Operational Reactor Safety 22.091/22.903

Professor Andrew C. Kadak Professor of the Practice

Spring 2008

Overview

Massachusetts Institute of Technology Department of Nuclear Science & Engineering

Course Learning Objectives

The course will focus on understanding the complete nuclear reactor system including the balance of plant, support systems and resulting interdependencies affecting the overall safety of the plant and regulatory oversight.

- Reactor Physics
- Power Conversion
- Safety Functions and Systems
- Risk Assessment
- Simulator Exercises
- Technical Specifications
- Safety Culture

Massachusetts Institute of Technology Department of Nuclear Science & Engineering

Course Overview

Preliminary Syllabus

Operational Reactor Safety Course

Lecture #	t Topic				
1	Overview, Goals of Course - Review of Reactor Types				
2	Review of Reactor Physics				
3	Review of Reactor Kinetics and Control				
4	Review of Feedback Effects and Depletion				
5	MIT Reactor Physics Exercise - power change				
6	Reactor Energy Removal				
7	Power Conversion Systems - Rankine cycle				
8	Power Conversion Systems - Brayton Cycle				
9	Safety Systems and Functions				
10	Reactor Safety - Safety Analysis Report Accident and Transients				
11	Reactor Safety - Continued				
1117 .	Massachusetts Institute of Technology Prof. Andrew C. Kadak, 2008				

Department of Nuclear Science & Engineering Page 3

Course Overview Cont'd

- 12 Probabilistic Safety Assessment
- 13 Integration of Safety Analysis into Operational Requirements (Technical Specifications)
- 14 Licensing and Design Bases
- 15 Simulator Exercise Seabrook PWR LOCA, Steam line break, etc
- 16 Simulator Exercise Pilgrim BWR LOCA, steam line break, rod repositioning
- 17 Significant Nuclear Accidents Three Mile Island
- 18 Significant Nuclear Accidents Chernobyl
- 19 Importance of Precursors Davis Besse Events and others
- 20 Role of Safety Culture
- 21 New Safety Challenges Terrorism, Spent Fuel Management, etc.
- 22 Advanced Reactor Designs EPR, ABWR, ESBWR, AP-1000, Pebble Bed Reactor

Grading Components

Homework	15%
Quiz #1	20%
Quiz #2	20%
Quiz # 3	20%

Final Exam 25%

Late Homework will receive up to 1/2 full credit

Lecture 1: Overview of Nuclear Reactors

Learning Objectives:

Gain broad understanding of PWRs, BWRs, HTGRs

Nuclear Fuel Cycle

Massachusetts Institute of Technology Department of Nuclear Science & Engineering

Prof. Andrew C. Kadak, 2008

Page 7

Making Nuclear Fuel

After uranium ore is mined, it must pass through several processing steps before it can be used in a power plant. The ore is milled to remove chemical impurities. Then, the fissionable uranium isotope (U235) is concentrated in a process called enrichment. The enriched uranium in powder form is pressed into small pellets and sealed into metal tubes. The tubes are bundled into fuel assemblies and shipped to a nuclear plant and put into the reactor.

Шiг **Massachusetts Institute of Technology Department of Nuclear Science & Engineering**

Prof. Andrew C. Kadak, 2008 Page 8

Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

15

Calvert Cliffs - MD

Diablo Canyon

Prairie Island - MN

Indian Point - NY

Prairie Island site - MN

Robinson - SC

Surry - VA

Massachusetts Institute of Technology Department of Nuclear Science & Engineering

Prof. Andrew C. Kadak, 2008

Page 9

Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Objectives to Make Electricity

- 1. Make heat
- 2. Remove heat using a fluid or gas
- 3. Pass the fluid or gas through a turbine
- Turning an electric generator to make Electricity

Removing Heat

- Fluid (water or liquid metal) or gas is pumped through the core to remove heat generated in fuel due to fissioning.
- Pumps needed to circulate coolant
- Transfer directly to turbines or to steam generators (PWRs)
- Condense steam to recirculate back to the core to provide cooling

Basics of Power Conversion

Massachusetts Institute of Technology Department of Nuclear Science & Engineering

Prof. Andrew C. Kadak, 2008 Page 12

Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Power Reactor Types

- Pressurized Water Reactor
- Boiling Water Reactor
- Natural Uranium Heavy Water Cooled Reactor (CANDU)
- RBMK Russian Chernobyl Like Water Cooled
- Fast Reactors Liquid Metal (Sodium)
- Gas Reactors (CO₂ or Helium Cooled)
- Molten Salt Cooled Reactors (Organic Coolants)

Making Heat

- Use the fissioning of uranium atoms (or plutonium) to release 200 Million electron volts per fission.
- Need to enrich natural uranium to 3 to 4 weight percent U-235 (from 0.7% found in nature.
- Need to fabricate uranium into pellets clad in zironium fuel assemblies which are placed into the reactor core.

Fission Event

Release of excess neutrons creates the potential for chain reaction.

The energy (mostly as kinetic energy of the fission fragments) is substantial.

 Massachusetts Institute of Technology
 Prof. Andrew C. Kadak, 2008

 Department of Nuclear Science & Engineering
 Page 15

 Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Energy Release

1 fission = 200 Mev

1 gram U-235 fissioned = 8.6x10¹⁰ joules = 24,000 kwh

(Equivalent to lighting a small city for overnight)

24,000 kwh requires 3.2 tons of coal

12.6 bbls oil

Energy Density (energy / mass)

Energy Density of U-235 = 28,000 times energy density of coal

Massachusetts Institute of TechnologyPDepartment of Nuclear Science & EngineeringP

Pellets Inserting pellets into pins **Fuel Pins Fuel Assembly**

Massachusetts Institute of Technology Department of Nuclear Science & Engineering

Prof. Andrew C. Kadak, 2008 Page 17

Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Creating the Reactor Core

- Need to model uranium fuel
- Reactor internals
- Coolant flow
- Apply Reactor Physics
- Develop neutron flux solutions
- Yields power distributions
- Creates heat that must be removed

Prof. Andrew C. Kadak, 2008 Page 18

Massachusetts Institute of Technology Department of Nuclear Science & Engineering

Prof. Andrew C. Kadak, 2008 Page 19

Important Factors in Design

- Reactor Core Design
 - Fuel Design
 - Reactor Physics Core Power Distribution
 - Reactivity Control Ability to shutdown plant
 - Safety Analysis no fuel failure or melting
- Core Heat Removal
 - Coolant Heat Transfer
 - Safety Systems (Emergency)
- Confinement of Radioactivity
- Electricity Production

Department of Nuclear Science & Engineering Page 21

Massachusetts Institute of Technology Department of Nuclear Science & Engineering

Prof. Andrew C. Kadak, 2008 Page 22

ABWR Control Room

Massachusetts Institute of Technology

Prof. Andrew C. Kadak, 2008 Page 23

Department of Nuclear Science & Engineering

Boiling Water Reactors

Massachusetts Institute of Technology Department of Nuclear Science & Engineering

BWR Power Cycle

Massachusetts Institute of Technology

Prof. Andrew C. Kadak, 2008 Page 25

Department of Nuclear Science & Engineering

Schematic Arrangement of a BWR

Plir **Massachusetts Institute of Technology Department of Nuclear Science & Engineering**

Prof. Andrew C. Kadak, 2008

Page 26

Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

A.V. Nero, Jr., A Guidebook to Nuclear Reactors, 1979

BWR Fuel Assembly

FIGURE 1-6 Fuel assembly for a representative boiling-water reactor. (Adapted courtesy of General Electric Company.)

Massachusetts Institute of Technology Department of Nuclear Science & Engineering

Prof. Andrew C. Kadak, 2008

Engineering Page 27

BWR Core Lattice

Prof. Andrew C. Kadak, 2008

Page 28

Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

"BWR/6: General Description of a BWR," GE, 1980.

Pilgrim Nuclear Plant

Massachusetts Institute of Technology Department of Nuclear Science & Engineering

Prof. Andrew C. Kadak, 2008 Page 29

Pressurized Water Reactors

Massachusetts Institute of Technology Department of Nuclear Science & Engineering

Schematic of Pressurized Water Reactor

Massachusetts Institute of Technology Department of Nuclear Science & Engineering

Prof. Andrew C. Kadak, 2008 Page 31

Pressurized Water Reactor Schematic

Massachusetts Institute of Technology Department of Nuclear Science & Engineering

Prof. Andrew C. Kadak, 2008 Page 32

Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Typical Four-Loop Reactor Core

Parameters

Total heat output	~3250-3411 MWT		
Heat generated in fuel	97.4%		
Nominal system pressure	2250 psia		
Total coolant flow rate	$\sim 138.4 \text{ x } 10^{6} \text{ lb/hr}$		
Coolant Temperature			
Nominal inlet	557.5°F		
Average rise in vessel	61.0°F		
Outlet from vessel	618.5°F		
Equivalent core diameter	11.06 ft		
Core length, between fuel ends	12.0 ft		
Fuel weight, uranium (first core)	86,270 kg		
Number of fuel assemblies	193		

Massachusetts Institute of Technology Department of Nuclear Science & Engineering

Prof. Andrew C. Kadak, 2008 Page 33

Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Masche, G., Systems Summary: W PWR NPP, 1971

PWR Fuel Assembly

Massachusetts Institute of Technology

Department of Nuclear Science & Engineering

Prof. Andrew C. Kadak, 2008 Page 34

The Byron plant (photo courtesy Commonwealth Edison) is typical of a large US Pressurized Water Reactor plant. Each reactor is 1105 MWe and they came into commercial service in 1985 and 1987 respectively.

Gas Cooled Reactors

Fort St. Vrain - 330 MWe

Massachusetts Institute of Technology Department of Nuclear Science & Engineering

Power Cycle - Brayton

Massachusetts Institute of Technology

Prof. Andrew C. Kadak, 2008

Department of Nuclear Science & Engineering Page 37

Ceramic Fuel

Pyrolytic Carbon Silicon Carbide Porous Carbon Buffer Uranium Oxycarbide

TRISO Coated fuel particles (left) are formed into fuel rods (center) and inserted into graphite fuel elements (right).

Department of Nuclear Science & Engineering

Page 38

Modular Pebble Bed Reactor

Thermal Power	250 MW
Core Height	10.0 m
Core Diameter	3.5 m
Fuel	UO ₂
Number of Fuel Pebbles	360,000
Microspheres/Fuel Pebble	11,000
Fuel Pebble Diameter	60 mm
Microsphere Diameter	~ 1mm
Coolant	Helium

Massachusetts Institute of Technology Department of Nuclear Science & Engineering

Prof. Andrew C. Kadak, 2008 Page 39

TABLE 1-2 Characteristics of the Fuel Cores of Six Reference Reactor Types[†]

Component	Boiling-water reactor [BWR]	Pressure-tube Graphite reactor [PTGR]	Pressurized-water reactor [PWR]	Pressurized-heavy- water reactor [PHWR]	High-temperature gas-cooled reactor [HTGR] [‡]	Liquid-metal fast-breeder reactor [LMFBR]
Fuel particle(s)						
Geometry	Short, cylindrical pellet	Short, cylindrical pellet	Short, cylindrical pellet	Short, cylindrical pellet	Multiply coated	Short, cylindrical pellet
Chemical form	UO2	UO ₂	UÔ₂	UO2	UC/ThC	Mixed oxides UO ₂ and PuO ₂
Fissile	2-4 wt % ²³⁵ U	1.8-2.4 wt % 235U	2–4 wt % ²³⁵ U	Natural uranium	20-93°wt % ²³⁵ U	10-20 wt % Pu
Fertile	²³⁸ U	238U	²³⁸ U	238U	Th microsphere	238II in depleted II
Fuel pins	Pellet stacks in long Zr-alloy cladding tubes	Pellet stacks in long Zr-alloy cladding tubes	Pellet stacks in long Zr-alloy cladding tubes	Pellet stacks in short Zr-alloy cladding tubes	Microsphere mixture in short graphite fuel stick	Pellet stacks in medium- length stainless steel
Fuel assembly	8×8 square array of fuel pins	18-pin concentric- circle arrangement	16 × 16 or 17 × 17 square array of fuel pins	37-pin concentric- circle arrangement	Hexagonal graphite block with	Hexagonal array of 271 fuel pins
Reactor core [§]					stacked fuel sticks	
Axis	Vertical	Vertical	Vertical	Horizontal	Vertical	Vertical
Number of fuel assemblies along axis	1	2	1	12	8	1
Number of fuel assemblies in radial arr	748 ay	1661	193-241	380	493	364 driver, 233 blanket

[†]More detailed data and references are contained in App. IV.

[‡]The HTGR fuel geometry is different from that of the other reactors, leading to some slightly awkward classifications.

§ All of the cores approximate right circular cylinders. Fuel assemblies are loaded and/or stacked lengthwise parallel to the axis of the cylinder.

Prof. Andrew C. Kadak, 2008

Page 40

Reading and Homework Assignment

1. Read Knief Chapter 1

Problems: 1.9, 1.10, 1.12

2. Read Knief Chapter 2

Problems: 2.7, 2.12

3. Read Knief Chapter 4

22.091 Nuclear Reactor Safety Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.