {PrecisionGoal -> 4}
    ],
        {xp, -fov, fov, 2*fov/(n - 1)},
        {\[Theta], 0, Pi, Pi/(n - 1)}
] // N
```


Define a simple test object

```
object1[x_, y_] := If [x^2 + y^2 < 256, 1, 10^(-6)] // N;
Plot3D
[
    object1[x, y],
    {x, -64, 64},
    {y, -64, 64},
    {PlotRange -> All, PlotPoints }-> {64, 64}
]
```



```
Robject1 =
```

Robject1 =
Radon2
[
object1,

 xp Cos[\[Theta]] - yp Sin[\[Theta]],
 yp Cos[\[Theta]] + xp Sin[\[Theta]], 64, 64
];
ListPlot3D[Robject1]

```


\section*{Filtered Back Projection}
```

Fdata = Fourier[Robject1];
ListPlot3D[Re[Fdata], {PlotRange -> All}]

```

```

Filt =
Table
[
If
x <= 32 \&\& y <= 32,
Sqrt[x^2 + y^2],
If
[
x <= 32 \&\& y > 32,
Sqrt[x^2 + (65 - y)^2],
If
[
x > 32 \&\& y <= 32,
Sqrt[(65 - x)^2 + y^2],
If
x > 32 \&\& y > 32,
Sqrt[(65 - x)^2 + (65 - y)^2]
]
]
]
l',
{y, 0, 63}
];

```


FiltFdata = Fdata*Filt;

ListPlot3D[Re[FiltFdata], \{PlotRange -> All\}]


Filtdata = Fourier[FiltFdata];

ListPlot3D[Re[Filtdata], \{PlotRange -> All\}]


\section*{Back Projection of Filtered}
```

Bflimited[x_, Y_, n__] :=
If
[
x^2 + y^2 > 32^2,
0,
1/(2 Pi)
Sum
[
Transpose
[
Re[Filtdata]
]
[[m*64 + 1]]
[[Floor[x Cos[m*Pi] + y Sin[m Pi]] + 33]],
{m, 0, 1 - 1/n, 1/n}
]
];
Plot3D
[
BFlimited[x, y, 4],
{x, -32, 32},
{y, -32, 32},
{PlotRange -> All, PlotPoints }->>{64,64}
]

```

```

DensityPlot
[
BFlimited[x, y, 4],
{x, -32, 32},
{y, -32, 32},
{PlotRange -> All, PlotPoints }->>{64, 64}, Mesh -> False
]

```

```

Image =
Table
[
BFlimited[x, Y, 64],
{x, -32, 32},
{y, -32, 32}
];
ListPlot3D[Image, {PlotRange -> All}]

```


ListDensityPlot[Image, \{PlotRange -> \{0, 500\}, Mesh -> False\}]
```

